
QSL Squasher Documentation
Release 1.1

Svetlin Tassev

Jun 26, 2017

CONTENTS

1 Overview 3
1.1 Compiling . 3
1.2 Input . 4
1.3 Output . 5

2 Options 7

3 Worked-out example 11

Bibliography 15

Index 17

i

ii

QSL Squasher Documentation, Release 1.1

Author Svetlin Tassev

Version 1.1

Date June 26, 2017

Homepage QSL Squasher Homepage

Documentation PDF Documentation

License GPLv3+ License

CONTENTS 1

https://bitbucket.org/tassev/qsl_squasher
https://bitbucket.org/tassev/qsl_squasher/downloads/qsl_Squasher.pdf
https://www.gnu.org/licenses/gpl-3.0.html

QSL Squasher Documentation, Release 1.1

2 CONTENTS

CHAPTER

ONE

OVERVIEW

QSL Squasher is an OpenCL code for calculating the squashing factor, Q, of a vector field specified within a finite
volume. Its description below focuses on its application to solar magnetic fields, but the code itself is completely
general.

QSL Squasher is based on the following paper: [QSL3d]. We kindly ask you1 to acknowledge it and its authors in any
program or publication in which you use QSL Squasher or a derivative of it.

1.1 Compiling

QSL Squasher requires Boost, VexCL, an OpenCL implementation, as well as their respective dependencies. The
visualization scripts require Python with SciPy and PyEVTK. The resulting 3d data cubes are exported to VTK format,
which can then be visualized using Paraview, VisIt or Mayavi among many.

The code has been mostly tested on an Arch Linux server with an AMD FirePro W8100 GPU, and it has been suc-
cessfully run on laptops with subpar hardware (the example included in this documentation was run on such a laptop).
The code is memory hungry when performing large refinements in 3D, so we use a swap of 256GB on an SSD on the
server. As a reference, the following relevant packages were installed on the server, which may or may not be required
depending on your particular hardware configuration:

Package Arch Linux Version
amd-adl-sdk 6.0-1
amdapp-aparapi 20130123-1
amdapp-codexl 1.6-7247
amdapp-sdk 2.9.1-1
amdapp-sdk-aparapi 2.9.1-1
amdapp-sdk-opencv 2.9.1-1
boost-compute-git 0.4-2
catalyst-firepro 14.502.1040-1
clang 3.6.2-2
intel-opencl-sdk 2014_R2-2
linux 4.1.5-1
pocl 0.11-1
vexcl-git 20150710-4
xorg-server 1.16.4-1

A compile script, compile.sh, is included with the source code which compiles the two main programs: the main
calculation code, qslSquasher.cpp, as well the post-processing code snapshot.cpp. You need to edit the

1 We cannot require you, however, as we want QSL Squasher to be GPLv3+ compatible.

3

https://www.khronos.org/opencl/
http://www.boost.org/
https://github.com/ddemidov/vexcl
https://www.khronos.org/opencl/
https://www.python.org/
https://www.scipy.org/
https://bitbucket.org/pauloh/pyevtk
http://www.vtk.org/
http://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
http://code.enthought.com/projects/mayavi/
https://www.archlinux.org/

QSL Squasher Documentation, Release 1.1

script by hand to make it consistent with your configuration, especially since different OpenCL implementations can
co-exist on the same hardware on different paths.

As an example, for the AMD GPU on our dedicated server, qslSquasher.cpp is compiled with:

$ clang -I/opt/AMDAPP/SDK/include qslSquasher.cpp -std=c++11 \
> -lstdc++ -lm -I/usr/local/include/vexcl -lOpenCL \
> -lboost_system -O3 -march=native -mcpu=native -o qslSquasher

If you want to test the code on your CPU, you would need the POCL OpenCL implementation to be installed on your
computer. Then you need to define OpenCL_DEVICE_TYPE as CL_DEVICE_TYPE_CPU in options.hpp.
You can then compile the code with the following command (note that some paths may need to be adjusted to your
configuration):

$ clang -I/opt/intel/opencl-sdk/include qslSquasher.cpp \
> -std=c++11 -lstdc++ -lm -I/usr/local/include/vexcl \
> -lOpenCL -lboost_system -O3 -march=native -mcpu=native \
> -o qslSquasher

Warning: Some of the options for the OpenCL kernels need to be specified at compile time. Therefore, you need
to recompile the code every time you change the hard-coded options in options.hpp. For instance, by default,
the code runs on the CPU, not on the GPU. To run on the GPU, you need to set OpenCL_DEVICE_TYPE to
CL_DEVICE_TYPE_GPU.

