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Abstract

The evidence for universal common ancestry (UCA) is vast and persuasive, and a phyloge-

netic test was proposed for quantifying its odds against independently originated sequences

based on the comparison between one and several trees [1]. This test was successfully applied

to a well-supported homologous sequence alignment, being however criticized once simula-

tions showed that even alignments without any phylogenetic structure could mislead it [2].

Despite claims to the contrary [3], we believe that the conterexample successfully showed a

drawback of the test, which is to rely on good alignments. Here we present a simplified version

of this counterexample where the test again fails. We also present another simulation showing

circumstances whereby any sufficiently similar alignment will favor UCA irrespective of the

true independent origins for the sequences. We therefore conclude that the test should not be

trusted unless convergence has already been ruled out a priori.

Douglas Theobald [1] proposed a quantitative test to distinguish common ancenstry (CA) from

independent origins (IO) of a set of sequences, by modelling CA as a single tree connecting all data

against two or more trees representing the IO episodes. To proceed with the actual calculations,

nonetheless, a single alignment had to represent both hypotheses – which didn’t matter for the

specific, highly curated data set he analysed. However, we and others have raised concerns

that such a test would mistakenly infer homology (common ancestry) whenever the sequences

are sufficiently similar [2, 4–7], rendering it suspicious for alignments of arbitrary quality. In

particular Koonin and Wolf [2] (K&W) presented a counterexample where columns from the

alignment didn’t follow any phylogenetic structure and were simply sampled from a pool of

amino acid frequencies. This simulation model, called ”profile” model in [3], was enough to

make the original test prefer UCA over IO. Theobald then replied that his method would work as

advertised once extended to include the true generating model of the simulated counterexamples,

and also concluded that the criticisms didn’t apply for his ”very high confidence alignment” [3].
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We have already shown that the test fails even for sequences simulated exactly under the described

models of CA and IO, once we include the obligatory alignment optimization step [4]. We

also commented on the arbitrarity of resorting to sequence similarity justifications, since all

counterexamples where his test favored IO had very low pairwise similarity themselves [4], not

to mention the selection bias of such a requirement [7].

Here we show how the K&W model was a legitimate simulation of IO, and that the UCA test

fails even for a simplified version of this model where the true substitution model is amongst

the tested ones. We also try to create IO alignments that satisfy the elusive constraints of qual-

ity/similarity imposed in [3] and conclude that UCA will be favored whenever the sequences

are not clearly unrelated. Finally, we discuss about the lack of mathematical justification for

comparing likelihoods between different alignments, and ilustrate it with a simulation showing

that the UCA test would fail even if we compare sequences aligned independently.

1 Koonin and Wolf’s profile model

K&W simulated alignments where the amino acid states for each column came from a distribution

of equilibrium frequencies – that is, the state for each taxa at the i-th site was sampled from

a discrete distribution π[i] = (π
[i]
A , π

[i]
R , . . . , π

[i]
V ). The original UCA test failed, since the log-

likelihood of the whole simulated data set was always superior than the sum of the log-likelihoods

of arbitrarily splitted sequences. Theobald [3] correctly pointed out that K&W’s sequences

might “have evolved according to a star tree with equal branch lengths” under a MAX-Poisson

evolutionary model [8], but mistakenly assumed that this was equivalent to a common ancestry

scenario. The star tree from K&W model has all branch lengths equal to infinity, as we will see,

which means IO. There is a key distinction between finite and arbitrarily large branch lengths,

which is what ultimately discriminates UCA and IO under the original modelling (see Appendix,

or [4, Supplementary Text]).

We can verify that K&W simulation corresponds to an IO scenario by using, for instance, Equation

1 of [9], which describes a similar model:

P(b | a, t) = e−tδ(a=b) + (1− e−t)πb (1)

where a and b are respectively the initial and final amino acid states along a phylogenetic

branch of length t, δχ is the indicator function1, and πx is the equilibrium frequency of state

x ∈ (A, R, . . . , V).

