
The Computer Science of TEX and LATEX;
based on CS 594, fall 2004, University of Tennessee

Victor Eijkhout
Texas Advanced Computing Center
The University of Texas at Austin

2012

2

TEX – LATEX – CS 594

3

About this book.

These are the lecture notes of a course I taught in the fall of 2004. This was the first
time I taught the course, and the first time this course was taught, period. It has also
remained the only time the course was taught. These lecture notes, therefore, are prob-
ably full of inaccuracies, mild fibs, and gross errors. Ok, make that: are definitely full
of at the least the first two categories, because I know of several errors that time has
prevented me from addressing.

My lack of time being what it is, this unfinished book wil now remain as is. The reader
is asked to enjoy it, but not to take it for gospel.

Victor Eijkhout
eijkhout@tacc.utexas.edu
Knoxville, TN, december 2004;
Austin, TX, january 2012.

copyright 2012 Victor Eijkhout
ISBN 978-1-105-41591-3

Enjoy!

Victor Eijkhout

4

TEX – LATEX – CS 594

Contents

About this book 3
1 TEX and LATEX 9

LATEX 10
1.1 Document

markup 10
1.2 The absolute basics of

LATEX 12
1.3 The TEX conceptual

model of
typesetting 15

1.4 Text elements 15
1.5 Tables and figures 25
1.6 Math 25
1.7 References 28
1.8 Some TEXnical

issues 30
1.9 Customizing

LATEX 30
1.10 Extensions to

LATEX 34
TEX
programming 38
TEX visuals 39
Projects for this
chapter 40

2 Parsing 41
Parsing theory 42

2.1 Levels of parsing 42
2.2 Very short

introduction 42
Lexical analysis 45

2.3 Finite state automata
and regular
languages 45

2.4 Lexical analysis with
FSAs 50
Syntax parsing 52

2.5 Context-free
languages 52

2.6 Parsing context-free
languages 55
Lex 67

2.7 Introduction 67
2.8 Structure of a lex

file 67
2.9 Definitions

section 68
2.10 Rules section 69
2.11 Regular

expressions 71
2.12 Remarks 72
2.13 Examples 73

Yacc 77
2.14 Introduction 77
2.15 Structure of a yacc

file 77
2.16 Motivating

example 77
2.17 Definitions

section 79
2.18 Lex Yacc

interaction 79
2.19 Rules section 81
2.20 Operators; precedence

and associativity 82
2.21 Further remarks 83
2.22 Examples 86

Hashing 93
2.23 Introduction 93
2.24 Hash functions 94
2.25 Collisions 97

5

6 Contents

2.26 Other applications of
hashing 102

2.27 Discussion 103
Projects for this
chapter 104

3 Breaking things into
pieces 105
Dynamic
Programming 106

3.1 Some examples 106
3.2 Discussion 114

TEX paragraph
breaking 116

3.3 The elements of a
paragraph 116

3.4 TEX’s line breaking
algorithm 120
NP
completeness 130

3.5 Introduction 130
3.6 Basics 132
3.7 Complexity

classes 133
3.8 NP-

completeness 135
Page breaking 138

3.9 Introduction 138
3.10 TEX’s page breaking

algorithm 139
3.11 Theory of page

breaking 141
Projects for this
chapter 150

4 Fonts 151
Bezier curves 152

4.1 Introduction to curve
approximation 152

4.2 Parametric
curves 157

4.3 Practical use 167

Curve plotting with
gnuplot 170

4.4 Introduction 170
4.5 Plotting 170

Raster graphics 172
4.6 Vector graphics and

raster graphics 172
4.7 Basic raster

graphics 172
4.8 Rasterizing type 176
4.9 Anti-aliasing 179

Projects for this
chapter 183

5 TEX’s macro
language –
unfinished
chapter 185
Lambda calculus in
TEX 186

5.1 Logic with TEX 186
6 Character

encoding 199
Input file
encoding 200

6.1 History and
context 200

6.2 Unicode 203
6.3 More about character

sets and
encodings 207

6.4 Character issues in
TEX / LATEX 210
Font encoding 212

6.5 Basic
terminology 212

6.6 Æsthetics 215
6.7 Font

technologies 216
6.8 Font handling in TEX

and LATEX 218

TEX – LATEX – CS 594

Contents 7

Input and output
encoding in
LATEX 221

6.9 The fontenc
package 221
Projects for this
chapter 222

7 Software
engineering 223
Literate
programming 224

7.1 The Web system 224

7.2 Knuth’s philosophy of
program
development 224
Software
engineering 225

7.3 Extremely brief
history of TEX 225

7.4 TEX’s
development 225
Markup 229

7.5 History 229
Projects for this
chapter 231

Victor Eijkhout

8 Contents

TEX – LATEX – CS 594

Chapter 1

TEX and LATEX

In this chapter we will learn

• The use of LATEX for document preparation,
• LATEX style file programming,
• TEX programming.

Handouts and further reading for this chapter

For LATEX use the ‘Not so short introduction to LATEX’ by Oetiker et al. For further
reading and future reference, it is highly recommended that you get ‘Guide to LATEX’
by Kopka and Daly [15]. The original reference is the book by Lamport [16]. While it
is a fine book, it has not kept up with developments around LATEX, such as contributed
graphics and other packages. A book that does discuss extensions to LATEX in great
detail is the ‘LATEX Companion’ by Mittelbach et al. [17].

For the TEX system itself, consult ‘TEX by Topic’. The original reference is the book
by Knuth [12], and the ultimate reference is the published source [11].

9

10 CHAPTER 1. TEX AND LATEX

LATEX.

1.1 Document markup

If you are used to ‘wysiwyg’ (what you see is what you get) text processors, LATEX
may seem like a strange beast, primitive, and probably out-dated. While it is true that
there is a long history behind TEX and LATEX, and the ideas are indeed based on much
more primitive technology than what we have these days, these ideas have regained
surprising validity in recent times.

1.1.1 A little bit of history

Document markup dates back to the earliest days of computer typesetting. In those
days, terminals were strictly character-based: they could only render mono-spaced
built-in fonts. Graphics terminals were very expensive. (Some terminals could switch
to a graphical character set, to get at least a semblance of graphics.) As a result, com-
positors had to key in text on a terminal – or using punched cards in even earlier days
– and only saw the result when it would come out of the printer.

Any control of the layout, therefore, also had to be through character sequences. To
set text in bold face, you may have had to surround it with .. the text ..
. Doesn’t that look like something you still encounter every day?

Such ‘control sequences’ had a second use: they could serve a template function, ex-
panding to often used bits of text. For instance, you could imagine $ADAM$ expanding
to ‘From our correspondent in Amsterdam:’.

LATEX works exactly the same. There are command control sequences; for instance,
you get bold type by specifying \bf, et cetera. There are also control sequences that
expand to bits of text: you have to type \LaTeX to get the characters ‘LATEX’ plus
the control codes for all that shifting up and down and changes in font size.

\TeX => T\kern -.1667em\lower .5ex\hbox {E}\kern -.125emX
\LaTeX => L\kern -.36em {\sbox \z@ T\vbox to\ht \z@ {\hbox

{\check@mathfonts \fontsize \sf@size \z@ \math@fontsfalse
\selectfont A} \vss }}\kern -.15em\TeX

1.1.2 Macro packages

The old typesetting systems were limited in their control sequences: they had a fixed
repertoire of commands related to typesetting, and there usually was some mechanism

TEX – LATEX – CS 594

1.1. DOCUMENT MARKUP 11

to defining ‘macros’ with replacement text. Formally, a macro is a piece of the input
that gets replaced by its definition text, which can be a combination of literal text and
more macros or typesetting commands.

An important feature of many composition programs is the ability
to designate by suitable input instructions the use of specified for-
mats. Previously stored sequences of commands or text replace the
instructions, and the expanded input is then processed. In more so-
phisticated systems, formats may summon other formats, including
themselves [”System/360 Text Processor Pagination/360, Applica-
tion Description Manual,” Form No. GE20-0328, IBM Corp., White
Plains, New York.].

That was the situation with commercial systems by manufacturers of typesetting equip-
ment such as Linotype. Systems developed by (and for!) computer scientists, such
Scribe or nroff/troff, were much more customizable. In fact, they sometimes would
have the equivalent of a complete programming language on board. This makes it pos-
sible to take the basic language, and design a new language of commands on top of it.
Such a repertoire of commands is called a macro package.

In our case, TEX is the basic package with the strange macro programming language,
and LATEX is the macro package1. LATEX was designed for typesetting scientific articles
and books: it offers a number of styles, each with slightly different commands (for
instance, there are no chapters in the article style) and slightly different layout (books
need a title page, articles merely a title on the first page of the text). Styles can also
easily be customized. For different purposes (art books with fancy designs) it is often
better to write new macros in TEX, rather than to bend the existing LATEX styles.

However, if you use an existing LATEX style, the whole of the underlying TEX program-
ming language is still available, so many extensions to LATEX have been written. The
best place to find them is through CTAN http://wwww.ctan.org/.

Exercise 1. Discuss the difference between a macro and a func-
tion or procedure in a normal programming language. In a procedu-
ral language, looping is implemented with goto instructions. How
would you do that in a macro language? Is there a difference in
efficiency?

1. In this tutorial I will say ‘TEX’ when a statement applies to the basic system, and ‘LATEX’ if it only
applies to the macro package.

Victor Eijkhout

http://wwww.ctan.org/

12 CHAPTER 1. TEX AND LATEX

1.1.3 Logical markup

Macro packages are initially motivated as a labour-saving device: a macro abbrevi-
ates a commonly used sequence of commands. However, they have another impor-
tant use: a well designed macro package lets you use commands that indicate the
structure of a document rather than the formatting. This means that you would write
\section{Introduction} and not worry about the layout. The layout would be
determined by a statement elsewhere as to what macros to load2. In fact, you could
take the same input and format it two different ways. This is convenient in cases such
as an article being reprinted as part of a collection, or a book being written before the
final design is commissioned.