Warning: Make sure you optimize the CHUNKSIZE in options.hpp before using this code for production
purposes. If CHUNKSIZE is set too high, you may run out of GPU memory, and get curious error messages. . .

1.2 Input

The code is configured by adjusting the hard-coded values in options.hpp. Those are described in detail here.

The code takes as input 6 ASCII files with the following naming conventions:

in_dir+'bx0'+in_filename+'.dat'
in_dir+'by0'+in_filename+'.dat'
in_dir+'bz0'+in_filename+'.dat'

in_dir+'xs0'+in_filename+'.dat'
in_dir+'ys0'+in_filename+'.dat'
in_dir+'zs0'+in_filename+'.dat'

The files b(x|y|z)*.dat contain the 3d arrays for the 3 components of the magnetic field as a flattened list of
numbers. The units of the magnetic field can be arbitrary as only the tangent unit vectors are used to calculate the Q
values. The 3d arrays are of dimensions (NX, NY, NZ) and are read inside the following nested for loops:

for (size_t k = 0; k < NZ; ++k)
for (size_t j= 0; j < NY; ++j)

for (size_t i = 0; i < NX; ++i)

So, take this ordering into account when writing inputs for this code.

4 Chapter 1. Overview

http://www.portablecl.org

QSL Squasher Documentation, Release 1.1

The dimensions (NX, NY, NZ) need to be set in options.hpp at compile time for the OpenCL kernels, which
means that you need to recompile the code for each new box.

The code assumes that the magnetic field components are sampled on a rectilinear grid in either spherical or cartesian
coordinates. The grid point coordinates are specified by the files xs*.dat, ys*.dat, zs*.dat. Those samples
should be in increasing order.

Depending on whether GEOMETRY is set to CARTESIAN or SPHERICAL, the magnetic field and the grid point
coordinates are given as follows:

For the CARTESIAN setting, the files b(x|y|z)*.dat contain the components of the magnetic field in the usual
orthonormal �̂�, 𝑦, 𝑧 cartesian basis. For the SPHERICAL setting those files contain the magnetic field components
in the orthonormal spherical basis 𝜑, 𝜃, 𝑟 (i.e. longitude, latitude, radius). Therefore, in that case bx*.dat contains
the magnetic field at each grid point in the longitudinal direction, by*.dat gives the latitudinal component, and
bz*.dat – the radial.

For the CARTESIAN setting, the grid coordinate files xs*.dat, ys*.dat, zs*.dat contain NX, NY, NZ num-
bers specifying the respective 𝑥, 𝑦, 𝑧 coordinates of the grid points in Mm.

For the SPHERICAL setting, xs*.dat contains NX numbers specifying the longitudes of the grid points in degrees,
while the file ys*.dat contains NY numbers specifying the latitudes of the grid points in degrees. The file zs*.dat
contains NZ numbers specifying the radial coordinates of the grid points in units of solar radii. In other words, the
photosphere of the sun should be at 𝑟 = 1 in this file when using spherical coordinates.

1.3 Output

1.3.1 Output from qslSquasher

The code calculates the squashing Q values for the input magnetic field on either a 2d slice or a 3d cube, depending
on whether QSL_DIM is set to 2 or 3, respectively.

Progress and debugging information is output to stderr, while the calculation results are output to stdout after
the Q values are calculated for the initial grid, and then after each successive mesh refinement.

In the code, the slice/cube for which the Q values are calculated is indexed with a Hilbert curve that fills the region of
interest. The output from the qslSquasher.cpp code is printed to stdout in five columns:

• The first column corresponds to the Hilbert key of the point for which the Q value is calculated. This key is used
by the next post-processing step described below.

• The second, third and fourth columns give the coordinates of the grid point for which the Q value is calculated.
For cartesian coordinates, those correspond to the �̂�, 𝑦, 𝑧 coordinates in Mm; while for spherical coordinates,
those are the 𝜑, 𝜃, 𝑟 coordinates in units of deprees, degrees and solar radii, respectively.

• The fifth columns returns the Q value for that grid point.

The output after the initial calculation on a grid and after each mesh refinement is sorted according to Hilbert key
values. For multiple refinements, the output can easily reach more than a billion Q values sampled on an irregular
grid. Thus, for convenience, we provide a series of post-processing routines, which allow for easier vizualization
of the results. The post-processing is performed by snapshot.cpp and the Python visualization scripts described
below.

