
Oxford Oberon–2 Compiler

Users’ Manual: version 3.0

Mike Spivey

Oxford University Computing Laboratory

Draft of 13.xi.2016

Copyright © 1999–2016 J. M. Spivey

Contents

1 Introduction 3

2 Using Oberon 4
2.1 Introducing the Oberon compiler 4
2.2 Programs with more than one module 6
2.3 Managing compilation with make 8
2.4 When things go wrong 9
2.5 A debugger 11
2.6 Profiling 13

3 Compiler command line 16

4 Language differences and compiler modes 18
4.1 Oberon07 mode 18
4.2 Optional language extensions 19

5 OBC Library Reference 21
5.1 Module In: Standard input 21
5.2 Module Out : Standard output 21
5.3 Module Err : Standard error 22
5.4 Module Files: File input/output 22
5.5 Module Math: Mathematical functions 24
5.6 Module Args: Program arguments 24
5.7 Module Random: Random numbers 25
5.8 Module XYplane: Simple bitmap graphics 25
5.9 Module Conv : Numerical conversions 26
5.10 Module String: Operations on strings 26
5.11 Module Bit : Bitwise operations on integers 26
5.12 Module SYSTEM : Low-level system operations 27

2

Chapter 1

Introduction

This manual explains how to use the Oxford Oberon–2 compiler obc to com-
pile and run Oberon–2 programs. The content is largely extracted from
the laboratory manual used by our undergraduates in Oxford for their sec-
ond programming course (their first course is functional programming with
Haskell).

The following typographical conventions are used throughout this manual:

• Names of programs are shown in bold face type.

• File names are shown in italic type.

• The text of Oberon programs is shown in sans serif type, except that
identifiers in the running text are shown in italic .

• The text of unix commands is shown in typewriter type. Where an
interaction with the computer is shown, the characters you type are
shown in italic typewriter type, and the computer’s responses are
shown in upright typewriter type.

3

Chapter 2

Using Oberon

This chapter will tell you how to use the Oberon compiler obc to compile and
run Oberon programs.

2.1 Introducing the Oberon compiler

Before your Oberon program can be run, it must first be translated by the
Oberon compiler into a form that can be directly obeyed by a machine. For
example, Figure 2.1 shows a little Oberon program for computing factorials.
As you can see, the name of the file exactly matches the name of the module
Fac that it contains, even down to the capitalization of the name. (In the soft-
ware lab at Oxford, you can find a copy of this file at /usr/local/practicals/ip1
/examples/Fac.m.) To translate this program with the Oberon compiler, give
the command1

$ obc -o fac Fac.m

This command runs the Oberon compiler obc , asking it to translate the pro-
gram found in Fac.m and place the translation (“-o fac”) in the file fac.2

When you have done this, you can run the program by giving the unix
command ./fac, like this:

$./fac
Gimme a number: 4
The factorial of 4 is 24
Gimme a number: 5
The factorial of 5 is 120
Gimme a number: 6
The factorial of 6 is 720
Gimme a number: -1
$

1 In this manual, I’ve shown the shell’s prompt as $, but it may appear differently, depending
on the shell that your account has been set up with. The characters you type are shown in
slanted type.
2 If you don’t say “-o fac”, the compiler rather unhelpfully puts the translation in a file
called a.out, according to a long-standing unix tradition.

4

2.1 Introducing the Oberon compiler 5

MODULE Fac;
IMPORT In, Out;

VAR n, i, f: INTEGER;

BEGIN
LOOP

Out.String("Gimme a number: "); In.Int(n);
IF n < 0 THEN EXIT END;

i := 0; f := 1;
WHILE i < n DO i := i+1; f := f∗i END;

Out.String("The factorial of "); Out.Int(n, 0);
Out.String(" is "); Out.Int(f, 0); Out.Ln

END
END Fac.

Figure 2.1: Contents of file Fac.m

As you can see in Figure 2.1, the program contains a loop that repeatedly asks
for a number and computes its factorial, until a negative number is input.
With our usual setup at the Computing Laboratory, you have to type ./fac
as the unix command for starting fac , to reflect the fact that the file fac is
in the current directory, not one of the directories where unix usually keeps
executable programs.3

The file fac contains low-level instructions that are equivalent to the high-
level program in Fac.m. Once the translation has been done, you could delete
the file Fac.m and still run the low-level version in fac; or you could copy the
file fac and give it to a customer, who could run the program without needing
to have the source code.

There’s something a little unusual about the Oberon compiler we’ll be us-
ing, and that’s the fact that (like most compilers for Java) it doesn’t actually
translate your program into instructions for the physical computer you are
using. Instead, the designer of the compiler has invented a simple ‘virtual’
computer specially for implementing Oberon, and the file fac contains in-
structions for that computer instead. The gap between the virtual computer
and the actual, physical computer is bridged in one of two ways: either by
means of an interpreter program that uses the physical computer to carry
out a simulation of the virtual computer, or by means of a just-in-time trans-
lator (JIT) that compiles code for the physical machine after the program is
loaded, but before each piece of it starts to run. The biggest advantage of
using a virtual machine is that the compiler can be ported to a new computer
just by making a new interpreter – and since the interpreter is itself written
in a highish-level language (C), that’s usually just a matter of re-compiling it
on the new computer. JIT translators must be designed separately for each
machine architecture, though they may share common parts. At present,
translators exist for the x86 architecture used by PCs and Macs and for the
ARM architecture used by the Raspberry Pi.