In a well written document, there will be few explicit typesetting commands. Almost
all macros should be of the type that indicates the structure, and any typesetting is
taken care of in the definition of these. Further control of the layout of the document
should be done through global parameter settings in the preamble.

1.2 The absolute basics of LATEX

Here is the absolute minimum you need to know to use LATEX.

1.2.1 Different kinds of characters

A TEX input file mostly contains characters that you want to typeset. That is, TEX
passes them on from input to output without any action other than placement on the
page and font choice. Now, in your text there can be commands of different sorts. So
TEX has to know how to recognize commands. It does that by making a number of
characters special. In this section you will learn which characters have special mean-
ing.

• Anything that starts with a backslash is a command or ‘control sequence’.
A control sequence consists of the backslash and the following sequence of
letters – no digits, no underscores allowed either – or one single non-letter
character.
• Spaces at the beginning and end of a line are ignored. Multiple spaces count

as one space.
• Spaces are also ignored after control sequences, so writing \LaTeX is fun

comes out as ‘LATEXis fun’. To force a space there, write \LaTeX{} is fun

2. Compare this to the use of CSS versus HTML in web pages.

TEX – LATEX – CS 594

1.2. THE ABSOLUTE BASICS OF LATEX 13

or \LaTeX\ is fun. Spaces are not ignored after control symbols such as
\$, but they are again after the ‘control space’ \ 3.
• A single newline or return in the input file has no meaning, other than giving

a space in the input. You can use newlines to improve legibility of the input.
Two newlines (leading to one empty line) or more cause a paragraph to end.
You can also attain this paragraph end by the \par command.
• Braces {,} are mostly used for delimiting the arguments of a control se-

quence. The other use is for grouping. Above you saw an example of the use
of an empty group; similarly \TeX{}ing is fun comes out as ‘TEXing
is fun’.
• Letters, digits, and most punctuation can be typed normally. However, a bunch

of characters mean something special to LATEX: %$&ˆ_#˜{}. Here are their
functions:
% comment: anything to the end of line is ignored.
$,_,ˆ inline math (toggle), subscript, superscript. See section 1.6.
& column separator in tables.
˜ nonbreaking space. (This is called an ‘active character’)
{} Macro arguments and grouping.
In order to type these characters, you need to precede them with a back-
slash, for instance \% to get ‘%’. This is called a ‘control symbol’. Exception:
use \backslash to get ‘\’.
• Some letters do not exist in all styles. As the most commonly encountered

example, angle brackets <> do not exist in the roman text font (note that they
are in the typewriter style here, in roman you would get ‘¡¿’), so you need to
write, somewhat laboriously \langleS\rangle to get ‘〈S〉’4.
Exercise 2. You read in a document ‘This happens only in 90rest
of the time it works fine.’ What happened here? There are articles
in print where the word ‘From’ has an upside down question mark
in front of it. Try to think of an explanation.

1.2.2 LATEX document structure

Every LATEX document has the following structure:
\documentclass[<class options>]{ <class name> }

<preamble>
\begin{document}

<text>
\end{document}

3. The funny bucket character here is how we visualize the space character.
4. That’s what macros are good for.

Victor Eijkhout

14 CHAPTER 1. TEX AND LATEX

Typical document classes are article, report, book, and letter. As you may
expect, that last one has rather different commands from the others. The class options
are optional; examples would be a4paper, twoside, or 11pt.

The preamble is where additional packages get loaded, for instance

\usepackage{times}

switches the whole document to the Times Roman typeface. This is also the place to
define new commands yourself (section 1.9.2).

1.2.2.1 Title

To list title and author, a document would start with

\title{My story}
\author{B.C. Dull}
\date{2004} %leave this line out to get today’s date
\maketitle

After the title of an article and such, there is often an abstract. This can be specified
with

\begin{abstract}
... The abstract text ...
\end{abstract}

The stretch of input from \begin to \end is called an ‘environment’; see sec-
tion 1.4.1.2.

1.2.2.2 Sectioning

The document text is usually segmented by calls

\section{This}
\subsection{That}
\subsection{The other}
\paragraph{one}
\subparagraph{two}
\chapter{Ho}
\part{Hum}

which all get numbered automatically. Chapters only exist in the report and book
styles. Paragraphs and subparagraphs are not numbered. To prevent sections et cetera
from being numbered, use \section*{...} and such5.

5. This also makes the title not go into the table of contents. See section 1.7.2 on how to remedy that.

TEX – LATEX – CS 594

1.3. THE TEX CONCEPTUAL MODEL OF TYPESETTING 15

1.2.2.3 Frontmatter, backmatter

You can use commands \frontmatter, \mainmatter, \backmatter – in
book class only – to switch page numbering from roman to arabic, and, for the back
matter, section numbering from numbers to letters.

1.2.3 Running LATEX

With the last two sections you should know enough to write a LATEX document. Now
how do you get to see the final output? This takes basically two steps: formatting and
viewing.

You need to know that TEX’s original output format is slightly unusual. It is called
‘DVI’ for DeVice Independent. There are viewers for this format, but usually you need
another step to print it.

Traditionally, you would run an executable called latex (or tex), which gives you a
dvi file, which you then view with a previewer such as xtex or xdvi. To print this
file, you would use
dvips -Pcmz foo.dvi -o foo.ps

to generate a ps file. This can be printed, or converted to pdf.

There are version of the latex executable that output to other formats, for instance
pdflatex (there is also a pdftex) goes straight to pdf, which you can view with
the Adobe Acrobat Reader, or xpdf. The big advantage of this approach is that you
can get hyperlinks in your pdf file; see section 1.10.3.

Exercise 3. Set up a document that will have the answers to your
homework exercises of the whole course.

1.3 The TEX conceptual model of typesetting
In TEX, the question ‘on what page does this character appear’ is hard to answer. That
is because TEX typesets all material for a page, sort of on a long scroll, before cutting
a page off that scroll. That means that when a piece of text is set, you do not know if it
falls before or after a certain page break.

A similar story holds for paragraph breaking, but the question on what line something
occurs is not usually interesting.

1.4 Text elements
Here are the main elements that make up a LATEX document.

Victor Eijkhout

16 CHAPTER 1. TEX AND LATEX

1.4.1 Large scale text structure

We already discussed sectioning commands in section 1.2.2.2. Here are more major
text elements in a LATEX document.

1.4.1.1 Input files

Use \include{<file>} to input a file beginning on a new page, and \input for
just plain input. With

\includeonly{file1,file2}

you can save processing time – provided the files are \included to begin with.

The .tex extension can usually be left off; because of the way TEX works, be careful
with funny characters in the file name.

On Unix installations, input files can be in other directories, specified by the TEXINPUTS
environment variable.

1.4.1.2 Environments

If a certain section of text needs to be treated in a different way from the surrounding
text, it can be segmented off by

\begin{<environment name>}
... text ...
\end{<environment name>}

An environment defines a group, so you can have local definitions and changes of
parameters.

Some predefined environments are

flushleft (flushright) for text that is left (right) aligned, but not right (left).
center for text that is centered.
quote, quotation for text that needs to be set apart, by indenting both margins. The

quote environment is for single paragraphs, the quotation for multiple.
abstract for the abstract that starts an article, report, or book. In the report and book

style it is set on a separate page. In the article style it is set in a smaller type
size, and with indented margins.

verbatim see section 1.4.1.3.

TEX – LATEX – CS 594

1.4. TEXT ELEMENTS 17

1.4.1.3 Verbatim text

As we have observed already, TEX has a number of special characters, which can be
printed by prefixing them with a backslash, but that is a hassle. Good thing that there is
a mechanism for printing input completely verbatim. For inline text, use \verb+&###\text+
to get ‘&###\text’. The essential command here is \verb. Unlike with other com-
mands that have arguments, the argument is not delimited by braces, but by two occur-
rences of a character that does not appear in the verbatim text. A plus sign is a popular
choice. The \verb* variant makes spaces visible: \verb*+{ }+ gives ‘{ }’.

For longer verbatim text there is a verbatim environment. The verbatim* version
prints each space as a symbol. To input whole files verbatim, use \verbatiminput{file},
which is defined in the verbatim package.

For TEXnical reasons, verbatim text can not appear in some locations such as footnotes
or command definitions.

Exercise 4. Why does the \verb command not have its argument
in braces?

1.4.1.4 Lists

Lists in LATEX are a special case of an environment; they are specified by

\begin{<list type>}
\item ...
\item ...
\end{<list type>}

The three main list types are unnumbered lists, itemize, numbered lists, enumerate,
and definition or description lists, description.

In the case of a description list, it is mandatory to give the item label:

\begin{description}
\item[Do] A deer, a female deer.
\item[Re] A drop of golden sun.
...
\end{description}

You can give item labels in the other list types too.

Putting a list inside a list item will change the style of the item labels and numbers in
a way that is dictated by the document class.

You can put a \label command after an item to be able to refer to the item number.

Victor Eijkhout

18 CHAPTER 1. TEX AND LATEX

\begin{enumerate}
\item\label{first:item} One
\item Two comes after \ref{first:item}
\end{enumerate}

Output:

1. One
2. Two comes after 1

This only makes sense with enumerate environments.

1.4.1.5 Tabbing

The tabbing environment is useful for setting pieces of text, such as source code,
that use a small number of ‘tab stops’. Tab stops (a term deriving from old mechanical
typewriters) are locations on the line that one can ‘tab to’, no matter how much material
is currently on the line.