As we can see, the probability of observing state b is influenced by the initial state a until e−t → 0,

which happens at t = ∞ and therefore IO. For any finite branch length t < ∞ the terminal states

1equals one if and only if χ is true and equals zero otherwise
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will still be correlated to the state at the root, shared among them. It’s easy to imagine that for

very short branches, the state at the tips of the star tree should be very similar, since they will

mostly be the same as the state at the internal node.

The source of the confusion might be that although the instantaneous substitution rate does not

depend on the current state of the Markov chain, the probability of change over an arbitrary

time interval does [10]. Equations (1) and (2) from [11] for example show that even for only two

sequences the probability of observing state a in both sequences at a particular position is given

by e−tπa + π2
a(1− e−t) while the probability of observing state a in one sequence and state b in

the other at the same column equals πaπb(1− e−t).

Therefore for small time intervals we should expect all sequences simulated under this star

tree to be very similar (reflecting the common ancestry with the sequence at the root), while

for longer branches they should diverge from one another until the equilibrium frequencies

are reached. Under K&W’s model these probabilities are respectively π2
a and πaπb, which are

equivalent to the previous star tree values only when e−t = 0, as we saw before. Therefore K&W’s

model corresponds to a star tree model where all branch lengths are infinitely large – that is, the

sequences are unrelated to their common ancestor.

A different question is if we can reliably estimate all parameters from the K&W simulations. The

overall poor fit of MAX-Poisson as described in [8] lead us to conclude that we can’t, due to the

over-parameterization being specially misleading when the number of sequences is small. Simply

there is not enough data to reconstruct the true frequencies vector. It might be the case that a

particular data set can by chance have a corresponding phylogenetic model with finite branch

lengths that explains the data equally well. But this is not the same as claiming that the data set

came from such a common ancestry model.

In a nutshell, K&W’s simulations are equivalent to a MAX-Poisson model over a star tree, but with

infinite branch lengths since each sequence is independent from the others. By the way this star

tree is equivalent to any other tree, or to no tree at all, due to the vanishing branches. And therefore

K&W’s simulated sequences which are truly originated independently. To claim otherwise would

defeat, by the way, the whole phylogenetic model selection framework developed in [1]: if, for

each alignment column, sampling the state (of 2 sequences or more) from a common distribution

renders the data as related by common ancestry, then the idea that two independent trees can

represent IO would be wrong since their root positions might be two such ancestral sequences,

whose columns came from an “ancestral soup” of amino acids – as we show in the Appendix.

To see it from another perspective, we can imagine any two sequences simulated by K&W as the

roots of independent phylogenies. If sampling from a common pool of amino acid frequencies

was enough signal for common ancestry, then the IO model (of infinite branch length) would

be wrong, since it does not impose restrictions on the IO evolutionary models at the root. The

point is that for any combination of phylogenetic models, the IO assumption as devised in [1]
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is mathematically equivalent to an infinite branch connecting the nodes (apical or not). A more

recent CA test explores explicitly this relation between the ancestral root states of two trees [12].

1.1 Our simplified simulation: a homogeneous Poisson+F

To minimize the confusion with the overly parameterized MAX-Poisson model, we reproduced

K&W’s simulations but this time using a homogeneous Poisson model – that is, all columns i

share the same equilibrium frequencies π[i] = π = (πA, πR, . . . , πV). We were careful to include

the true generating model among those tested by the model selection procedure, to be charitable

and avoid misspecification issues2. We simulated 8 sequences with 1000 sites under a randomly

sampled vector of shared amino acid frequencies. More specifically, we used INDELible [13] to

simulate 2 quartets with a collapsed internal branch of length zero and all terminal branches with

a huge length of 2500 – computationally equivalent to 8 independently originated sequences from

a common pool of amino acids.

The AIC analysis was done with ProtTest3 (version from 18/Oct/2010) under a subset of available

models, where we included the Poisson model. For this analysis we did not optimize the

alignment, to be consistent with K&W, although we know that the test would fail if we did align

them [4]. But while K&W used a set of empirically observed amino acid frequencies to sample

from, we simulated these frequencies π from uniform distributions – each simulated data set

had a distinct frequency set, but all sites within a simulation shared the same values. We use

∆AIC = AIC(IO)− AIC(UCA), such that positive values of ∆AIC favor UCA, and a difference

in AIC larger than 10 indicates that the model with larger AIC has practically no support when

compared to the smaller one [14, 15]. Figure 1 shows that most (> 97%) simulations UCA were

wrongly favored according to Theobald’s test, despite the large tree lengths making us suspicious

about these data. Not only that, 75% of the replicates showed very strong support for the wrong

hypothesis (that is, considering only those with ∆AIC > 10).