1.3.2 First post-processing step with snapshot.cpp

This code assumes that the output from qslSquasher is saved in the current directory as raw.dat. Then,
snapshot parses that file and returns to stdout a list of 𝑙𝑜𝑔10(𝑄) values on a rectilinear grid spanning the 2d/3d

1.3. Output 5

https://en.wikipedia.org/wiki/Hilbert_curve

QSL Squasher Documentation, Release 1.1

region of interest for which the Q values were calculated in qslSquasher. The grid is of size nx_out, ny_out
(and nz_out when working with a 3d cube), which are specified at the top of snapshot.cpp at compile time.

The output is a column of 𝑙𝑜𝑔10(𝑄) values printed by the following nested for-loops:

for (size_t i = 0; i < nx_out; ++i)
for (size_t j= 0; j < ny_out; ++j)

for (size_t k = 0; k < nz_out; ++k) # for 3d cube

If several Q values are found within a cell of the grid (as defined by the neighborhood of the point along the Hilbert
curve), then the code takes the maximum of those. Otherwise, the values are interpolated along the Hilbert curve
filling the cube/slice.

The definition of Q is such that 𝑙𝑜𝑔10(𝑄) ≥ 𝑙𝑜𝑔10(2). Junk values are returned as -1000. We recommend that you
parse the output of snapshot with the Python scripts described in the next section.

Note that if CALCULATE is set to FIELD_LINE_LENGTH instead of QSL, then the output from this post-processing
step contains the values of the length of the fields line passing through each sampled point, and not the values of
𝑙𝑜𝑔10(𝑄).

1.3.3 Second post-processing step with Python

The scripts viz2d.py and viz3d.py show examples of post-processing the 2d/3d output from snapshot. The
2d post-processing script, viz2d.py, outputs a png image file containing the slice produced by qslSquasher.

The 3d post-processing script, viz2d.py, outputs two VTK files containing the 𝑙𝑜𝑔10(𝑄) and magnetic field values
in the 3d cube sampled by qslSquasher. Those VTK files can then be visualized by ParaView as in the example
included with this documentation.

Note that if CALCULATE is set to FIELD_LINE_LENGTH instead of QSL, then the output from this post-processing
step contains the gradient magnitude from the Sobel operator applied to the field-line length map.

6 Chapter 1. Overview

https://en.wikipedia.org/wiki/Sobel_operator

CHAPTER

TWO

OPTIONS

The options for qslSquasher below are configurable in options.hpp. This means that the code needs to be
recompiled after each modification to the options below.

std::string in_dir
The directory name for the input files. See Input.

std::string in_filename
The filename suffix for the input files. See Input.

N(X|Y|Z)
The size of the input arrays in the x/longitudinal (NX), y/latitudinal(NY) and z/radial (NZ) direction.

GEOMETRY
Pick one type of geometry for your input box. Possible values are: SPHERICAL (default) or CARTESIAN.
When using spherical geometry, the poles, as well as the periodicity in longitude, are treated correctly.

GLOBAL_MODEL
If defined (only for SPHERICAL geometry), the code assumes that the input magnetic field covers the whole
sun. Longitude samples should start at >=0 degrees, and end at <360 degrees. Latitude samples should start
>-90 degrees, and end at <90 degrees. The code currently supports only trilinear interpolation when this options
is set. The poles, as well as the periodicity in longitude, are treated correctly.

SOLAR_RADIUS
The solar radius in Mm (default: 696.). Needed only for spherical geometry.

QSL_DIM
Tells the code whether you want a 2d slice (QSL_DIM=2) of Q values, or a 3d cube (QSL_DIM=3)?

If QSL_DIM=2, then one needs to specify the parameters controlling the size, location and orientation of the slice one
wants computed. Here is the set of relevant options that need to be set:

SLICE_TYPE
Specifies the type of slice. For cartesian geometry, the only available option is CARTESIAN. For
spherical geometry, one can pick a CARTESIAN or a SPHERICAL slice. When set to CARTESIAN,
the slice is an intersection the volume with a plane of position, size and orientation specified by the
options below. When set to SPHERICAL (default), the slice is a curved 2d surface at fixed radius.

double SLICE_NORMAL[]
Vector normal to slice. Need not be normalized. Used only for cartesian slices.

double SLICE_UP[]
SLICE_UP gives the general “up” direction along the slice. We take only the component of
SLICE_UP that lies in the plane of the slice to construct the y direction in the plane of the slice.
So, need not be orthonormal to SLICE_NORMAL. Note that the x direction in the plane of the slice
is given by the cross product SLICE_UP × SLICE_NORMAL. So, be careful with the overall sign
of SLICE_UP, or you may end up with a flipped image. Used only for cartesian slices.