Example:

\begin{tabbing}
The first line sets this: \=point;\\
the second jumps\>there
\end{tabbing}

Output:

The first line sets this: point;
the second jumps there

The \= command in the first line defines a tab stop; in every subsequent line a \> com-
mand will jump to that position, if it has not been reached yet. There can be multiple
tab stops, not necessarily defined in the same line, and tab stops can be redefined.

A more interesting case is where the tab stop is used before the line that defines it. For
this case there is the \kill command, which prevents a line from being displayed.
Example:

\begin{tabbing}
while \=\kill
do\>\{\\
\>$i_1\leftarrow{}$\=1\\
\>\ldots\>2\\
\>\}\\
while (1)
\end{tabbing}

TEX – LATEX – CS 594

1.4. TEXT ELEMENTS 19

Output:

do {
i1 ← 1
. . . 2
}

while (1)

1.4.1.6 Tabular material

The tabular environment generates a table. Tables are often placed independently
of the text, at the top or bottom of the page; see section 1.5 for details. The table itself
is generated by

\begin{tabular}{<alignment>}
... material ...
\end{tabular}

Each line of the table has items separated by characters, and \\ at the end of each line
but the last.

In its simplest form, the alignment directions are a combination of the letters l,r,c:

\begin{tabular}{rl}
"Philly" Joe & Jones\\ Dizzie & Gillespie\\ Art&Tatum
\end{tabular}

Output:

”Philly” Joe Jones
Dizzie Gillespie

Art Tatum

Vertical rules are inserted by placing a | character in the alignment specification; hor-
izontal lines you get from \hline.

\begin{tabular}{|r|rl|}
\hline
instrument&name&\\ \hline
drums: &"Philly" Joe & Jones\\
trumpet:& Dizzie & Gillespie\\
piano: &Art&Tatum\\ \hline
\end{tabular}

Output:

Victor Eijkhout

20 CHAPTER 1. TEX AND LATEX

instrument name
drums: ”Philly” Joe Jones

trumpet: Dizzie Gillespie
piano: Art Tatum

Some more tricks:

• In headings you often want to span one item over several columns. Use
\begin{tabular}{|r|rl|}
\hline
instrument&\multicolumn{2}{|c|}{name}\\ \hline
drums: &"Philly" Joe & Jones\\
trumpet:& Dizzie & Gillespie\\
piano: &Art&Tatum\\ \hline
\end{tabular}
Output:

instrument name
drums: ”Philly” Joe Jones

trumpet: Dizzie Gillespie
piano: Art Tatum

• LATEX inserts a standard amount of space between columns. You can override
this with @{<stuff>}:
\begin{tabular}{r@{.}l}
2&75\\ 800&1
\end{tabular}

gives
2.75

800.1
• A column specification of p{<size>} (where <size> is something like
5.08cm or 2in) makes the items in that column formatted as paragraphs
with the width as specified.

1.4.1.7 Footnotes

Use the command \footnote. The numbering style is determined by the document
class. The kinds of footnote to denote affiliation of the author of a paper and such
(these often use asterisk symbols and such, even if footnotes are numbered in the rest
of the document) are given by the command \thanks.

There are two common cases where want more detailed control over footnotes:

• You want to dictate the label yourself, for instance using the same label again
(this often happens with author affiliations)
• You want to place a footnote in a table or such; LATEX has trouble with that.

TEX – LATEX – CS 594

1.4. TEXT ELEMENTS 21

In such cases you can use \footnotemark to place the marker, and \footnotetext
for the text. You can also set or change the footnote counter explicitly with counter
functions (section 1.9.4), or use

\footnote[<label>]{<text>}

where the label is used instead, and the counter is not increased.

1.4.1.8 Text boxes

Sometimes you want a small amount of text to behave like one or more paragraphs,
except not as part of the main page. The main commands for that are

\parbox[pos]{width}{text}
\begin{minipage}[pos]{width} text \end{minipage}

The optional pos parameter specifies whether the top (t) or bottom (b) line of the box
should align with surrounding text: top-aligned box of text:

Chapter 1. \parbox[t]{2in}{\slshape Introduction. First easy
lessons. Exercises. More about things to come. Conclusions}

Output:

Chapter 1. Introduction. First easy lessons.
Exercises. More about things to
come. Conclusions

The default is a vertically centered position.

The minipage environment is meant for longer pieces of text; it can also handle
other environments in the text.

The \mbox command is for text (or other objects) that need to stay on one line.

1.4.2 Minor text issues

1.4.2.1 Text styles

You can switch between roman (the style for this text), italic (also called ‘cursive’),
slanted (in some typefaces, italic and slanted may be identical), and bold with the
commands \texrm, \textit, \textsl, and \textbf respectively, used as

Text is stated \textbf{boldly} or \textsl{with a slant}.

These combinations are not independent: nesting the commands can give you bold
slanted text.

The above commands are mostly for short bits of text. See section 1.4.2.2 for com-
mands to change font parameters in a more global manner.

Victor Eijkhout

22 CHAPTER 1. TEX AND LATEX

If you are using italics for emphasis, consider using \emph instead, which works
better, especially if you emphasize something in text that is already italic.

1.4.2.2 Fonts and typefaces

You already saw commands such as \textrm and \textit for switching from one
type style to another. These commands hide a more complicated reality: LATEX handles
its fonts as combination of three parameters. These individual switches can be used
inside a group, or as an environment:

{\ttfamily This is typewriter text}
\begin{mdseries}
This text is set in medium weight.

\end{mdseries}

Here are the categories and possible values.

family roman, sans serif, typewriter type: \rmfamily, \sffamily, \ttfamily.
series medium and bold: \mdseries, \bfseries.
shape upright, italic, slanted, and small caps: \upshape, \itshape, \slshape,

\scshape.

1.4.2.3 Comments

Anything from % to the end of line is ignored. For multiline comments, load either

\usepackage{comment}

or

\usepackage{verbatim}

and in both cases surround text with

\begin{comment}
to be ignored
\end{comment}

where the closing line has to be on a line of its own.

1.4.2.4 Hyphenation

Sometimes TEX has a hard time finding a breakpoint in a word. When you are fixing the
final layout of a document, you can help it with helico\-pter. If TEX consistently
breaks your name wrong, do

\hyphenation{Eijk-hout}

TEX – LATEX – CS 594

1.4. TEXT ELEMENTS 23

in the preamble.

This is not the mechanism for telling TEX about a new language; see section 1.10.5.

To keep text together, write \mbox{do not break}. You could also write this
with a non-breaking space as do˜not˜break. (See also section 1.4.2.5.) It is a good
idea to write

A˜note on...
increase by˜1.

to prevent single characters at the beginning of a line (first example), or the end of a line
(second example). The second example could even give a line with a single character
on it if it were to occur at the end of a paragraph.

1.4.2.5 Tilde

The tilde character has special meaning as a nonbreaking space; see section 1.4.2.4.
To get a tilde accent, use \˜. To get a literal tilde, do \˜{}, \sim, or \char‘\˜.
If you need a tilde in URLs, consider using the url or hyperref package; see
section 1.10.3.

1.4.2.6 Accents

In basic TEX, accents are formed by putting a control symbol of that accent in front of
the letter:

Sch\"on b\ˆet\’e

for ‘Schön bêté’. If you have an occasional foreign word in English text this works
fine. However, if your terminal allows you to input accented characters, you can use
them in LATEX with the inputenc package.

Standard TEX (or LATEX) does not understand Unicode encodings such as UTF-8.

1.4.2.7 Line/page breaking

In general, you should leave line and page breaking to TEX, at most adjusting parame-
ters. However, should you really need it,
you can use the commands \linebreak[<num>] and \pagebreak[<num>],
where the number is 1,2,3,4, with 4 the highest
urgency. There is also \nolinebreak and \nopagebreak with a similar urgency
parameter.

Victor Eijkhout

24 CHAPTER 1. TEX AND LATEX

In this last paragraph there was a \linebreak after ‘need it’. You notice that TEX
still tried to fill out to the right margin, with ugly consequences. After ‘highest’ there
was a \newline, which really breaks then and there. Similarly, there is \newpage.

There is also \nolinebreak and \nopagebreak, both with optional numerical
parameter, to discourage breaking.

1.4.2.8 Manual spacing

Most of the time you should leave spacing decisions to LATEX, but for custom designs
it is good to know the commands.
\hspace{1cm} \hspace*{1in} \hspace{\fill}
\vspace{1cm} \vspace*{1in} \vspace{\fill}

• The *-variants give space that does not disappear at the beginning or end of
a line (for horizontal) or page (vertical).
• A space of size \fill is infinite: this means it will stretch to take up however

much space is needed to the end of the line or page.

1.4.2.9 Drawing lines

Let us get one thing out of the way: underlining is a typewriter way of emphasizing
text. It looks bad in typeset text, and using italics or slanted text is a much better way.
Use \emph.

Lines can be used a typographical decorations, for instance drawn between the regular
text and the footnotes on a page, or as part of chapter headings. The command is
\rule[lift]{width}{height}

Example
1\ \rule{2cm}{\fboxrule}\ The title

Output:
1 The title

You can draw a whole box around text: \fbox{text} gives text . The thickness of
the line is \fboxrule.

1.4.2.10 Horizontal and vertical mode

TEX is in horizontal or vertical mode while it is processing6. In horizontal mode, el-
ements – typically letters – are aligned next to each other; in vertical mode elements

6. The story is actually more complicated; for the whole truth see the notes about TEX.

TEX – LATEX – CS 594

1.5. TABLES AND FIGURES 25

are stacked on top of one another. Most of the time you do not have to worry about
that. When TEX sees text, it switches to horizontal mode, and LATEX environments will
briefly switch to vertical mode so that they start on a new line.

In certain cases you want to force vertical mode; for that you can use \par. You can
force things into a line with \mbox (section 1.4.1.8). In rare cases, \leavevmode.