1.2 Pairwise versus phylogenetic comparisons

In his recent reply to K&W, Theobald gave arguments favoring Bayesian model selection over

frequentist analysis [3]. But within his overview there seems to be some confusion about the

advantages of his method against BLAST-based e-values: one thing are the virtues of Bayesian

over frequentist analyses. Another, completely different issue, is the superiority of phylogenetic

against pairwise sequence comparisons. His own solution to ”estimate an upper bound for the

effect of alignment bias” was a random permutation of the sequences [3], which weakens his

discourse against frequentist methodologies (as we will see this advice is incorrect since we

cannot compare likelihoods between different data).
2Although we must never expect real data sets to follow exactly an implemented model
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Figure 1: ∆AIC values for the simplified version of Koonin & Wolf’s simulations. Positive
values for ∆AIC indicate UCA,and to ease interpretation the simulations favoring IO are
displayed as blue dots, while those strongly favoring UCA (∆AIC > 10) are red. Marginal
histograms are also shown, and the gray dots represent simulations favoring UCA only
slightly.

He compared a Bayesian phylogenetic model selection with a pairwise null hypothesis framework,

praising the former over the latter [3]. But we would still prefer a frequentist phylogenetic model

over a pairwise Bayesian one. That is, we might have a Bayesian model for pairwise homology

detection [16] or a frequentist phylogenetic model selection, like for instance the one we present

on Section 3. Likewise, we could devise a classic hypothesis testing where H0 and H1 are

as described in the Appendix, using a branch length fixed at infinity against the alternative

hypothesis with the length free to vary – we do not need to impose the same replacement matrix

or other parameters across branches. In all cases the phylogenetic approach should be preferred

over pairwise comparisons, because we expect that the effect of using the whole data at once

should be more relevant than the statistical framework we choose.

2 Data sets conditioned on similarity

Theobald also suggested that his test works without corrections only for high confidence align-

ments [3], which we interpret as being those with low uncertainty and/or composed of similar

sequences. He mentioned ”eliminating any potential alignment bias”, where ’bias’ refers to
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”artifactually induce[d] similarities between unrelated sequences” [3, page 14]. But to solve the

UCA vs IO question we cannot restrict eligible data sets based on similarity, as by doing so we

would be introducing an ascertainment bias towards alignments where UCA is more likely than

for less similar ones. And notice that this is not to assume that similarity implies in homology,

but it is a simple recognition that there is a correlation between them that cannot be neglected by

excluding the sequences capable of refuting our hypothesis [7]. And we could even speculate that

once the remove the ”alignment bias and uncertainty” what we are left with are columns that

share a common ancestor a fortiori. Importantly, Theobald himself didn’t seem to bother about

this bias in the examples where the UCA test favored IO, as for example the data described in the

last paragraph of page 221 or in the supplementary subsection 3.1 of [1].

Theobald claimed that his test worked ”without assuming that sequence similarity indicates a

genealogical relationship” [1], so we were interested in checking whether his test can indeed

distinguish similar sequences with IO from similar sequences with an UCA. Indeed, it is hard to

devise a simulation scenario where sequences generated under IO are very similar to each other,

or are free from ”alignment bias”, and we have shown that all previous attempts failed at showing

the correctness of the model [4]. We have argued that even summary statistics contain information

about the likeliness of UCA, and therefore any common ancestry test must take this information

into account [7]. Nonetheless it might be ultimately claimed that only bias-free alignments could

invalidate the UCA test. Maybe a simulation where independent sequences should converge to a

similar protein structure or to a limited set of structures might fit the demands, but we could not

properly implement such a model at this point.