3 I find this need to type ./fac instead of just fac very annoying. If you hate it as much as I
do, ask the demonstrator how to change it, after asking about the tiny security risk involved.

6 Using Oberon

MODULE FibMain;
IMPORT In, Out, FibFun;

VAR n, i, f: INTEGER;

BEGIN
LOOP

Out.String("Gimme a number: "); In.Int(n);
IF n < 0 THEN EXIT END;

f := FibFun.Fib(n);

Out.String("fib("); Out.Int(n, 0);
Out.String(") = "); Out.Int(f, 0); Out.Ln

END
END FibMain.

Figure 2.2: Contents of file FibMain.m

The biggest disadvantage of this scheme is that programs run more slowly
than they would with a conventional compiler. The interpreter-based imple-
mentation is perhaps 5 to 10 times slower than a code from a conventional
compiler, whilst the JIT is also slower, because it generates code in a simple
way without a lot of optimization. But we won’t be writing any programs that
run for a very long time, so that won’t be too much of a disadvantage.4

2.2 Programs with more than one module

Bigger programs are often divided into several modules for ease of under-
standing. If this division into modules is done judiciously, it should be possi-
ble to understand a lot about each module without looking at the other ones.
A well-designed module has a small interface, and it is possible to say what
the module does without giving the details of how it does it.

As a contrived example, let’s look at a variation on our program for cal-
culating factorials that calculates Fibonacci numbers instead. Calculating
Fibonacci numbers is a simple task that can be done in several ways, some
more complicated and efficient than others. That makes it sensible to intro-
duce a procedure, so as to separate the what – the Fibonacci function – from
the how – the algorithm for calculating it.

Putting the procedure in its own module is over-kill, since there are no
details to hide that are not already hidden inside the procedure. But doing
so will let us show how to split a program into modules, so let’s do it anyway.
Figure 2.2 shows a program like our earlier factorials program, but with the
code to calculate the factorial replaced by a call to the function FibFun.Fib,
imported from a module FibFun. Figure 2.3 shows the text of that module,
including a procedure that calculates Fibonacci numbers. Note the export
mark ∗ in the heading of this procedure.

To compile this program, we must separately translate the two modules

4 Actually, there’s a hidden advantage: having an artificially slowed-down computer will
encourage you to learn how to write programs that make economical use of computer time.

2.2 Programs with more than one module 7

MODULE FibFun;
PROCEDURE Fib∗(n: INTEGER): INTEGER;

VAR a, b, c, i: INTEGER;
BEGIN

IF n = 0 THEN
RETURN 0

ELSE
a := 0; b := 1; i := 1;
WHILE i < n DO

c := a + b; a := b; b := c;
i := i + 1

END;
RETURN b

END
END Fib;

END FibFun.

Figure 2.3: Contents of file FibFun.m

into machine code, then combine the two files of machine code into one
program. Although all this can be done with the single command

$ obc -o fib FibFun.m FibMain.m

it is better to separate the three steps, so that we need not repeat all the
steps if we change only some of the modules. With a small example like
this, it doesn’t make a significant difference: but as I’ve already admitted,
using modules at all in this example is over-kill. To compile the two modules
separately, we need the three commands

$ obc -c FibFun.m
$ obc -c FibMain.m
$ obc -o fib FibFun.k FibMain.k

The first command translates the FibFun module, producing a file FibFun.k
that contains the virtual machine code, and also some information about
the exported interface of the module. The second command translates the
FibMain module into a file FibMain.k of virtual machine code; during the
translation, the compiler reads the file FibFun.k to check that the function
FibFun.Fib is used in a way that is consistent with its definition. The third
command combines the two files of machine code with the code for the li-
brary modules In and Out to produce the executable file fib.

The files FibFun.k and FibMain.k containing the low-level instructions are
in a textual format, so if you are curious you can examine them with a text
editor. Don’t try changing them, though: that will probably result in chaos.
You will see that the files contain lines from your source program in the form
of comments. These are completely ignored by the simulator, but are there
to help us track down problems with the Oberon compiler.

8 Using Oberon

1 # Makefile for fib
2

3 FIB = FibFun.k FibMain.k
4 fib: $(FIB)
5 obc –o fib $(FIB)
6

7 FibMain.k: FibFun.k
8

9 %.k: %.m
10 obc –c $<

Figure 2.4: Contents of file Makefile

2.3 Managing compilation with make

If you are writing a program, perhaps in several modules, and trying to get
it to work, it becomes very boring to have to type out a long sequence of
commands each time you want to compile it. Also, if we make a change to
only one of the modules in a big program, we want to avoid recompiling all
of it so as to save time.

A partial solution to this problem would be to write a shell script for com-
piling the program: that is, a sequence of unix commands that is stored in
a file. This solves the problem of typing a long command or sequence of
commands each time we want to compile our program; but there’s a better
way that uses a nifty program called make. This program lets you write a
script that, like a shell script, contains the unix commands for compiling
your program. Unlike a shell script, the make script associates each of these
commands with a file that it produces. The make program uses the modifi-
cation time that unix associates with each file to work out which files in your
program have been changed, and issues only the commands that are needed
to bring everything up to date. Usually, there’s just one script that describes
how to compile all the programs in a directory, and the script is stored in the
same directory under the name Makefile.