1.5 Tables and figures

Tables and figures are objects that typically do not appear in the middle of the text. At
the very least they induce a paragraph break, and often they are placed at the top or
bottom of a page. Also, some publishers’ styles demand that a document have a list of
tables and a list of figures. LATEX deals with this by having environments

\begin{<table or figure>}[placement]
... table or figure material ...
\caption{Caption text}\label{tabfig:label}
\end{<table or figure>}

In this,

• The ‘placement’ specifier is a combination of the letters htbp for ‘here’,
‘top’, ‘bottom’, and ‘page’, telling LATEX where to place the material, if pos-
sible. Suppose a placement of [ht] is given, then the material is placed
‘right here’, unless there is not enough space on the page, in which case it
will be placed on top of the page (this one or the next).
• Table material is given by a tabular environment; see section 1.4.1.6.
• Figure material needs some extra mechanism, typically provided by another

package; see section 1.10.4.
• The caption goes into the list of tables/figures.
• The label will refer to the number, which is automatically generated.

The list of tables/figures is generated by the command \listoftables or \listoffigures.

1.6 Math

TEX was designed by a computer scientist to typeset some books with lots of mathe-
matics. As a result, TEX, and with it LATEX’s, math capabilities are far better than those
of other typesetters.

Victor Eijkhout

26 CHAPTER 1. TEX AND LATEX

1.6.1 Math mode

You can not just write formulas in the middle of the text. You have to surround them
with $<formula>$ or \(<stuff>\) for inline formulas, or

\begin{displaymath} ... \end{displaymath}
\[... \]

for unnumbered and

\begin{equation} ... \end{equation}

for numbered displayed equations respectively. You can refer to an equation number
by including a \label statement.

In math mode, all sorts of rules for text typesetting are changed. For instance, all letters
are considered variables, and set italic: a gives ‘a’. Roman text is either for names
of functions, for which there are control sequences – \sin(x) gives ‘sin(x)’ – or for
connecting text, which has to be marked as such:

\forall x \in \mathbf{R}
\quad \mathrm{(sufficiently large)} \quad: \qquad x>5

Output:

∀x ∈ R (sufficientlylarge) : x > 5 (1.1)

A formula is limited to one line; if you want to break it, or if you need several formulas
vertically after one another, you have to do it yourself. The eqnarray environment
is useful here. It acts as a three-column alignment.

\begin{eqnarray}
\sin x&=&x-\frac{xˆ3}{3!}+\frac{xˆ5}{5!}- \nonumber \\

&&{}-\frac{xˆ7}{7!}+\cdots
\end{eqnarray}

Output:

sinx = x− x3

3!
+
x5

5!
−

− x7

7!
+ · · · (1.2)

Note the use of \nonumber here; with the eqnarray* all lines would be unnum-
bered by default.

In AMS LATEX there is an align environment which looks better than eqnarray.

TEX – LATEX – CS 594

1.6. MATH 27

1.6.2 Super and subscripts

In math mode, the character ˆ denotes a superscript, and _ denotes a subscript: x_iˆ2 is x2
i .

(Outside of math mode these characters give an error.) Sub and superscripts of more
than one character have to be grouped.

1.6.3 Grouping

Grouping, in math mode as outside, is done with braces: x_{i-1}ˆ{nˆ2} looks
like xn

2

i−1.

1.6.4 Display math vs inline

Math looks different when used inline in a paragraph from that used as display math.
This is mostly clear for operators with ‘limits’:

text mode:
∑∞

i=1 displaymode :

∞∑
i=1

1.6.5 Delimiters, matrices

Delimiters are ()[]\{\}. You can prefix them with \big, \Big and such, but TEX
can resize them automatically:

\left(\frac{1}{1-xˆ2} \right)
\left\{ \begin{array}{ccc}

\mathrm{(a)}&\Rightarrow&x>0\\
\mathrm{(b)}&\Rightarrow&x=0\\
\mathrm{(c)}&\Rightarrow&x<0

\end{array} \right.

Output:(
1

1− x2

)
(a) ⇒ x > 0
(b) ⇒ x = 0
(c) ⇒ x < 0

(1.3)

Note that with \right. you get a omitted right delimiter.

In the above example you also saw the array environment, which can be used for
anything tabular in math mode, in particular matrices. Here is a good example of a
matrix. Note the different kinds of dots:

A = \left(\begin{array}{cccccc}
a_{11}&0&&\ldots&0&a_{1n}\\

Victor Eijkhout

28 CHAPTER 1. TEX AND LATEX

&a_{22}&0&\ldots&0&a_{2n}\\
&&\ddots&\ddots&\vdots&\vdots\\
&&&a_{n-2n-2}&0&a_{n-2n}\\
&\emptyset&&&a_{n-1n-1}&a_{n-1n}\\
&&&&&a_{nn}

\end{array} \right)

Output:

A =



a11 0 . . . 0 a1n

a22 0 . . . 0 a2n

.
...

...
an−2n−2 0 an−2n

∅ an−1n−1 an−1n

ann


(1.4)

1.6.6 There is more

See a good book for the whole repertoire of symbols. If what LATEX has is not enough,
you can also get AMS LATEX, which has even more fonts and tricky constructs.

1.7 References

1.7.1 Referring to document parts

One of the hard things in traditional typesetting is to keep references such as ‘see also
section 3’ in sync with the text. This is very easy in LATEX. You write

\section{Results}\label{section:results}

after which you can use this as

see also section˜\ref{section:results}
on page˜\pageref{section:results}.

The \label command can appear after headings, or in general every time some
counter has been increased, whether that’s a section heading or a formula number.

LATEX implements this trick by writing the information to an auxiliary file – it has ex-
tension .aux – and reading it in next run. This means that a LATEX document usually
has to be typeset twice for all references to be both defined and correct. You get a re-
minder after the first run if a second one is needed, or if there are missing or duplicately
defined labels.

TEX – LATEX – CS 594

1.7. REFERENCES 29

Exercise 5. A document with references usually takes two passes
to get right. Explain why a table of contents can increase this num-
ber to three.

1.7.2 Table of contents

Something that typically goes into the front or back matter is the table of contents. This
gets inserted automatically by the command \tableofcontents. No other actions
required. You can add your own material to the contents with \addcontentsline
or \addtocontents.

1.7.3 Bibliography references

Another kind of the reference is that to external bibliographies. This needs a bit more
work.

• You write \cite{Knuth:1978} where you want the citation.
• At the end of your document you write
\bibliographystyle{plain}
\bibliography{cs}
to get the bibliography included.
• The bibliography references have to be defined in a file cs.bib.
• After running LATEX once, you need to invoke bibtex <yourfile>, which

creates another auxiliary file, this time with .bbl extension, and run LATEX
once or twice more.

The bibliography files have a syntax of their own, but you can figure that out from
looking at some examples.

1.7.4 Index

Finally, a document can have an index. For this you need to have a statement \usepackage{makeidx}
in the preamble, \printindexwherever you want the index, and commands \index{<some term>}
throughout your document. Additionally, as with bibtex, you need to run the pro-
gram makeindex to generate the external .ind file.

Further indexing commands: \index{name!sub} for subentry; \index{foo@\textit{foo})
for sorting under ‘foo’ but formatted differently.

Victor Eijkhout

30 CHAPTER 1. TEX AND LATEX

1.8 Some TEXnical issues

1.8.1 Commands inside other commands

For deep technical reasons you can get completely incomprehensible error messages
by writing things like

\section{My first section \footnote{and not my last}}

Remedy that by writing

\section{My first section \protect\footnote{and not my last}}

1.8.2 Grouping

Most modern programming languages have a block structure of some sort, where vari-
ables can be declared inside a block, and are no longer known after the block ends.
TEX has a stronger mechanism, where assignments to a variable made inside a block
are reverted at the end of that block.

In LATEX you notice that only \newcommand and \newenvironment declarations
are local; \newcounters are global, as are \setcounter assignments. However,
\savebox assignments are local.

1.9 Customizing LATEX

LATEX offers a number of tools (on top of the possibility of doing straight TEX program-
ming) for customizing your document. The easiest customization is to change already
defined parameters. However, you can also define new commands and environments
of your own.

In fact, several of the customization we will see in this section are not part of standard
LATEX, but have been written by other users. If they do not come with your installation,
you can download them from the Central TEX Archive Network; see section 1.10.1.

1.9.1 Page layout

1.9.1.1 Layout parameters

Page layout is controlled by parameters such as \textheight, \textwidth, \topmargin
(distance to the running head, not to the first text line), and \odd/evensidemargin
(distance to the ‘spine’ of the document). These are set with commands like

\setlength{\textwidth}{10in}
\addtolength{\oddsidemargin}{-1cm}

TEX – LATEX – CS 594

1.9. CUSTOMIZING LATEX 31

Some lengths are ‘rubber length’
\setlength{\parskip}{10pt plus 3pt minus 2pp}

1.9.1.2 Page styles

Use the commands
\pagestyle{<style>}

and
\thispagestyle{<style>}

to change the style of all pages or one page. Available styles are empty (no page
numbers), plain (the default), and headings (page numbers and running headers).
See also section 1.10.2 for many more options.

For two-sided printing, use the twoside option for the document class.
Exercise 6. Take a look at the headers and footers in Oetiker’s
‘Not so short introduction’ and ‘TEX by Topic’ (the LATEX and TEX
part of the handout). Can you find a reason to prefer one over the
other from a point of usability? In both books, what is the rationale
behind the header on the odd pages? See in particular page 35 of
the former and 77 of the latter. Do you agree with this design?

1.9.1.3 Running page headers

The headings page style (section 1.9.1.2) uses running heads that can change through
the document. For instance it would have chapter titles in the left page head and section
titles in the right head. You can achieve this effect yourself by using the myheadings
page style, and using the
\markright{<right head>}
\markboth{<left>}{<right>}

You have access to these texts as \rightmark and \leftmark; this is needed in
the fancyhdr style.