The closest approximation we could devise was to repeat the IO and UCA simulations as in [4],

but now selecting the columns such that the average identity was above a given threshold. We

must recall that this is not a proper simulation of highly similar IO sequences in general, since

this toy example also suffers from a selection bias – and the frequency itself of column patterns

defines a phylogeny [17, 18]. Specifically, we generated very long multi-sequence data sets under

UCA or IO (as in other simulations [4, 7]), reordered their columns based on their conservation

(from higher to lower average identity), and then selected exhaustively subsets of columns along

this reordered data sets such that the average identity was above a threshold. We used segments

of 1000 columns, which were each subjected to the UCA test twice: once before and once after

aligning the segments with MUSCLE [19].

The results are shown in Figure 2, where we observe that the UCA hypothesis was always favored

whenever the average sequence identity was higher than 0.44, even for sequences simulated

under IO. Segments with similarities as low as 0.35 could also mislead the test in favor of UCA.

And if we align the segments, then any sequences with more than 0.25 of average identity (before

aligning) will be inferred as sharing a common ancestor, regardless of their actual relationship.

Again, this is not an ideal simulation of highly similar IO sequences but still it suggests that

by picking only the columns with high similarity we might falsely conclude for UCA. And
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Figure 2: UCA test applied over large simulated data sets using a sliding window ap-
proach, where data sets’ columns were ordered from lower to higher average identity.
Positive values for AIC suggest a UCA. The inset shows AIC after optimizing the align-
ment within the segments (where the average identity refer to the segment before the
alignment step).

importantly for our argument, it suggests that any reasonably conserved alignment would favor

common ancestry no matter the actual origin of the sequences.

We could thus verify that the UCA test is oblivious to the source of the similarity: as long as

the similarity is high enough it will favor UCA, while low similarities will have been previously

camouflaged by an alignment optimization algorithm and even rejected altogether by BLAST or

by the researcher, aribtrarily.

3 A random permutation test

An interesting alternative that does not rely on high quality aligments is to apply a permutation

test where the sites for some sequences are shuffled and then the AICs are recalculated after

realignment, telling us how much the original data departs from those with phylogenetic structure

partially removed. It is inspired by [3, page 14], where it was suggested that the model selection

test on one (or several?) shufflings would give an ”upper bound for the effect of alignment bias”.

This randomization test has similarities to the permutation tail probability (PTP) tests [20, 21],

but would invalidate the AIC and BF interpretations since the support value for UCA cannot be
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interpreted in isolation3. If we must compare the AICs between the original and randomized

replicates – all favoring UCA, as we have shown –, then we are back to a frequentist analysis,

where e.g. the AIC alone represents just a statistic that cannot be interpreted as probabilistic

support for one of the hypotheses. Furthermore, we must emphasize that the AIC comparison

only has a probabilistic interpretation when evaluated under the same data – the alignment,

unless explicitly accounted for by the model (for phyml, prottest and others the data are the

alignment columns). Therefore, althought the ”upper bound” argument is mistaken, it can lead

to a valid permutation test.

This suggests that many other statistics may work in such a frequentist approach, that don’t need

to rely on AIC or LnL values. We therefore developed such a randomization test where only

simple statistics were considered, and applied it to in silico data sets. For each data set simulated

under IO or UCA (same scenarios as in [4, Suppl. Mat.]) we calculate the statistics and then

we create a distribution of these statistics under the hypothesis of independent origins (H0), to

which the original value is compared (the p-value). Each H0 replicate is created by changing

the columns order for one of the groups in the original data set, as was done in [1, section 3.1 of

the suppl material] and described also in [4, Suppl. Mat. section S2.2]. Importantly, we always

optimize the alignment for the original data set and each of the samples from H0 – so that we can

estimate the ML tree, for instance. The statistics that we used are: 1) the sum of branch lengths

of the ML tree for all sequences estimated under a LG model using phyML; and 2) the average

pairwise identity within groups minus the average pairwise identity between groups suspected

of having independent ancestry. In both cases we expect lower values for UCA than for IO, and

our p-value is thus constructed by counting the number of null-distributed replicates presenting

a value as low as the original data (where ”original data” is actually our data set simulated with

INDELible).