For example, Figure 2.4 shows a makefile for our little Fibonacci program:
I’ve numbered the lines for ease of reference. In this course, you will not need
to know how to write makefiles, because a working makefile will be provided
when it is needed. Nevertheless, make is such a useful program that it’s good
to understand something of what it can do.

Line 1 of the makefile is a comment: it starts with # and continues to the
end of the line. Lines 3–4 describe the last of the three commands needed
to build the fib program, using the list of files FIB defined on line 2. Line
3 records the fact that the file fib is made from the two files FibFun.k and
FibMain.k, so that it should be rebuilt if either of these two files is newer
than it; and line 4 (starting with a tab character) gives the unix command to
execute in this case.

The other two commands needed to build fib are summarized in the ‘pat-
tern rule’ on lines 6–7; this says that any file ???.k can be made from the
corresponding file ???.m by running the command obc -c ???.m. Line 5
records the fact that rebuilding FibFun.k requires FibMain.k to be rebuilt too,
because the interface of the FibFun module may have changed.

2.4 When things go wrong 9

Suppose we were to modify our program, perhaps to make it more accept-
able to English tastes by replacing the word “Gimme” by the polite phrase
“Kindly enter”. To do this, we would use a text editor on the file FibMain.m,
and our final action with the editor would be to save the new file over the
old one. This would cause unix to change the modification time of the file,
making it newer than the file FibMain.k that was generated by the compiler
last time we built the program. Now we simply give the command

$ make

The make program examines the rule that says how to make FibMain.k from
FibMain.m and sees that the time-stamps are out of step. So it runs the
Oberon compiler and creates an up-to-date version of FibMain.k. This makes
FibMain.k newer than the final program fib, so make also runs the command
to rebuild fib. Since we haven’t touched the FibFun module, it does not need
to be rebuilt, and make omits the command to build it. If we immediately run
make again, it will do nothing the second time, because each file will already
be up to date with respect to the files from which it is built. So it’s quick and
easy to use make simply to check that everything is up to date.

Two very common mistakes in using editors and make are these: forget-
ting to save a file in the editor before running make, and forgetting to run
make after changing your program. The first kind of mistake is noticeable,
because make does less work than you expected: if you change a source file,
it ought to be recompiled. Both kinds of mistake become noticeable when
your program continues behaving exactly as it did before you made your
changes.

2.4 When things go wrong

There are many kinds of things that can go wrong in writing a program:

• You might write a program that does not conform to the grammatical
rules of Oberon.

• You might write a program that, although grammatically correct, does
not make any sense because you have (for example) forgotten to declare
some of the variables you use.

Because of the way the Oberon compiler has been written, it checks that your
program is grammatically correct before it begins to address the question of
whether the program makes sense, and it checks the whole program for sense
before it starts to generate the machine code translation. So if you write a
grammatically incorrect program that also contains undeclared identifiers,
then the compiler will not bother to mention the missing declarations until
you have put the grammar right; and if the program contains grammatical
errors, if declarations are missing or if the types do not match up properly
in expressions, the compiler will not generate any machine code for your
program until you have put it all right.5

After detecting one grammatical error in your program, the compiler tries
to continue with its analysis of the rest of your program, so that you can

5 This is a bit annoying when the only error is a missing semicolon, I admit.

10 Using Oberon

correct more than one error each time you run the compiler. The compiler
works by reading your program from beginning to end, and it produces its
first error message when it reaches the first word or symbol in your program
that could not be the next symbol in any valid Oberon program. So the first
error message at least is reliable.

After the first error, the compiler has the problem of re-construing your
program in such a way that it can continue and look for other errors. The
methods used for this are necessarily crude, because after all your program
is wrong, and the compiler can only guess at what you meant. The compiler
uses rules for recovery like “skip to the next semicolon, and see if what
follows looks like the beginning of another statement”. This means that the
compiler can diagnose as another error in your program a problem that is
in fact caused by the compiler’s own state of confusion. For example, the
compiler might skip over an end keyword as it looks for a place to restart,
and that might cause it to think that a later procedure declaration appears in
the middle of the current procedure. There’s no way to avoid this problem
in general, so it’s best to be aware that only the first error message is really
worth relying on.

When errors are reported by the compiler, the combination of the obc com-
piler, make and the emacs editor is particularly productive. Emacs and its
X version xemacs provide a command that you can run by using the menus
or toolbar under X, or by typing M-x compile;6 this uses make to recompile
your program, and displays the output of that process, including any mes-
sages from the compiler, in an Emacs buffer. The obc compiler puts its error
messages in a standard format, like this:

"Planner.m", line 92: missing ’;’ at token ’IF’
> IF verbose THEN ShowLink(u, "green") END;
> ˆˆ

Another emacs command next-error (bound to the key sequence7 C-x ‘)
recognizes these error messages and finds the relevant file and the relevant
line, putting the editor’s cursor there ready to correct the error. Subsequent
invocations of next-error will take you to the locations of other errors
reported by the compiler.

Other things can go wrong when you run your program:

• You might write a program that performs an illegal operation when it
runs. Examples of such illegal operations are accessing an array with
an index that is negative or greater than the length of the array, and
following a pointer that has been set to nil.