1.9.1.4 Multicolumn text

Load
\usepackage{multicol}

and write
\begin{multicol}{3}
text in three column mode
\end{multicol}

Victor Eijkhout

32 CHAPTER 1. TEX AND LATEX

1.9.2 New commands

You can define your own commands in LATEX. As example of a a simple command,
consider an often used piece of text
\newcommand{\IncrByOne}{increased by˜1}

The replacement text can have parameters:
\newcommand{\IncrDecrBy}[2]{#1creased by˜$#2$}

In this definition, the number of arguments is listed after the command name: [2],
and occurrences of the arguments in the replacement text are indicated by #1, #2 etc.
Example calls: \IncrDecrBy{in}{5}, \IncrDecrBy{de}{2}.

The declaration of a new command can specify an optional argument. If we define
\newcommand{\IncrDecrBy}[2][in]{#1creased by˜$#2$}

the [in] specification means that the first argument is optional (only the first argument
can ever be optional) with a default value of in. Example calls:
\newcommand{\IncrDecrBy}[2][in]{#1creased by˜$#2$}
\IncrDecrBy[de]{1}, \IncrDecrBy{5}.

Output:
decreased by 1, increased by 5.

To redefine an existing command, use \renewcommand.

1.9.3 New environments

It is possible to define environments, by specifying the commands to be used at their
start and end:
\newenvironment{example}%

{\begin{quote}\textbf{Example.}}%
{\end{quote}}

which, used as \begin{example}...\end{example} gives a quote environ-
ment that starts with the word ‘Example’ in bold face. While defining that environment
does not save a lot of typing, it is a good idea nevertheless from a point of view of logi-
cal markup. Using the example environment throughout ensures a uniform layout, and
makes design changes easy if you ever change your mind.

Special case: defining mathematical statements with
\newtheorem{majorfact}{Theorem}
\newtheorem{minorfact}[majorfact]{Lemma}
\begin{minorfact}Small fact\end{minorfact}
\begin{majorfact}Big fact\end{majorfact}

TEX – LATEX – CS 594

1.9. CUSTOMIZING LATEX 33

giving

Lemma 1 Small fact

Theorem 2 Big fact

The optional argument in the definition of lemma makes it use the theorem counter.

Exercise 7. Why does this not work:
\newenvironment{examplecode}%
{\textbf{Example code.}\begin{verbatim}}{\end{verbatimm}}

Exercise 8. Write macros for homework typesetting; make one
master document that will contain all your homework throughout
this course.

1. Define an environment exercise so that
\begin{exercise}
My answer is...
\end{exercise}
gives

Problem 5. My answer is. . .
The counter should be incremented automatically. List your
solution in your answer, and find a way that the listing is guar-
anteed to be the code you actually use.

2. Write a macro \Homework that will go to a new page, and
output

Answers to the exercises for chapter 3
at the top of the page. The exercise environment should
now take the question as argument:
\begin{exercise}{Here you paraphrase the question that was asked}
My answer is...
\end{exercise}
and this outputs

Problem 1.8 Here you paraphrase the question
that was asked

My answer is. . .
(Hint: read the section on text boxes. Also be sure to use \par
to get LATEX to go to a new line.) Allow for the question to
be more than one line long. Unfortunately you can not get
verbatim text in the question. Find a way around that.

Victor Eijkhout

34 CHAPTER 1. TEX AND LATEX

1.9.4 Counters

LATEX has a number of counters defined, for sections and such. You can define your
own counters too. Here are the main commands:

create A new counter is created with
\newcounter{<name>}[<other counter>]
where the name does not have a backslash. The optional other counter
indicates a counter (such as chapter) that resets the new counter every time
it is increased. (To do this reset for an already existing counter, check out the
chngcntr package.)

change values A counter can be explicitly set or changed as
\setcounter{<name>}{<value>}
\addtocounter{<name>}{<value>}
The command \refstepcounter also make the new value the target for
a \label command.

use To get a counter value numerically, use \value. To print the value, use
\arabic{<name>}, \roman{<name>}, \Roman{<name>}
et cetera.

1.9.5 Lengths

Parameters such as \textwidth (section 1.9.1.1) are called ‘lengths’. You can define
your own with

\newlength{\mylength}
\setlength{\mylength}{5in}

These lengths can be used in horizontal or vertical space commands (section 1.4.2.8)
for your own designs.

1.9.6 The syntax of \new... commands

Have you noticed by now that the name you define starts with a backslash in \newcommand
and \newlength, but not in \newenvironment or \newcounter? Confusing.

1.10 Extensions to LATEX

LATEX may be a package on top of TEX, but that doesn’t mean that the programming
power of TEX is no longer available. Thus, many people have written small or large
extensions to be loaded in addition to LATEX. We will discuss a couple of popular ones
here, but first we’ll see how you can find them.

TEX – LATEX – CS 594

1.10. EXTENSIONS TO LATEX 35

1.10.1 How to find a package, how to use it

Packages are typically loaded in the file preamble with

\usepackage{pack1,pack2,...}

(These course notes load about a dozen packages.)

Many popular packages are already part of the standard LATEX distribution, but you will
have to search to find where they are stored on your computer. Make a document that
uses a common package, say fancyhdr, and see in the log output on the screen or in
the log file where the file is loaded from. A typical location is /usr/share/texmf/....
With a bit of searching you can also find7 the documentation, which can be a dvi, ps,
or pdf file.

If you have heard of a package and it is not on your system, go to the ‘Comprehensive
TEX Archive Network’ (CTAN for short) and download it from there: http://www.
ctan.org/.

1.10.2 Fancy page headers and footers

The fancyhdr8 package provides customized headers and footers. The simple inter-
face is

\lhead{<text>} \chead{<text>} \rhead{<text>}

for specifying text to get left, center, and right in the header. Likewise \lfoot and
such for the footer.

This is assuming that all pages are the same. If you format for two-sided printing
(section 1.9.1.2), you can specify different text for odd and even pages:

\fancyhead[LE,RO]{<text>}

for text that is Left on Even and Right on Odd pages. Typically, you specify text for
[LE,RO] and [RE,LO], for instance

\fancyhead[EL,OR]{\textsl{\rightmark}}

(see section 1.9.1.3).

1.10.3 Pdf file generation

Making beautiful pdf documents, complete with hyperlinks and table of contents, from
your LATEX files is simplicity itself. Insert

7. For instance using the Unix command ‘find’.
8. This supersedes the fancyheadings package.

Victor Eijkhout

http://www.ctan.org/
http://www.ctan.org/

36 CHAPTER 1. TEX AND LATEX

\usepackage[pdftex]{hyperref}

in the preamble, and format with pdflatex. That’s it. Do see section 1.10.4.2 about
including pictures.

1.10.4 Graphics

Because of TEX’s ancient origins – and its desire to be machine-independent – graphics
is not standard, and frankly a bit of a hassle. The basic TEX system knows nothing
about graphics, it just keeps some space open. An extension mechanism (‘specials’)
then puts information in the output file that the printer driver can use to place graphics.
With pdflatex this situation has become a bit less messy: now any graphics go
straight into the pdf output file.

1.10.4.1 The picture environment

There is a way to generate graphics from inside LATEX, using some graphics fonts rather
than a full drawing mode. While primitive and limited, the picture environment has
two advantages:

• It is easier to get the fonts for labels to be the same as the text font.
• Since it involves explicit drawing instructions, you can automatically draw

bar charts and such.

1.10.4.2 Including external graphics

Most of the time, you will have graphics to include that come from some drawing
package. Using the graphicx package, you write
\includegraphics[key=value,...]{<file name>}

where the file name can refer to any format, but if you use pdflatex, Postscript can not
be used; if your picture is in Postscript, you can convert it with ps2pdf.

Commands such as \includegraphics, as well as similar commands in other
packages, leave space in your document for the graphic. Now you have to be careful:
you can not leave space for a 3 inch picture, an inch from the bottom of the page. Here
are two approaches for placing a picture:

• Just place it where you want it, and if it falls on a page break, deal with it
later by moving it.
• Put the figure in a floating figure object (section 1.5) and let LATEX sort out

the placement.
You can also have text wrap around a figure, by using the wrapfig package.

There is a package color for colour output.

TEX – LATEX – CS 594

1.10. EXTENSIONS TO LATEX 37

1.10.5 Other languages than English

The fact that TEX and LATEX were written by Americans becomes obvious in a couple
of places.

• Various typographical conventions are geared towards American English.
• Words like ‘Chapter’ are the default in the style files9.

To address this and make LATEX easier to use with other languages, there is a package
babel.

9. They used to be hard-wired, so the situation is improved.

Victor Eijkhout

38 CHAPTER 1. TEX AND LATEX

TEX programming. No separate handout for this chapter; see the book ‘TEX

by Topic’.

Exercise 9. Write a macro \intt (‘in typewriter type’) such that
\intt{foo} and \intt{foo_bar} are output as foo and foo_bar,
in typewriter type.

Exercise 10. Write a macro that constructs another macro: \tees\three3
should be equivalent to \def\three{TTT}, \tees\five5 equiv-
alent to \def\five{TTTTT} et cetera. In other words, the first
argument of \tees is the name of the macro you are defining, the
second is the number of letters ‘T’ the defined macro expands to.
To make sure that your solution really expands to that string of ‘T’s,
and not some code that generates it when the macro is called, do
\show\five and check the screen output.

Exercise 11. TEX natively has addition, multiplication, and divi-
sion arithmetic. Write a square root routine in TEX. Hint: Use New-
ton’s method.