In Figure 3 we show the results of 400 simulated data sets – 200 simulated under IO and 200

under UCA – where the null hypothesis was approximated by 100 shufflings (for each of the

400 data sets). We can see that not only the statistics are different between IO and UCA data

sets, but that the p-values can clearly distinguish both cases (with the p-value uniform under

the null, as expected). We could have used the AIC or BF scores from the original UCA test as

the comparison statistics here, but it would give us similar results. And they would not give us

any further insight, since their individual values would ”support” UCA even under IO [4] and

even their differences or ratios would not represent statistical support anymore. Here we show

again, as in [7], that the alignment properties are by themselves informative about UCA, and

even without employing the whole AIC-based model selection analysis we can test for UCA. We

should note that we do not endorse this test as the ultimate solution: as discussed by [21], the

PTP test itself is flawed (but see [22]) and there might be caveats with our version as well. We

suspect that our random permutation test would fail just like the original UCA test for bias free

3We cannot compare likelihoods between different data

8



3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
00

0.
10

0.
20

0.
30

ML tree length under UCA

fr
eq

ue
nc

y

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.
0

0.
1

0.
2

0.
3

0.
4

difference in similarity within/between groups

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value using ML tree length

IO simul
UCA simul

0.0 0.2 0.4 0.6 0.8
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
p−value using similarity difference

Figure 3: Frequentist nonparametric p-values where the null distribution was approx-
imated by reshuffling columns of a subset of the sequences. On the left we have the
distribution of the test statistics for the ”original” sequences simulated under IO (blue)
or under UCA (red), while the right show their associated p-values. At the top the test
statistic is the maximum likelihood tree length unde the common ancestry hypothesis,
and at the bottom the statistic is the difference in average similarity wihin each group and
between one group and the other.

or ”very high confidence” aligments of IO sequences, but as we argue this is an unreasonable

assumption to start with. The ”alignment bias” should not be used as a criterion for the adequacy

of the UCA test, since it is an integral part of any common ancestry test.

3.1 Aligning independently under each hypothesis

Model selection tests can help deciding between models for a given data set, but cannot be

compared accross different data. Therefore we should not compare e.g. AIC values or log-

likelihood ratios between different alignments, as under phyML and many other programs that

do not consider explicitly the indel process. In contrast to e.g. [23], for these programs the data

are the frequency of site patterns (i.e. the alignments). That is, alignment columns are considered

independent and identically distributed observations from the evolutionary process. Therefore

we stress that in order to apply the original UCA model selection test we must use the same

alignment for both the IO and UCA hypotheses.

But what values would we observe if we could simply align the sequences independently, as has
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been suggested by Theobald [personal communication]? For this simulation we used the same

simulation scenario as before [4] assuming an LG+IGF for each independently originated quartet –

that we call B and E since they are based on bacterial and eukaryotic parameters, respectively. But

now under the IO hypothesis we align the quartets separatedly – that is, in order to calculate the

AIC(B) we align only the B sequences, and so forth. We can also try to account for the different

alignment sizes by using the Bayesian Information Criterion (BIC) [24]:

BIC = k log(N)− 2LnL

which is similar to the AIC but where we have the log of the number of data points (=column

alignments in our case) instead of a fixed integer. The alignment size will be generally the same

under each IO subset, and will correspond to the original sequence size of 6591 sites, while under

UCA it will be around 10% larger, indicating the imputation of indels if we align both subsets

together [4]. The ∆AIC values do not change wether we align the putative independent data

sets together or separatedly, and trying to correct for the alignment size makes the tests perform

even worse (Figure 4). Therefore, even if we align each subset independently from others, we

would still observe misleading, positive ∆AICs. Again, the probabilistic interpretation of these

information criteria is lost under this procedure.
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Figure 4: AIC and BIC per site if we align independently each subset (B and E sequences
under IO, and B+E sequences under UCA). Each ∆IC (where IC=AIC or BIC) is calculated
as ∆IC = IC(B) + IC(E) − IC(B + E) such that positive values favor UCA. The ∆IC
values were further divided by the alignment length under UCA, to give scaled values
comparable with other analyses.
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4 Discussion

In Theobald’s response to K&W’s simulations, he showed that by extending his test to include

the true model (the MAX-Poisson under a star tree with infinite branch lengths, called ”profile”

model) it would be preferred over a single tree with a standard substitution model. This shows

that the evaluated phylogenetic substitution models are consistent, but do not provide evidence

about the apropriatedness of the original UCA test. Even more, the actual model selection should

be thought of as a blind test: we must not rely on some priviledged knowledge about the true

origin of the data set to reject hypotheses beforehand. Since we never know the true generating

model of real data sets – which is specially true in phylogenetics – we must accept that all models

we work with are misspecified [24].