Errors like these are detected when the program runs, because there is no
generally applicable way for the compiler can work out in advance whether
such errors can happen.8 The advantage of a language like Oberon is that
the compiler can generate code that checks for such errors, and stops the

6 Hold down the Alt key and press x, then release both, type the word compile, and press
Return.
7 Hold down the control key while pressing letter x, then release both and press ‘ (grave
accent).
8 Actually, we can prove mathematically that no compiler could do this, because it is equiva-
lent to solving the ‘halting problem’ for Turing machines. The intriguing theory of such things
is covered in the second year course Models of Computation.

2.5 A debugger 11

program immediately. For an array reference a[i], the compiler generates a
check that 0 ≤ i < N, where N is the length of a. If this is not true, then the
program is stops with a message such as

Runtime error: array bound error
on line 123 in module Directory

The Oberon language has been very cleverly designed so that errors of this
kind can be detected immediately with simple compiler-generated checks.
This property does not hold for C, for example, so C programmers are always
trying to track down the cause of baffling problems.9

Some things that can go wrong do not result in any helpful message:

• Your program may run forever, without producing any output. A com-
mon cause of this is that you’ve written a loop

WHILE i < n DO ...

but have forgotten to put i := i + 1 in the loop body.

• Your program may produce output that is wrong. In this case, there’s no
substitute for careful thought, but you can gather evidence about what
is happening either by adding code at suitable points in the program
that prints relevant information about the value of variables, or by using
a debugger (see the next section).

• Your program may produce the right output, but run too slowly to be
useful. In this case, the solution is not to start madly ‘optimizing’ every-
thing in sight in the hope of speeding things up. If you do that, you will
probably spend most of your effort on parts of the program that have
almost no effect on the overall speed, and you will certainly make your
program more complicated, perhaps so much so that it stops working
properly, and you end up in a worse position than when you started.
A better alternative is to use profiling to find out where the program is
spending its time: see Section 2.6.

2.5 A debugger

If a program produces the wrong output, then it’s often hard to see from the
output what could be going wrong. In order to investigate further, you can
take some steps for yourself. Adding assertions to the program, particularly
at the start of procedures, can help to pin down where the fault lies. You can
also add printing code to the program that gives a kind of running commen-
tary on what the program is doing. If the program has significant internal
data structures, then it is well worth the effort of writing a general, robust
print routine that prints out those data structures in human-intelligible form.
A convenient alternative to instrumenting the program by hand is to use a
debugger, a utility program that allows you to watch and control the actions
of your program as it runs.

To start the debugger, use a command like

$ obdb ./total

9 That’s why debuggers are so popular with C programmers: when a program crashes, they
use a debugger to try and work out what has happened.

12 Using Oberon

Figure 2.5: Oberon debugger

where total is a compiled Oberon program. Any arguments for the program
can appear after the name of the program on the command line.

The debugger shows a window like Figure 2.5. On the left, you see a listing
of the source code; the margin shows line numbers and a little triangle that
indicates the next line to be executed. You can step through the program line
by line by clicking on one of the three buttons ‘Step into’ (which stops inside
any procedure that is called), ‘Step over’ (which continues until the next line
of the current procedure) or ’Step out’ (which continues until the current
procedure returns). If the program consists of more than one module, then
the ’notebook’ of source listings will have several pages.

At the top right, you see a representation of the subroutine stack of the
program. Since the program shown here contains no procedures, there is
only one significant entry, the subroutine L1Total.%main that represents
the body of the module L1Total . By clicking on different entries in the list,
you can view the source code for different procedures in the left-hand pane,
with the current location highlighted with the yellow bar. The little blue
triangle always shows the current execution point, even if the yellow bar has
been moved to another procedure.

At the bottom right, the local variables for the currently selected procedure
are shown. Arrays and records are initially shown in a ‘closed’ state, with just
the first few elements visible on one line, but you can open them by clicking
on the little triangle, and see the contents listed with each element on a
separate line. The display can be changed to different active procedures by
clicking in the stack display.

If you click in the left margin of the source display, you can set and clear
breakpoints, which will stop the execution of the program when they are
reached. If you click on a line which does not correspond to any actual

2.6 Profiling 13

instructions in the program, then the breakpoint may be created a couple
of lines further down. Breakpoints are shown by a red circle, and execution
always stops at a breakpoint, even if it was started with the ‘Step over’ or
‘Step out’ button and would otherwise continue further.

2.6 Profiling

Profiling is a process of gathering statistics about where a program spends
its time, as the first step of speeding it up. Profiling makes for more effective
optimization, because it lets you concentrate your effort on the things that
will really make a difference. In most large programs, the majority of the
code accounts for only a small fraction of the execution time – or to put it
another way, a small part of the code consumes a big fraction of the time.
If you can identify this small part of the code – sometimes called the inner
loop, then you can devote all your energies to improving it. Perhaps there is
a better algorithm or data structure that will speed up the time-consuming
task. Or perhaps a different approach to the whole program will make the
problem area go away. Time spent on optimizing the rest of the program,
apart from the inner loop, may be entirely wasted, because the effect on the
overall speed may be negligible.