Exercise 12. Make this work:
\def\LeftDelim{(}\def\RightDelim{)}
\DefineWithDelims{foo}{My argument is ‘#1’.}
\def\LeftDelim{<}\def\RightDelim{>}
\DefineWithDelims{bar}{But my argument is ‘#1’.}
\foo(one)\par
\bar<two>
Output:

My argument is ‘one’.

But my argument is ‘two’.
In other words, \DefineWithDelims defines a macro – in this
case \foo – and this macro has one argument, delimited by cus-
tom delimiters. The delimiters can be specified for each macro sep-
arately.
Hint: \DefineWithDelims is actually a macro with only one
argument. Consider this code snippet:
\Define{foo}{ ... #1 ...}
\def\Define#1{

\expandafter\def\csname #1\endcsname##1}

TEX – LATEX – CS 594

1.10. EXTENSIONS TO LATEX 39

TEX visuals.
Exercise 13. Use the \everypar command so that the first para-
graph after a heading (define your own heading command) will have
a bullet (\bullet) in the left margin.

Exercise 14. Set TEX up so that every paragraph starts in medi-
aeval ‘initial’ style: the first letter of the paragraph is set in a large
type size, and takes the first two or three lines. Use the following
auxiliary macro:
\def\Hang#1{\hbox to 0pt

{\raise 1.2ex \vbox to 0pt
{\hbox{#1}\vss}\hss}}

% small test:
A \Hang{\bullet} B \Hang{\Huge B} C. \bigskip
Output:

A •B BC.

Also, set \parindent=0pt. The result should look like this. In-
put:
This is an old-fashioned mediaeval paragraph that has lots
of text and...

Also, the second paragraph is an old-fashioned mediaeval
paragraph that...
with output:

T his is an old-fashioned mediaeval paragraph
that has lots of text and a very long first sen-

tence. The second sentence is also long, and only
serves the purpose to make this more than 2 or so
lines long. For good measure we throw in a third
line which should make this four lines long, if not
five with a little luck.

A lso, the second paragraph is an old-fashioned
mediaeval paragraph that has lots of text and

a very long first sentence. The second sentence is
also long, and only serves the purpose to make
this more than 2 or so lines long. For good mea-
sure we throw in a third line which should make
this four lines long, if not five with a little luck.

Victor Eijkhout

40 CHAPTER 1. TEX AND LATEX

Projects for this chapter.
Project 1.1. TEX has a syntax that can to a large extent be altered, dynamically or

statically. This has had the effect that macro packages typically use a syntax
that is somewhere between ad hoc and plain unsystematic. Explore how it
would be possible to set up a macro package with object-oriented syntax and
design. It would probably be a good idea to read [3, 4, 5], and to look at
macro package such as Lollipop and ConTeXt.

Project 1.2. The web site http://wwww.cookingforengineers.com uses a
table-like layout for notating recipes. Design an easy syntax for inputting
these diagrams, and write a LATEX package that implements them.

TEX – LATEX – CS 594

http://wwww.cookingforengineers.com

Chapter 2

Parsing

The programming language part of TEX is rather unusual. In this chapter we will learn
the basics of language theory and parsing, and apply this to parsing TEX and LATEX.
Although TEX can not be treated like other programming languages, it is interesting to
see how far we can get with existing tools.

Handouts and further reading for this chapter

The theory of languages and automata is discussed in any number of books, such as
the Hopcroft and Ulman one. For a discussion that is more specific to compilers, see
the compilers book by Aho and Ulman or Aho, Seti, and Ulman.

The tutorials on lex and yacc should suffice you for most applications. The O’Reilly
book by Levine, Mason, and Brown is probably the best reference on lex and yacc.
A copy of it is on reserve in the library, QA76.76.U84M37 .

The definitive reference on hashing is Knuth’s volume 3 of The Art of Computer Pro-
gramming [14], section 6.4. This is on reserve, QA76.5.K57 .

41

42 CHAPTER 2. PARSING

Parsing theory.

2.1 Levels of parsing

A compiler, or other translation software, has two main tasks: checking the input for
validity, and if it is valid, understanding its meaning and transforming it into an exe-
cutable that realizes this meaning. We will not go into the generation of the executable
code here, but focus on the validity check and the analysis of the meaning, both of
which are parsing tasks.

A parser needs to look at the input on all sorts of levels:

• Are all characters valid – no 8-bit ascii?
• Are names, or identifiers, well-formed? In most programming languages a1

is a valid name, but 1a is not. By contrast, in TEX a name can only have
letters, while in certain Lisp dialects !!important_name!! is allowed.
• Are expressions well-formed? An arithmetic expression like 5/*6- does not

make sense, nor does CALL)FOO(in Fortran.
• If the input is well-formed, are constraints satisfied such as that every name

that is used is defined first?

These different levels are best handled by several different software components. In
this chapter we will look at the two initial stages of most translators1.

1. First of all there is the lexical analysis. Here a file of characters is turned into
a stream of tokens. The software that performs this task is called a tokenizer,
and it can be formalized. The theoretical construct on which the tokenizer is
based is called a ‘Finite State Automaton’.

2. Next, we need to check if the tokens produced by the tokenizer come in a le-
gal sequence. For instance, opening and closing parentheses need to come in
matched pairs. This stage is called the syntactical analysis, and the software
doing this is called a parser.

2.2 Very short introduction

A language is a set of words (strings) over an alphabet, that satisfies certain properties.
It is also possible to define a language as the output of a certain type of grammar, or as

1. I will use the terms ‘translating’ and ‘translater’ as informal concepts that cover both compilers and
interpreters and all sorts of mixed forms. This is not the place to get philosophical about the differences.

TEX – LATEX – CS 594

2.2. VERY SHORT INTRODUCTION 43

the strings accepted by a certain type of automaton. We then need to prove the equiv-
alences of the various formulations. In this section we briefly introduce the relevant
concepts.

2.2.1 Languages

A language is a set of words that are constructed from an alphabet. The alphabet is
finite in size, and words are finite in length, but languages can have an infinite number
of words. The alphabet is often not specified explicitly.

Languages are often described with set notation and regular expressions, for example
‘L = {anb∗cn|n > 0}’, which says that the language is all strings of equal number of
as and cs with an arbitrary number of bs in between.

Regular expressions are built up from the following ingredients:

α|β either the expression α or β
αβ the expression α followed by the expression β
α∗ zero or more occurrences of α
α+ one or more occurrences of α
α? zero or one occurrences of α

We will see more complicated expressions in the lex utility.

2.2.2 Automata

A description of a language is not very constructive. To know how to generate a lan-
guage we need a grammar. A grammar is a set of rules or productions α → β that
state that, in deriving a word in the language, the intermediate string α can be replaced
by β. These strings can be a combination of

• A start symbol S,
• ‘Terminal’ symbols, which are letters from the alphabet; these are tradition-

ally rendered with lowercase letters.
• ‘Non-terminal’ symbols, which are not in the alphabet, and which have to be

replaced at some point in the derivation; these are traditionally rendered with
uppercase letters.
• The empty symbol ε.

Languages can be categorized according to the types of rules in their grammar:

type 0 These are called ‘recursive languages’, and their grammar rules can be of any
form: both the left and right side can have any combination of terminals,
non-terminals, and ε.

Victor Eijkhout

44 CHAPTER 2. PARSING

type 1 ‘Context-sensitive languages’ are limited in that ε can not appear in the left
side of a production. A typical type 1 rule would look like

αAβ → γ
which states that A, in the context of αAβ, is replaced by γ. Hence the name
of this class of languages.

type 2 ‘Context-free languages’ are limited in that the left side of a production can
only consist of single non-terminal, as in A → γ. This means that replace-
ment of the non-terminal is done regardless of context; hence the name.

type 3 ‘Regular languages’ can additionally have only a single non-terminal in each
right-hand side.

In the context of grammars, we use the notation α⇒ β to indicate that the string β as
derived from α by a single application of a grammar rule; α ⇒∗ β indicates multiple
rules. For example, αAβ ⇒ αBγ indicates that the rhs string was derived from the lhs
by replacing Aβ with Bγ.

2.2.3 Automata

Corresponding to these four types of formal languages, there are four types of ‘au-
tomata’: formal machines that can recognize these languages. All these machines have
a starting state, they go from one state to another depending on the input symbols they
encounter, and if they reach the end state, the string is accepted as being in the lan-
guage. The difference between the different types of automata lies in the amount of
memory they have to store information. Very briefly the classes of automaton are:

for type 3 Finite State Automata. These machines have no memory. They can only
make transitions.

for type 2 Pushdown Automata. These machines have a stack where they can store
information; only the top of the stack can be inspected.

for type 1 Linear Bounded Automata. These have random-access memory, the size of
which is equal to (a linear function of) the size of the input.

for type 0 Turing machines. These have an unbounded tape for storing intermediate
calculations.

TEX – LATEX – CS 594

2.3. FINITE STATE AUTOMATA AND REGULAR LANGUAGES 45

Lexical analysis.

The lexical analysis phase of program translation takes in a stream of characters and
outputs a stream of tokens.

A token is a way of recognizing that certain characters belong together, and form an
object that we can classify somehow. In some cases all that is necessary is knowing
the class, for instance if the class has only one member. However, in general a token is
a pair consisting of its type and its value. For instance, in 1/234 the lexical analysis
recognizes that 234 is a number, with the value 234. In an assignment abc = 456,
the characters abc are recognized as a variable. In this case the value is not the numeric
value, but rather something like the index of where this variable is stored in an internal
table.

Lexical analysis is relatively simple; it is performed by software that uses the theory
of Finite State Automata and Regular Languages; see section 2.3.