On the other hand, if the inference for or against UCA depends on details of the phylogenetic

model, then the test will only be useful when we know the true phylogenetic model. We do not

expect a useful model to be very sensitive to model violations, specially when these violations

can be assumed to affect both hypotheses. We expect the test to favor the correct hypothesis for

any model close enough to what might be the true generating one.

For example if our conclusion for UCA or IO changes depending on whether allow or not rate

heterogeneity, whether we include or not a given replacement matrix, or some other mild model

misspecification, then it becomes hard to defend our conclusion, and we should not trust this

model selection. Our expectation is that a model good enough will affect both hypotheses

likewise.

We are not against extending the framework to include more models, which might help distin-

guishing an IO data set from an UCA one. After all, the test output will give the odds ratio given

a set of assumptions – like for instance rate heterogeneity, common branch lengths along the

alignment, a common topology for all sites, etc. And we can always improve on the assumptions.

Furthermore if we can devise an evolutionary model whereby independent sequences can mislead

BLAST searches and alignment procedures, certainly we would like to see it implemented it

in such a model selection framework. But we should accredit it as a contribution to a better

model selection test, specially if such model could have systematically misled the original one.

Systematically misleading simulations are a valid criticism to a particular model selection scheme,

that deserve credit.

We shouldn’t dismiss a model based solely on our subjective impressions about commonplace

data sets, either: novel methodologies are created precisely to discover patterns that were hidden

or unexplained so far. Therefore biological realism or representativeness may not be good judges

of a model’s relevance. In exploratory analysis we employ several shortcuts like skipping similar

models or disregarding those based on assumptions known to be very unlikely. But when the

aim is to assign objectively probabilities to the hypotheses, then we should consider and embrace
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models capable of refuting them.

A more serious problem may be when model misspecification happens only under one of the

hypothesis (due to software limitations, for instance). For instance, cases where amino acid

replacement model heterogeneity between the independently evolved data sets can affect the

test: while under UCA all branches are forced to follow the same replacement matrix, gamma

parameter and equilibrium frequencies, under IO the independently evolved groups are allowed

to have their own ones. We recognize that this is an implementation problem and not a theoretical

one – programs usually make this homogeneity assumption to avoid overparameterization.

Nonetheless, we should be careful whenever the test favors IO since it might be the case of a

better parameterization – one set of parameters for each subtree. Whenever the test favors IO,

we should always try to isolate the effect of the IO assumption against the confounding effect of

amino acid replacement heterogeneity by one of two ways.

One is by extending the software to replace the fixed parameter by a variable one. That is,

to allow the implemented model to have a variable replacement matrix along the tree, or a

heterogeneous equilibrium frequency vector across branches, etc. so as the UCA tree can access

the same parameter space as the IO trees. The other is to assume homogeneity unde the IO

hypothesis by using the same parameters over all independently evolved groups, such that any

model misspecification can be ”marginalized”. If some apparent support for the IO hypothesis

dissapears once we force homogeneity, then we can suspect that the model misspecification was

misleading the test.

We maintain that the UCA test as originally proposed [1] is heavily biased towards UCA, but

a good counterargument would be to show a replicable simulation procedure that generates

bias-free alignments where the test correctly detects IO. The problem lies in that there are no

known mechanisms by which we can simulate independently evolved sequences that satisfy the

quality requirements imposed in [3] – and any attempt might be met with a special pleading,

as we have seen. Theobald did take into account the published and unpublished criticisms to

his method when describing alternatives to his original test [3]. But he did so obliquely and

without recanting from the correctness of the test or the validity of his purported counterexamples,

mentioning only that his method assumed no ”alignment bias”. It is worth noticing that another

method has been recently proposed that can more directly test for ancestral convergence [12].