Our Oberon system provides a profiling tool called obprof that is used as
follows: if you would normally run your program through the command

$ prog arg1 ... argn

then you should use the command

$ obprof prog arg1 ... argn

instead.10 The obprof program is actually an augmented version of the
usual Oberon run-time system; it runs your program exactly as usual, but it
keeps statistics about what happens as the program runs. Specifically, obprof
keeps track of what procedure in your program is active, and measures how
much time is spent in each procedure. When your program finishes, obprof
summarizes the information it has gathered by listing the procedures in your
program, how often each one was called, and the total time spent in the pro-
cedure. Figure 2.6 shows the output that is produced for a trial run of the
fac program. In this profile, the notation Fac.?main refers to the main body
of the Fac module; similarly, Files.?main refers to the main body of the Files
module from the standard library, which is executed before our program
itself starts.

This profile is from too small an example program and too short a run
to draw any firm conclusions, as you can see from the fact that Out .Int was
called only twice. But you can see that a lot of the time was consumed in the
process of reading numbers (procedure In.Int , which also calls In.IsDigit).
Since IsDigit is such a simple procedure – it just tests whether a character is
a digit – perhaps it would be better to do these tests where they are needed,
rather than call a procedure to do them.

10 In the Windows version, you have to type something like

C:\> obprof prog.exe arg1 ... argn

and specify the .exe suffix explicitly.

14 Using Oberon

Execution profile:

Ticks Frac Cumul Calls Procedure
--

174 31.4% 31.4% 2 In.Int
155 28.0% 59.4% 1 Fac.%main
78 14.1% 73.5% 6 In.Char
56 10.1% 83.6% 7 In.IsDigit
28 5.1% 88.6% 4 Out.String
24 4.3% 93.0% 2 In.IsSpace
14 2.5% 95.5% 2 Out.Int
10 1.8% 97.3% 1 %Main.%main
7 1.3% 98.6% 1 Files.%main
5 0.9% 99.5% 1 Out.Ln
3 0.5% 100.0% 1 In.%main
0 0.0% 100.0% 2 Conv.IntVal
0 0.0% 100.0% 6 Files.Eof
0 0.0% 100.0% 1 Files.Init
0 0.0% 100.0% 6 Files.ReadChar
0 0.0% 100.0% 2 Files.WriteInt
0 0.0% 100.0% 1 Files.WriteLn
0 0.0% 100.0% 4 Files.WriteString

Total of 554 clock ticks

Figure 2.6: Execution profile

The profile data is obtained by counting execution cycles of the simulated
virtual machine, and this is not quite the same thing as elapsed execution
time. For one thing, the profiler uses an interpreter for the virtual machine
code, rather than the JIT translator, so the whole program goes much more
slowly under profiling (see the explanation on page 5). Another difference
is that some library procedures are actually implemented in C, so no cycles
of the virtual machine are needed to execute them. You can see the effect in
Figure 2.6, because the procedure Out .Int is implemented as a C primitive,
and appears to take much less time than In.Int , which is implemented in
Oberon using the primitive In.Char . Apart from these primitives, the other
operations of the virtual machine each take a small, fixed time that has the
same order of magnitude for each operation, so that the number of clock
ticks is a good guide to the actual execution time. Typical operations, each
counted as one clock tick, are fetching the value of a variable, or adding two
numbers together, or comparing two numbers and jumping if they are equal.

The obprof program also provides a more sophisticated form of profiling
that takes into account the directed graph of calls between one procedure
and another in the program. In such a call graph profile, the time spent in
each procedure is also charged to its callers, so that you can build up a fuller
picture of where time is being spent. In order to select call graph profiling,
you need to give the -g flag to obprof , like this:

$ obprof -g prog arg1 ... argn

For further details, see the obprof manual page.

2.6 Profiling 15

It’s also possible to get the profiler to count how many times each line of
the program is executed, and then to use an auxiliary program to produce a
listing of the source code where each line is labelled with its execution count.
To do this, eunt obprof with the command

$ obprof -l prog arg1 ... argn

At the end of execution, this will write a file of line counts with the fixed
name obprof.out. To produce an annotated listing, use the command

$ oblist File.m

Separate listings can be made for each module that makes up the program.
Profiling fits in well with a style of programming that begins by building

a simple program that computes the right answers, preferring simple but
perhaps inefficient algorithms and data structures to more complex ones.
Thus we might use linear search instead of a hash table, or insertion sort
instead of quicksort, just as a way of getting the program working sooner.
When the program is working correctly, we can use profiling to identify the
places where these simplified design decisions actually have a significant
effect on performance, and revise just these decisions to make the program
faster. This method leads to programs that are simple, compact and reliable
whilst still having good performance. A wise programmer knows when to
stop looking for further improvements: there is no point working for days
to shave a minuscule amount of runtime from a program that will only be
used occasionally.

Chapter 3

Compiler command line

The compiler command line may list both Oberon source files and bytecode
files.

*.m or *.mod
Source files for input to the compiler.

*.k Bytecode object files for linking.

The default behaviour is to compile the source files and link them together
with the object files to form an executable a.out. The compiler’s behaviour
may be modified with command-line flags.

–c Stop the compiling process after producing .k files; do not attempt
to produce an executable program.

–o file Set the output file for linking.

–I dir Add dir to the list of directories to search for imported modules.