7

QSL Squasher Documentation, Release 1.1

double SLICE_CENTER[]
SLICE_CENTER gives the coordinates of the center of the slice. The coordinates are in units of
(Mm, Mm, Mm) for cartesian geometry, or in units of (degrees, degrees, Mm above the photosphere)
for spherical geometry. The slice will pass through this point.

double SLICE_L(X|Y)
SLICE_LX and SLICE_LY give the size of the slice in Mm for cartesian slices. For spherical
slices, the units are in degrees.

ZMIN
ZMIN forces field lines to be terminated at that height above the photosphere/bottom of the box for
spherical/cartesian coordinates. This is useful for eliminating photospheric “noise”.

If QSL_DIM=3, then one needs to specify the size and location of the 3d cube for which the Q values are to be
computed. Here is the set of relevant options that need to be set:

(X|Y|Z)(MIN|MAX)
These six parameters give the boundaries of the cube for the 3d Q calculation. For cartesian ge-
ometry, all are in Mm. For spherical geometry, the X and Y limits are set in degrees along the
longitudinal and latitudinal directions, respectively. In that case, ZMIN and ZMAX are measured in
Mm above the photosphere. ZMIN also forces the calculation of the field lines to terminate at that
height above the solar photosphere/bottom of the input box for spherical/cartesian geometries. This
is useful for eliminating photospheric “noise”. Note that apart from the ZMIN limit, the field lines
are followed to the boundaries of the data cube spanned by the input files.

z_sampler(z)
A function specifying how to sample the 3d cube in the radial/z direction for spherical/cartesian
geometries. Its argument is assumed normalized between 0 (corresponding to bottom index of the
cube) and 1 (corresponding to top index of the cube). Its output must span the physical size of the
box in Mm, i.e. it should run between ZMIN and ZMAX.

CALCULATE
The code calculates the squashing factor values when CALCULATE is set to QSL (default). When set to
FIELD_LINE_LENGTH, it calculates the length of the field lines passing through each sampled point. The
code does not do refinements in the latter case, as those are unnecessary for the field-line length map (as long
as the initial grid sampling is fine enough to resolve the connectivity domains of interest). When calculating
field-line lengths, the code reuses the same infrastructure as when calculating the squashing factor values. Thus,
one has to go through the same post-processing pipeline, irrespective of the option set by CALCULATE.

n(x|y|z)_init
The size of the initial grid (before mesh refinement) for which the Q values are to be computed. nz_init is
not needed if QSL_DIM=2.

OpenCL_DEVICE_TYPE
Tells VexCL whether to use the CPU when defined as CL_DEVICE_TYPE_CPU (default), or the GPU when
defined as CL_DEVICE_TYPE_GPU.

NGPU
NGPU (default: 0) tells VexCL on which GPU you want to do the computation. In case you want to specify the
GPU in other ways, consider changing the GPU filter specified by the following line in qslSquasher.cpp:

vex::Context ctx(vex::Filter::Type(OpenCL_DEVICE_TYPE)
&& vex::Filter::Position(NGPU));

const size_t CHUNKSIZE
The CHUNKSIZE sets how many Q value calculations are to be dispatched to the GPU in one go. Set
CHUNKSIZE too high and you’ll run out of GPU memory. Set it too low, and you’ll find performance be-
ing degraded. The proper value will depend mostly on your hardware and on your choice for integration sheme,

8 Chapter 2. Options

QSL Squasher Documentation, Release 1.1

so experiment until you find the sweet spot for your configuration. The default value (219) is optimized for the
EULER scheme on AMD FirePro W8100, which has 8GB memory.

INTERPOLATION_TYPE
Pick one interpolation algorithm used for interpolating the B-field values. Possible values are: TRILINEAR
(default), TRIQUADRATIC, TRICUBIC.

LENGTH_JUMP_REFINEMENT_THRESHOLD
Specifies the threshold (default: 1Mm) for the change in field-line length between two neighbouring points on
the Hilbert curve. If that threshold is exceeded, then the code makes a refinement by sampling the point lying
half-way on the Hilbert curve between those two points.