Remark. It might be tempting to consider the input stream to consist of lines, each
of which consist of characters, but this does not always make sense. Programming
languages such as Fortran do look at the source, one line at a time; C does not. TEX is
even more complicated: the interpretation of the line end is programmable.2

2.3 Finite state automata and regular languages

Regular languages are the strings accepted by a particularly simple kind of automa-
ton. However, we initially define these languages – non-constructively – by so-called
‘regular expressions’.

2.3.1 Definition of regular languages

A regular language over some alphabet can be described by a ‘regular expression’.
• ε denotes the empty language: the language with no words in it.
• If a is a letter in the alphabet, then a denotes the language {a}.
• If α and β are expressions denoting regular languages A and B, then

– αβ or α · β denotes the language {xy|x ∈ A, y ∈ B}.
– α|β denotes the language A ∪B.
– α∗ denotes the language ∪n≥0A

n.

2. Ok, if we want to be precise, TEX does look at the input source on a line-by-line basis. There is
something of a preprocessor before the lexical analysis which throws away the machine-dependent line
end, and replaces it with the TEX-defined one.

Victor Eijkhout

46 CHAPTER 2. PARSING

• Parentheses can be used to indicate grouping: (α) simply denotes the lan-
guage A.

Any regular expression built up this way describes a regular language.

2.3.2 Non-deterministic automata

A Finite State Automaton is an abstract machine that recognizes (‘accepts’) words
from a language:

• The automaton is initially in a beginning state;
• every letter or ‘symbol’ from the input word causes unambiguously a tran-

sition to the same or to a next state; if no transition is defined for a given
combination of current state and input symbol, then the word is not in the
language;
• a word is accepted if the last symbol causes a transition to a state that is

marked as an accepting state.

Formally, we can define a FSA as the combination of

• A set S of states, with a starting state S0 and a set of final states.
• A finite input alphabet I .
• A transition diagram I×S → S that specifies how the combination of a state

and an input symbol effects a transition to a new state.

This kind of automaton is deterministic in the sense that every transition from one state
to the next is deterministically made by accepting an input symbol. However, in the
context of lexical analysis, the so-called ‘non-deterministic FSA’ is more convenient.
A non-deterministic FSA (also NFA) differs in two ways from the deterministic type:

• An NFA can make spontaneous transitions from one state to another. If an au-
tomaton has such a transition, we can say that this is caused by the symbol ε,
and this is called an ε-transition.
• An NFA can be ambiguous in that there can be more than one possible tran-

sition for a given state and input symbol.

Exercise 15. Show that the second condition in the definition of
an NFA can be reduced to the first. Is a reduction the other way
possible?

2.3.3 The NFA of a given language

We now construct a nondeterministic automaton that accepts a regular language.

TEX – LATEX – CS 594

2.3. FINITE STATE AUTOMATA AND REGULAR LANGUAGES 47

• The automaton that accepts the expression ε has a single transition from the
starting state to the accepting state.

0 1

ε

• The automaton that accepts the expression a has a single transition from the
starting state to the accepting state.

0 1

a

• If A and B are automata accepting the languages A and B with expressions
α and β, then

– the language AB is accepted by the automaton that has the states and
transition of both automata combined, with the initial state of A as the
new initial state, the accepting state of B as the new accepting state, and
an ε-transition from the accepting state of A to the initial state of B;

0 1

0 1

A

B

ε

– the language A ∪ B is accepted by an automaton with a new starting
state that has ε-transitions to the initial states of A and B;

0 1

0 1

s s

A

B

ε

ε

ε

ε

– the expression α∗ is accepted by A modified such that the initial state is
also the accepting state, or equivalently by adding an ε-transition from
the starting to the accepting state, and one the other way around.

2.3.4 Examples and characterization

Any language that can be described by the above constructs of repetition, grouping,
concatenation, and choice, is a regular language. It is only slightly harder to take a
transition diagram and write up the regular expression for the language that it accepts.

An informal way of characterizing regular languages is to say that FSAs ‘do not have
memory’. That means that any language where parts of words are related, such as
{anbm|m ≥ n}, can not be recognized by a FSA. Proof: suppose there is a recognizing

Victor Eijkhout

48 CHAPTER 2. PARSING

FSA. When it first accepts a b, it can come from only a fixed number of states, so that
limits the information it can carry with it.

We can give a slightly more rigorous proof if we first characterize regular languages:

Theorem 1 Let L be a regular language, then there is an n so that all strings α in L
longer than n can be written as α = uvw, such that for any k uvkw is also in the
language.

Using this theorem it is easy to see that the above language can not be regular.

This theorem is proved by observing that in order to accept a sufficiently long string
the same state must have been encountered twice. The symbols accepted in between
these encounters can then be repeated arbitrarily many times.

2.3.5 Deterministic automata

Non-deterministic automata, as defined above, are easy to define. However, from a
practical point of view they do not look very constructive: a string in the language
is accepted by the automaton if there is any sequence of transitions that accepts it.
Fortunately, for every NFSA, there is a DFSA that accepts the same language.

Sometimes it is easy to derive the DFSA. Consider the language a∗|b∗ and the automa-
ton

0

1

2

ε

ε

b

a

The following automaton is derived by splitting off one a and one b:

0

1

2

a

b
b

a

TEX – LATEX – CS 594

2.3. FINITE STATE AUTOMATA AND REGULAR LANGUAGES 49

This next example leads up to what happens in the lexical analysis of a compiler:

0

1

6

2

7

5
ε

ε A–Z

B
E–G–I
. . .

N

a–z

The resulting DFA is a bit more messy:

0

1

6

2

7

3

8

B

¬B

E

¬E

G

¬G

A–Z A–Z A–Z

text. . .

. . .

(and we can collapse states 6 . . . to one.)

Sketch of the proof: the states of the DFSA are sets of states of the NFSA. The states
we are actually interested in are defined inductively, and they satisfy the property that
they are closed under ε-transitions of the original NFSA. The starting state contains the
original starting state plus everything reachable with ε-transitions from it. Given a state
of the DFSA, we then define more states by considering all transitions from the states
contained in this state: if there is a transition based on a symbol x, the next state has
all states reachable from this state by accepting x, plus any subsequent ε-transitions.

Since the number of subsets of a finite set of states is finite, this will define a finite
number of states for the DFSA, and it is not hard to see that an accepting sequence in
the one automaton corresponds to an accepting sequence in the other.

2.3.6 Equivalences

Above, we saw how the NFA of a regular language is constructed. Does every NFA
correspond to a regular language, and if so, how can that be derived? We make a detour
by first talking about the equivalence of automata and grammars.

LetX be a string in the language L of a DFA, and suppose that after t transitions state i
is reached. That means we can split X = Xi(t)Yi. This is merely one of the strings

Victor Eijkhout

50 CHAPTER 2. PARSING

that is in state i at time t; let us call the set of all these strings Li(t). Let us call the set
of all strings that, given a state i, bring the automaton to an accepting state Ri. This set
is clearly not dependent on t. Defining Li = ∪∞t=0Li(t), we have that L = ∪mi=1LiRi
where m is the number of states.

This inspires us to tackle the derivation of a grammar by describing the production
of the remainder strings Ri. Suppose the automaton is in state i; we will derive the
productions Ni → If state i is an accepting state, there will be a production Ni →
ε; for all other transitions by a symbol x to a stateNi′ we add a productionNi → xNi′ .
It is easy to see the equivalence of strings accepted by the DFA and derivations of the
grammar thus constructed.

Going the other way, constructing an automaton from a grammar runs into a snag. If
there are productions Ni → aNi′ and Ni → aNi′′ , we can of necessity only construct
an NFA. However, we know that these are equivalent to DFAs.

We note that the grammars used and constructed in this – informal – proof are right-
recursive, so they generate precisely the regular languages.

Exercise 16. Show how this proof can be modified to use left-
recursive grammars, that is, grammars that have productions of the
form Ni → Ni′a.

2.4 Lexical analysis with FSAs

A FSA will recognize a sequence of language elements. However, it’s not enough to
simply say ‘yes, this was a legal sequence of elements’: we need to pass information
on to the next stage of the translation. This can be done by having some executable
code attached to the accepting state; if that state is reached, the code snippet tells the
next stage what kind of element has been recognized, and its value. This value can be
a numerical value for numbers recognized, but more generally it will be an index into
some table or other.

Formally, we can extend the definition of a FSA (section 2.3.2) by the addition of an
output alphabetO and an output table I×S → O. This models the output of a symbol,
possibly ε, at each transition.

Exercise 17. One could also define the output with a mapping S → O.
Show that the definitions are equivalent.

An FSA is not enough to recognize a whole language, but it can recognize elements
from a language. For instance, we can build multiple FSAs for each of the keywords
of a language (‘begin’ or ‘void’), or for things like numbers and identifiers. We can

TEX – LATEX – CS 594

2.4. LEXICAL ANALYSIS WITH FSAS 51

then make one big FSA for all the language elements by combining the multiple small
FSAs into one that has

• a starting state with ε-transitions to the start states of the element automata,
and
• from each of the accepting states an ε-transition back to the start state.

s

s

s

s

s

s s s

s

s s

s

E N D

B E G I N

0–9

a-z

a-z, 0-9

ε
ε

.

ε

Exercise 18. Write a DFA that can parse Fortran arithmetic ex-
pressions. In Fortran, exponentiation is written like 2**n. It is also
not allowed to have two operators in a row, so 2×−3 is notated 2*(-3).

There is a problem with the ε-transition from the final state to the initial state in
the above NFA. This transition should only be taken if no other transitions can be
taken, in other words, if the maximal string is recognized. For instance, most pro-
gramming languages allow quote characters inside a quoted string by doubling them:
‘"And then he said ""Boo!"""’. The final state is reached three times in the
course of this string; only the last time should the jump back be taken.