–07 Accept the Oberon-07 dialect of the language.

–x Enable language extensions (see Section 4.2).

–rsb Accept a dialect of the language where both language keywords
(like begin) and predefined identifiers (like integer) are written in
lower case.1

–O0 Turn off the peephole optimiser – mostly used for compiler de-
bugging.

–w Turn off compiler warnings about dubious constructions in the
source code.

–b Disable runtime checks for null pointers, array bounds, etc., sac-
rificing safety for the sake of screaming speed.

–v Print the versions of OBC components, and print the commands
that are used for compiling and linking.

1 This flag is provided by special request of Richard Simpson Bird.

16

3 Compiler command line 17

–d n Set the compiler debugging level to n; this adds tracing informa-
tion to the normal output of the compiler, but may result in output
that cannot be assembled and linked.

–s Strip the symbol table from the output of the linker. This makes
it impossible to use the profiler or debugger on the resulting exe-
cutable.

–j0 Produce an executable that will run using the bytecode interpreter
in place of the JIT translator.

–k n Set the runtime stack size to n bytes (default 1MB).

The remaining flags are supported on Linux and on Macs with XCode in-
stalled; they are not supported by the normal Windows installation of OBC.

–C Build a specialised version of the runtime system into the exe-
cutable, containing only the primitives that are needed, and allow-
ing additional primitives to be added. This makes the executable
larger, but makes it stand-alone.

*.c Files of C code containing primitives.

*.o Files of onject code for primitives.

–l lib (with –C) Add the C library lib to the runtime system

–L dir (with –C) Add dir to the list of directories searched for C libraries.

–p (with –C) Link in the profiler in place of the standard runtime
system.

Chapter 4

Language differences and compiler

modes

The Oberon language accepted by the obc compiler is that described in the
document “Oberon–2 Language Definition”, an extension of the document
“Oberon Language Definition” that appears as Appendix A of the book

M. Reiser and N. Wirth, Programming in Oberon: steps beyond Pascal
and Modula–2, Addison-Wesley, 1992,

with the following exceptions:

• The numeric types are shortint (16–bit integers), integer (32–bit in-
tegers), longint (64–bit integers), real (single-precision floating point)
and longreal (double-precision floating point). The built-in function
entier returns integer instead of longint .

• Within each module or procedure, it is not necessary to order the dec-
larations so that (nested) procedure declarations follow all others. In-
stead, declarations of constants, types, variables and procedures may
appear in any order.

• The scope of a procedure includes the bodies of all procedures defined
at the same nesting level, without the need for ‘forward declarations’.

4.1 Oberon07 mode

The command-line flags -07 changes the behaviour of the compiler so that
it accepts a language that is more like Oberon07, Wirth’s 2007 revision of
Oberon. Specifically, the following changes are made:

(1) Aggregate value parameters are constants passed by reference

(2) The type byte and the procedures flt , floor , pack , unpk , lsl , lsr ,
asr and ror are provided.

(3) The procedures cap , min , max , copy , short , long , ash and entier
are deleted.

(4) The procedure size becomes system.size.

(5) The rules for implicit conversion between numeric types are subtly dif-
ferent.

18

4.2 Optional language extensions 19

(6) Exported variables are impicitly read-only, and ‘-’ is not allowed as an
export mark.

(7) TRUE and FALSE are keywords, not predefined constants.

(8) RETURN statements are replaced by a RETURN clause at the end of each
function.

(9) WHILE statements may have a chain of ELSIF parts.

(10) CASE statements may discriminate on types.

In addition, the following language features are deleted in Oberon07 mode,
unless the -x flag is given:

(11) Only pointers to records are allowed, and not to arrays.

(12) No ELSE part in CASE statements. The restriction that CASE labels must
form a contiguous range is not implemented.

(13) Type-bound procedures are not allowed.

(14) LOOP and EXIT statements are disallowed.

4.2 Optional language extensions

The command-line flag -x may be given with or without the flag -07. In
Oberon07 mode, it relaxes some of the restrictions listed above, and in both
modes it enables a number of language extensions:

(1) A function may be called as a proper procedure; the result returned by
the function is discarded.

(2) Enumeration types are supported, with the syntax

TYPE colour = (red, blue, green);

(3) CASE statements are allowed for any discrete type (including enumera-
tion types), not just integer and char .

(4) FOR statements are also allowed for any discrete type.

(5) The function ord may be applied to any discrete type, not just char ,
and min and max also apply to enumeration types.

(6) The multipart WHILE statements and type-based CASE statements of
Oberon07 are also enabled in Oberon–2 mode.

(7) Forward references to types need not be pointer targets: for example,

TYPE Tree = POINTER TO RECORD left, right: Tree END;

is allowed in place of

TYPE Tree = POINTER TO Blob;
Blob = RECORD left, right: Tree END;

(8) Local procedures may be used as procedural parameters (but may not
be assigned to procedure variables).

20 Language differences and compiler modes

(9) CONST parameters of aggregate types.

(10) ABSTRACT is added as an additional keyword, allowing the declaration
of abstract records and abstract type-bound procedures.

Modules compiled with different language flags may be freely combined in
the same program.

Chapter 5

OBC Library Reference

This chapter contains a brief description of the library modules that are sup-
plied with the obc compiler. The source code to these modules can be found
in the directory /usr/local/lib/obc.