MAX_REFINEMENTS
Specifies the maximum number of refinements the code will make before exiting.

INTEGRATION_SCHEME
Specifies the integration scheme. One can set this to EULER (default) for an explicit Euler scheme, or to
ADAPTIVE for adaptive stepping. The default adaptive stepper is Boost’s 5-th order runge_kutta_cash_karp54.
You can always experiment with others by changing the corresponding line in qslSquasher.cpp.

eps_rel, eps_abs, DISPLACEMENT_WEIGHT
Have an effect only when one uses the ADAPTIVE integration scheme. The first two specify the relative and
absolute error (defaults: 1e-2) for the adaptive stepper. Those bounds are both for the field line positions,
as well as for the perturbations to the field lines that are needed for the squashing factor calculation. The
DISPLACEMENT_WEIGHT (default: 10) boosts the weight of those perturbations, since their errors will other-
wise be swamped by the errors in the positions.

LOCAL_Q
By default, the Q value of a field line is obtained by calculating the squashing factor between the two ends of
a field line. An end of a field line is considered the point where the field line intersects the surface of the input
b-field box, or where it hits a null.

However, you can calculate a more localized value of Q by measuring the squashing factor over a specified length
(in Mm) up and down each field line. To do that, uncomment the LOCAL_Q line in options.hpp. You’d need
to specify the length over which you want the local Q to be calculated. That is given by INTEGRATION_RANGE
in Mm.

INTEGRATION_RANGE
If LOCAL_Q is not defined, then the global Q values are computed. In that case, field line integration is done
in chunks until the field line terminates at the box boundaries, or 𝐵 gets very close to zero (e.g. near nulls).
The length of each chunk is specified by INTEGRATION_RANGE. After each chunk, the field lines are checked
for whether they have terminated. If left undefined, a sane value for INTEGRATION_RANGE is picked in
qslSquasher.cpp.

INTEGRATION_STEPS_PER_CELL
INTEGRATION_STEPS_PER_CELL is used to calculate the step size for the field line integrators. The step
size is such that there are roughly INTEGRATION_STEPS_PER_CELL steps in each cell in the input grids.
The resulting step size (printed to stderr) is the integration step for the Euler integration scheme, or is the
initial step for the adaptive stepper. If left undefined, sane defaults are set in qslSquasher.cpp.

MARK_OPEN_FIELD_LINES
When MARK_OPEN_FIELD_LINES is defined (default), then the code calculates Q values only for field lines
which begin and end at the bottom surface of the volume, corresponding to z or height above the photosphere
equal to ZMIN for cartesian or spherical geometry, respectively. Open field lines are marked with the generic
value of -1000, which is used for any junk values encountered by the code. If this keyword is left undefined,
then the code calculates the Q value for all points in the volume, irrespective of whether they belong to open
field lines or not. For open field lines, the Q value is calculated between the two endpoints of the field lines,
independent of whether those occur at the bottom boundary or not.

9

http://www.boost.org/doc/libs/1_60_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/odeint_in_detail/steppers.html

QSL Squasher Documentation, Release 1.1

10 Chapter 2. Options

CHAPTER

THREE

WORKED-OUT EXAMPLE

The default options in the code generate a very low-resolution 3d cube of Q values with the sample dataset included
with the code. Running the code with those options using the commands listed below, generates the following 3d view
in ParaView, which includes a magnetogram, volumetric rendering of Q values, as well as traced field lines:

The command lines below show a typical sequence of commands to generate a 3d data cube of Q values, and then
visualize the result. The example uses the data files distributed with the code and was run on the CPU of a low-end
laptop. The calculation of about half a million Q values, post-processing and rendering took less than 5 minutes with
the default settings. Note that in the session below, qslSquasher was killed after two mesh refinements.

$ time ./compile.sh

real 0m28.613s
user 0m27.370s

11

QSL Squasher Documentation, Release 1.1

sys 0m0.417s
$ time ./qslSquasher > raw.dat

1. Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz (Intel(R) OpenCL)

Reading successful.
Integration step set at 0.022446 Mm
Initialization successful.
Number of field lines to be integrated in this mesh refinement step: 262144
Beginning FORWARD integration along field lines ...
of computed field lines = 0 out of 262144 in mesh refinement: 0
of computed field lines = 103793 out of 262144 in mesh refinement: 0

... skipping lines ...
of computed field lines = 262118 out of 262144 in mesh refinement: 0
Beginning BACKWARD integration along field lines ...
of computed field lines = 0 out of 262144 in mesh refinement: 0