This method does not seem to suffer from the drawbacks of the UCA test, since it takes into

account the alignment step. Another powerful argument for the common ancestry of life is to

show how distinct genes or different units of information support similar phylogenetic histories

– and we thank Douglas Theobald for the herculean task of compiling the evidence for it in

an accesible manner (http://www.talkorigins.org/faqs/comdesc/). But unfortunately

the opportunity of showing this consilience of trees for the universally conserved proteins was

missed: the UCA model selection framework suggested that several trees were much more likely

than a single tree for all proteins [1], which prima facie goes against a universal phylogeny, in the
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absence of a quantification of the amount of disagreement. We are thus left only with a visual

corroboration of the non-random clustering of taxa [1, Figure 2a].
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APPENDIX – Independent origins as a special case of the com-

mon origin

Here we show in more detail our sketched proof that in the model selection proposed by [1] the

IO hypothesis is a particular case of the model for UCA, if we assume a single evolutionary model

M [4, Suppl Mat]. However, this conclusion remains valid if we relax the fixed model assumption:

instead of a single evolutionary model we can think of variable models along the tree.

The following diagram represents how the UCA model (at the left) can lead to the IO model (at

the right), where we see that after the “removal” of the internal branch the remaining neighboring

branches have one less degree of freedom since the likelihood is the same whenever their sum is

the same. In other words, for each independent origin three internal branches are fixed: one at

∞, representing the de novo appearance, and one at each of its sides becoming redundant by the

pulley principle. The parameters a and c are constants between zero and one and a natural choice

is a = c = 1, while A, B, C and D are subtrees (with one or more leaves).
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The justification for fixing the branch length at inifinity comes from the fact that the Markov

chains used in amino acid replacement models converge to their equilibrium distributions. That

is, the probability P(x | z, t, M) of going from state z to state x in time t under evolutionary model

M becomes independent of z when t → ∞, and approaches the equilibrium frequency πx of x

under model M:

lim
t→∞

P(x | z, t, M) = πx

The likelihood P(X | T, t, M) of a phylogenetic tree T with branch length vector t arbitrarily

rooted at r can be calculated for a given alignment column X as

P(X | T, t, M) = ∑
z

πzLr(z | t, M) (2)

where Lr(z | t, M) is the partial likelihood of node r for amino acid state z, and can be calculated

recursively by

Lr(z | t, M) =
[
∑
x

P(x | z, ta, M)LA(x | t, M)
][

∑
y

P(y | z, tb, M)LB(y | t, M)
]

(3)

Assuming the subtree with branch lengths ta, tb ∈ t connecting r to (internal or external) nodes A

and B represented by

�
�

�
�

@
@
@
@

A B

r

ta tb

In the case when ta and tb go to infinity then as we saw P(x | z, ta, M) = πx and P(y | z, tb, M) =

πy, and therefore we have that equation 3 reduces to

Lr(z | t, M) =
[
∑
x

πxLA(x | t, M)
][

∑
y

πyLB(y | t, M)
]
= W (4)

which is independent of z, and thus the site likelihood of equation 2 becomes

P(X | T, t, M) = ∑
z

πzLr(z | t, M) = ∑
z

πzW = W ∑
z

πz = W (5)

By comparing each of the two terms in equation 4 and equation 2 we can see that W is the product

of the site likelihoods of two independent trees under the model described in [1], arbitrarily

rooted at A and B. That is, if we represent the likelihood under the IO hypothesis as calculating

independently the likelihoods of the subtrees rooted at A and B and multiplying them, then we

have that each of these terms will be ∑x πxLρ(x | t, M) where ρ = (A, B), as in equation 2. The
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product of these terms is identical to the likelihood of a single tree with an infinite branch length

connecting A and B, described by equation 5.

The extension for distinct amino acid replacement models over the tree is straightforward (re-

placing M by M = (M1, . . . , M2N−2) for N leaves), with the caveat that despite it can be handled

by sequence simulation programs like INDELible [13], it is not implemented yet in popular

phylogenetic reconstruction methods. Therefore the lack of correspondence of models M between

the hypotheses is a limitation of the software employed, and not of the hypothesis test as devised.
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