5.1 Module In: Standard input

This module provides simple input operations on the standard input channel.

PROCEDURE Char(VAR c: CHAR);

• Input one character.

PROCEDURE Int(VAR n: INTEGER);

• Input a decimal integer.

PROCEDURE Real(VAR x: REAL);

• Input a real number.

PROCEDURE Line(VAR s: ARRAY OF CHAR);

• Input one line of text and store it in s, removing the terminating newline
character.

VAR Done: BOOLEAN;

• This read-only variable is set to false when an input operation reaches
the end of the input file.

5.2 Module Out : Standard output

This module provides simple output operations on the standard output chan-
nel.

PROCEDURE Int(n: INTEGER, width: INTEGER);

• Output an integer in decimal, in a field of at least width characters.

21

22 OBC Library Reference

PROCEDURE Real(x: REAL);

• Output a real number, using scientific notation if it is very large or very
small.

PROCEDURE Fixed(x: REAL; width, dec: INTEGER);

• Output a real number in decimal notation, in a field of at least width
characters, with dec digits after the decimal point.

PROCEDURE Char(c: CHAR);

• Output a character.

PROCEDURE String(s: ARRAY OF CHAR);

• Output a string.

PROCEDURE Ln;

• Output a newline character.

5.3 Module Err : Standard error

This module provides simple output operations on the standard error chan-
nel, which remains connected to the user’s display even when the standard
output channel is redirected elsewhere. The interface is identical with that
of the module Out : thus you can write Out .Int (n, w) to output an integer
on the standard output, and Err .Int (n, w) to output it on the standard error
channel.

5.4 Module Files: File input/output

This module provides I/O operations on named files.

TYPE File = POINTER TO FileDesc;

• This type represents a file open for reading or writing.

VAR stdin-, stdout-, stderr-: File

• These three read-only variables of type File are set to the standard input,
output and error channels.

PROCEDURE Open(name: ARRAY OF CHAR;
mode: ARRAY OF CHAR): File;

• This procedure opens a named file for input, output or both, or returns
null if the file cannot be opened. The mode argument takes the same
form as the corresponding argument of the C function fopen. Under
MS–DOS, appending b to the mode causes the file to be opened in binary
mode, with no translation of CR/LF sequences.

PROCEDURE Close(fp: File);

• Close the file fp.

5.4 Module Files: File input/output 23

PROCEDURE Eof(fp: File): BOOLEAN;

• Test whether the file fp is positioned at the end of the file.

PROCEDURE Flush(fp: File);

• Complete any pending I/O operations on file fp.

PROCEDURE ReadChar(f: File; VAR c: CHAR);

• Read a single character from file f , returning it in the variable c.

PROCEDURE WriteInt(f: File; n: INTEGER; w: INTEGER);

• Write the integer n to file f in decimal using a field of width at least w .

PROCEDURE WriteReal(f: File; x: REAL);

• Write a real number x to file f .

PROCEDURE WriteLongReal(f: File; x: LONGREAL);

• Write a double-precsion real x to file f .

PROCEDURE WriteFixed(f: File; x: LONGREAL;
wid: INTEGER; dec: INTEGER);

• Write real number x to file f in a field of width wid , with dec digits after
the decimal point.

PROCEDURE WriteChar(f: File; c: CHAR);

• Write the character c to file f .

PROCEDURE WriteString(f: File; s: ARRAY OF CHAR);

• Write the string s for file f .

PROCEDURE WriteLn(f: File);

• Write a newline character to file f .

PROCEDURE Read(f: File; VAR buf: ARRAY OF SYSTEM.BYTE);

• Read characters from file f into buf . Note that the Oberon type rules
allow buf to be a variable of any desired type.

PROCEDURE Write(f: File; VAR buf: ARRAY OF SYSTEM.BYTE);

• Write characters from buf to file f .

CONST SeekSet = 0; SeekCur = 1; SeekEnd = 2;

• Constants for use with Seek.

PROCEDURE Seek(f: File; offset: INTEGER; whence: INTEGER);

• Position the file f at a given offset from the beginning of the file (if
whence = SeekSet), from the current position (if whence = SeekCur) or
from the end of the file (if whence = SeekEnd).

PROCEDURE Tell(f: File): INTEGER;

• Return the current position of file f .

24 OBC Library Reference

5.5 Module Math: Mathematical functions

This module contains various mathematical functions on floating-point num-
bers.

PROCEDURE Sqrt(x: REAL): REAL;

• Compute the square root of the argument.

PROCEDURE Sin(x: REAL): REAL;

• The sine function.

PROCEDURE Cos(x: REAL): REAL;

• The cosine function.

PROCEDURE Tan(x: REAL): REAL;

• The tangent function.

PROCEDURE Arctan2(y, x: REAL): REAL;

• The function Arctan2(y, x) = tan−1(y/x). It is defined even when one
of the arguments is zero, and uses the signs of both arguments to de-
termine the quadrant of the result. The order of the arguments is tra-
ditional.

PROCEDURE Exp(x: REAL): REAL;

• The exponential function ex.

PROCEDURE Ln(x: REAL): REAL;

• The natural logarithm function.

CONST pi = 3.1415927;

• (Approximately.)

All angles are expressed in radians.