... skipping lines ...
of computed field lines = 262118 out of 262144 in mesh refinement: 0
Q values calculated successfully.
Starting sort...
... done sorting.
Starting sort...
... done sorting.
Number of field lines to be integrated in this mesh refinement step: 34352
Beginning FORWARD integration along field lines ...
of computed field lines = 0 out of 34352 in mesh refinement: 1

... skipping lines ...
of computed field lines = 34250 out of 34352 in mesh refinement: 1
Q values calculated successfully.
Starting sort...
... done sorting.
Starting sort...
... done sorting.
Number of field lines to be integrated in this mesh refinement step: 34609
Beginning FORWARD integration along field lines ...
of computed field lines = 0 out of 34609 in mesh refinement: 2

... skipping lines ...
of computed field lines = 34597 out of 34609 in mesh refinement: 2
Q values calculated successfully.
Starting sort...
... done sorting.
Starting sort...
... done sorting.
Number of field lines to be integrated in this mesh refinement step: 41122
Beginning FORWARD integration along field lines ...
of computed field lines = 0 out of 41122 in mesh refinement: 3

... skipping lines ...
of computed field lines = 41018 out of 41122 in mesh refinement: 3
Q values calculated successfully.
Starting sort...
... done sorting.
Starting sort...
... done sorting.
Number of field lines to be integrated in this mesh refinement step: 48880
Beginning FORWARD integration along field lines ...
of computed field lines = 0 out of 48880 in mesh refinement: 4

... skipping lines ...
of computed field lines = 48866 out of 48880 in mesh refinement: 4
Q values calculated successfully.

12 Chapter 3. Worked-out example

QSL Squasher Documentation, Release 1.1

^C
real 2m23.511s
user 8m17.523s
sys 0m25.037s

$ time ./snapshot > grid3d.dat

real 0m1.999s
user 0m1.937s
sys 0m0.060s

$ time python2 viz3d.py

real 0m7.020s
user 0m6.450s
sys 0m0.317s

$ paraview --state=viz3d_paraview.pvsm

The example above is for input in cartesian coordinates. It generates several output files:

• raw.dat contains the raw output from qslSquasher.cpp.

• grid3d.dat is the result of the first post-processing step done by snapshot.cpp.

• SquashingFactor_CartCoo.vtr is a VTK file, containing the rectilinear grid of Q values in cartesian
coordinates.

• MagneticField_CartCoo.vtr is a VTK file, containing the rectilinear grid of magnetic field component
values in cartesian coordinates. This file is generated from the input files used by qslSquasher.

The last two files are used by the included ParaView session file to generate the figure shown in the beginning
of this section.

13

QSL Squasher Documentation, Release 1.1

14 Chapter 3. Worked-out example

BIBLIOGRAPHY

[QSL3d] ‘ QSL Squasher: A Fast Quasi-Separatrix Layer Map Calculator‘, S. Tassev and A. Savcheva (2016),
arXiv:1609.00724

15

https://arxiv.org/abs/1609.00724

QSL Squasher Documentation, Release 1.1

16 Bibliography

INDEX

C
CALCULATE (C macro), 8
CHUNKSIZE (C variable), 8

D
DISPLACEMENT_WEIGHT (C macro), 9

G
GEOMETRY (C macro), 7
GLOBAL_MODEL (C macro), 7

I
in_dir (C++ member), 7
in_filename (C++ member), 7
INTEGRATION_RANGE (C macro), 9
INTEGRATION_SCHEME (C macro), 9
INTEGRATION_STEPS_PER_CELL (C macro), 9
INTERPOLATION_TYPE (C macro), 9

L
LENGTH_JUMP_REFINEMENT_THRESHOLD (C

macro), 9
LOCAL_Q (C macro), 9

M
MARK_OPEN_FIELD_LINES (C macro), 9
MAX_REFINEMENTS (C macro), 9

N
N (C macro), 7
NGPU (C macro), 8

O
OpenCL_DEVICE_TYPE (C macro), 8

Q
QSL_DIM (C macro), 7

S
SLICE_L (C member), 8
SLICE_TYPE (C macro), 7

SOLAR_RADIUS (C macro), 7

Z
z_sampler (C macro), 8
ZMIN (C macro), 8

17

	Overview
	Compiling
	Input
	Output

	Options
	Worked-out example
	Bibliography
	Index