5.6 Module Args: Program arguments

This module provides access to the command-line arguments given when the
Oberon program was started.

VAR argc: INTEGER;

• This read-only variable gives the number of arguments, including the
program name.

PROCEDURE GetArg(n: INTEGER; VAR s: ARRAY OF CHAR);

• Copy the n’th argument into the string variable s. The arguments are
numbered from 0 to argc − 1, with the name of the program being
argument 0.

PROCEDURE GetEnv(name: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);

• Copy the value of environment variable name into the string variable s,
or set s to the empty string if the environment variable does not exist.

5.7 Module Random: Random numbers 25

5.7 Module Random: Random numbers

This module provides a pseudo-random number generator. Unless the pro-
cedure Randomize is called, the sequence of numbers will be the same on
each run of the program. Actually, this is quite useful, because it makes the
results reproducible.

PROCEDURE Random(): INTEGER;

• Generate a random integer, between 0 and maxrand inclusive.

PROCEDURE Roll(n: INTEGER): INTEGER;

• Generate a random integer, uniformly distributed between 0 and n − 1
inclusive. The result is accurately random only if n is fairly small.

PROCEDURE Uniform(): REAL;

• Generate a random real, uniformly distributed on [0, 1].

PROCEDURE Randomize;

• Initialize the random number generator so that it gives a different se-
quence of pseudo-random numbers on each run of the program.

CONST MAXRAND = 07FFFFFFFH;

• This constant (equal to 231 − 1) is the largest number that can be re-
turned by Random.

5.8 Module XYplane: Simple bitmap graphics

Under X windows, this module provides a very simple monochrome graphics
facility.

CONST W = 640; H = 480;

• These constants give the width and height of the graphics window in
pixels. The origin is in the bottom left hand corner.

PROCEDURE Open;

• Open the graphics window.

PROCEDURE Clear

• Clear the graphics window to all white.

CONST erase = 0; draw = 1;

• These constants are used as the mode parameter of Dot .

PROCEDURE Dot(x, y, mode: INTEGER);

• Draw (mode = draw) or erase (mode = erase) a single pixel at coordi-
nates (x, y).

PROCEDURE IsDot(x, y: INTEGER): BOOLEAN;

• Test whether a pixel has been drawn at coordinates (x, y).

26 OBC Library Reference

PROCEDURE Key(): CHAR;

• Test whether a key has been pressed in the graphics window. If so,
return the character that was typed; otherwise, return the null character
0X .

The procedure Key allows simple keyboard interaction. It also handles the
events generated by X when the graphics window is uncovered, so as to fill
in the newly-exposed region; this means that a graphics application should
call Key in each iteration of its main loop.

5.9 Module Conv : Numerical conversions

This module provides an interface to the procedures for converting between
numbers and strings that are used for input/output.

PROCEDURE IntVal(s: ARRAY OF CHAR): INTEGER;

• Return the integer value of a string.

PROCEDURE RealVal(s: ARRAY OF CHAR): REAL;

• Return the real value of a string.

PROCEDURE ConvInt(n: INTEGER; VAR s: ARRAY OF CHAR);

• Convert an integer into a decimal string.

5.10 Module String: Operations on strings

Here is the place where many useful operations on strings will shortly appear.
Only one is provided so far.

PROCEDURE Length(s: ARRAY OF CHAR): INTEGER;

• Return the length of s up to the first null character.

5.11 Module Bit : Bitwise operations on integers

This module provides various operations that treat integers as arrays of 32
bits.

PROCEDURE And(x, y: INTEGER): INTEGER;

• Bitwise AND: bit i of the result is 1 if bit i is 1 in both x and y .

PROCEDURE Or(x, y: INTEGER): INTEGER;

• Bitwise OR: bit i of the result is 1 if bit i is 1 in either x or y or both.

PROCEDURE Xor(x, y: INTEGER): INTEGER;

• Bitwise XOR: bit i of the result is 1 if bit i is 1 in either x or y , but not
both.

PROCEDURE Not(x: INTEGER): INTEGER;

• Bitwise NOT: bit i of the result is 1 if bit i of x is 0.

5.12 Module SYSTEM : Low-level system operations 27

5.12 Module SYSTEM : Low-level system operations

This module contains various low-level types and procedures, some of them
non-standard, many of them potentially dangerous, and all of them non-
portable. In particular, the numeric addresses of items in the heap may
change whenever the garbage collector runs.

TYPE BYTE

• A formal parameter of type array of system.byte can accept an actual
parameter of any type.

TYPE PTR

• A formal parameter of type system.ptr can accept an actual parameter
of any pointer type.

ADR(v)

• If v is any variable then system.adr (v) is its address as an integer.

VAL(T, x)

• If T is a type, then system.val (T , x) returns the value x interpreted as
having type T .

PROCEDURE BIT(a: INTEGER, n: INTEGER): BOOLEAN

• The n’th bit of the memory word at address a.

PROCEDURE GET(a: INTEGER; VAR v: T)

• The variable v can have any basic or pointer type; it is assigned a value
fetched from address a.

PROCEDURE PUT(a: INTEGER; v: T)

• The argument can have any basic or pointer type; the value is stored at
address a.

PROCEDURE MOVE(a1, a1, n: INTEGER)

• A block of n bytes at address a1 is copied to address a2.