However, sometimes finding the maximum matched string is not the right strategy. For
instance, in most languages, 4.E3 is a floating point number, but matching the E after
the decimal point is not necessarily right. In Fortran, the statement IF (4.EQ.VAR)
... would then be misinterpreted. What is needed here is one token ‘look-ahead’: the
parser needs to see what character follows the E.

At this point it would be a good idea to learn the Unix tool lex.

Victor Eijkhout

52 CHAPTER 2. PARSING

Syntax parsing.

Programming languages have for decades been described using formal grammars. One
popular way of notating those grammars is Backus Naur Form, but most formalisms
are pretty much interchangable. The essential point is that the grammars are almost
invariably of the context-free type. That is, they have rules like

〈function call〉 −→ 〈function name〉 (〈optargs〉)
〈optargs〉 −→ empty | 〈args〉
〈args〉 −→ word | word , 〈args〉

The second and third rule in this example can be generated by a regular grammar,
but the first rule is different: when the opening parenthesis is matched, the parser
has to wait an unlimited time for the closing parenthesis. This rule is of context-free
typeCHECKTHIS.

It is important to keep some distinctions straight:

• A grammar has a set of rules, each indicating possible replacements during a
derivation of a string in the language. Each rule looks like A→ α.
• A derivation is a specific sequence of applications of rules; we denote each

step in a derivation as α⇒ β, where β can be derived from α by application
of some rule. The derivation of some string α is a sequence of step such that
S ⇒ · · · ⇒ α; we abbreviate this as S ⇒∗ α.
• Ultimately, we are interested in the reverse of a derivation: we have a string

that we suspect is in the language, and we want to reconstruct whether and
how it could be derived. This reconstruction process is called ‘parsing’, and
the result often takes the form of a ‘parse tree’.

We will first give some properties of context-free languages, then in section 2.6 we
will discuss the practical parsing of context-free languages.

2.5 Context-free languages

Context-free languages can be defined as the output of a particular kind of gram-
mar (the left side can only consist of a single nonterminal), or as the set of string
accepted by a certain kind of automaton. For languages of this type, we use a Push-
down Automaton (PDA) to recognize them. A PDA is a finite-state automaton, with
some scratch memory that takes the form of a stack: one can only push items on it, and
inspect or remove the top item. Here we will not give an equivalence proof.

TEX – LATEX – CS 594

2.5. CONTEXT-FREE LANGUAGES 53

An example of a language that is context-free but not regular is {anbn}. To parse this,
the automaton pushes as on the stack, then pops them when it finds a b in the input,
and the string is accepted if the stack is empty when the input string is fully read.

2.5.1 Pumping lemma

As with regular languages (section 2.3.4), there is a way to characterize the strings of
a context-free language.

Theorem 2 Let L be a context-free language, then there is an n so that all strings α
in L longer than n can be written as α = uvwxy, such that for any k the string
uvkwxky is also in the language.

The proof is as before: the derivation of a sufficiently long string must have used the
same production twice.

S

��
��

HH
HH

u A
�� HH

v A

w

x

y

2.5.2 Deterministic and non-deterministic PDAs

As with Finite State Automata, there are deterministic and non-deterministic push-
down automata. However, in this case they are not equivalent. As before, any DPA
is also a NPA, so any language accepted by a DPA is also accepted by a NPA. The
question is whether there are languages that are accepted by a NPA, and that are not
accepted by a DPA.

A similar example to the language {anbn} above is the language over an alphabet of
at least two symbols L = {ααR}, where αR stands for the reverse of α. To recognize
this language, the automaton pushes the string α on the stack, and pops it to match the
reverse part. However, the problem is knowing when to start popping the stack.

Let the alphabet have at least three letters, then the language Lc = {αcαR|c 6∈ α}
can deterministically be recognized. However, in absence of the middle symbol, the
automaton needs an ε-transition to know when to start popping the stack.

Victor Eijkhout

54 CHAPTER 2. PARSING

2.5.3 Normal form

Context-free grammars have rules of the form A → α with A a single nonterminal
and α any combination of terminals and nonterminals. However, for purposes of pars-
ing it is convenient to have the rules in a ‘normal form’. For context-free grammars
that is the form A→ aα where a is a terminal symbol.

One proof that grammars can always be rewritten this way uses ‘expression equations’.
If x and y stand for sets of expressions, then x + y, xy, and x∗ stand for union,
concatenation, and repetition respectively.

Consider an example of expression equations. The scalar equation x = a + xb states
that x contains the expressions in a. But then it also contains ab, abb, et cetera. One
can verify that x = ab∗.

The equation in this example had a regular language as solution; the expression x =
a + bxc does not have a regular solution.

Now let x be a vector of all non-terminals in the grammar of a context-free language,
and let f be the vector of righthandsides of rules in the grammar that are of normal
form. We can then write the grammar as

xt = xtA + f t

where the multiplication with A describes all rules not of normal form.

Example:
S → aSb|XY |c
X → Y Xc|b
Y → XS

⇒ [S,X, Y] = [S,X, Y]

 φ φ φ
Y φ S
φ Xc φ

+ [aSb+ c, b, φ]

The solution to this equation is

xt = f tA∗

which describes rules on normal form. However, we need to find a more explicit ex-
pression for A∗.

Noting that A∗ = λ+ AA∗ we get

xt = f t + f tAA∗ = f t + f tB (2.1)

where B = AA∗. This is a grammar on normal form. It remains to work out the rules
for B. We have

B = AA∗ = A + AAA∗ = A + AB

These rules need not be of normal form. However, any elements of A that start with
a nonterminal, can only start with nonterminals in x. Hence we can substitute a rule
from equation (2.1).

TEX – LATEX – CS 594

2.6. PARSING CONTEXT-FREE LANGUAGES 55

2.6 Parsing context-free languages

The problem of parsing is this:

Given a grammarG and a string α, determine whether the string
is in the language of G, and through what sequence of rule applica-
tions it was derived.

We will discuss the LL and LR type parser, which correspond to a top-down and
bottom-up way of parsing respectively, then go into the problem of ambiguity

2.6.1 Top-down parsing: LL

One easy parsing strategy starts from the fact that the expression has to come from the
start symbol. Consider the expression 2*5+3, which is produced by the grammar

Expr −→ number Tail
Tail −→ ε | + number Tail | * number Tail

In the following analysis the stack has its bottom at the right

initial queue: 2 ∗ 5 + 3
start symbol on stack: Expr
replace number Tail
match ∗ 5 + 3 Tail
replace * number Tail
match 5 + 3 number Tail
match + 3 Tail
replace + number Tail
match 3 number Tail
match ε Tail
match

The derivation that we constructed here is

E ⇒ nT ⇒ n ∗ nT ⇒ n ∗ n+ nT ⇒ n ∗ n+ n

that is, we are replacing symbols from the left. Therefore this kind of parsing is called
LL parsing: read from left to right, replace from left to right. Because we only need
to look at the first symbol in the queue to do the replacement, without need for further
‘look ahead’ tokens, this is LL(1) parsing.

But this grammar was a bit strange. Normally we would write

Expr −→ number | number + Expr | number * Expr

If our parser can now see the first two symbols in the queue, it can form

Victor Eijkhout

56 CHAPTER 2. PARSING

initial queue: 2 ∗ 5 + 3
start symbol on stack: Expr
replace number * Expr
match 5 + 3 Tail
replace number + Expr
match 3 Expr
replace 3 number
match ε

This is called LL(2) parsing: we need one token look ahead.

2.6.1.1 Problems with LL parsing

If our grammar had been written

Expr −→ number | Expr + number | Expr * number

an LL(k) parser, no matter the value of k, would have gone into an infinite loop.

In another way too, there are many constructs that can not be parsed with an LL(k)
parser for any k. For instance if both A<B and A are legal expressions, where B
can be of arbitrary length, then no finite amount of look-ahead will allow this to be
parsed.

2.6.1.2 LL and recursive descent

The advantages of LL(k) parsers are their simplicity. To see which rule applies at a
given point is a recursive-descent search, which is easily implemented. The code for
finding which rule to apply can broadly be sketched as follows:

define FindIn(Sym,NonTerm)
for all expansions of NonTerm:

if leftmost symbol == Sym
then found

else if leftmost symbol is nonterminal
then FindIn(Sym,that leftmost symbol)

This implies that a grammar is LL-parsable if distinct rules for some non-terminal can
not lead to different terminals. In other words, by looking at a terminal, it should be
clear what production was used.

The LR parsers we will study next are more powerful, but much more complicated to
program. The above problems with LL(k) are largely non-existent in languages where
statements start with unique keywords.

TEX – LATEX – CS 594

2.6. PARSING CONTEXT-FREE LANGUAGES 57

2.6.2 Bottom-up parsing: shift-reduce

In this section we will look at the ‘bottom-up’ parsing strategy, where terminal symbols
are gradually replaced by non-terminals.

One easily implemented bottom-up parsing strategy is called ‘shift-reduce parsing’.
The basic idea here is to move symbols from the input queue to a stack, and every time
the symbols on top of the stack form a right hand size of a production, reduce them to
the left hand side.

For example, consider the grammar

E −→ number | E + E | E * E

and the expression 2 ∗ 5 + 3. We proceed by moving symbols from the left side of the
queue to the top of the stack, which is now to the right.

stack queue
initial state: 2 ∗ 5 + 3
shift 2 *5+3
reduce E *5+3
shift E* 5+3
shift E*5 +3
reduce E*E +3
reduce E +3
shift, shift, reduce E+E
reduce E

(Can you tell that we have ignored something important here?)

The derivation we have reconstructed here is

E ⇒ E + E ⇒ E + 3⇒ E ∗ E + 3⇒ E ∗ 5 + 3⇒ 2 ∗ 5 + 3

which proceeds by each time replacing the right-most nonterminal. This is therefore
called a ‘rightmost derivation’. Analogously we can define a ‘leftmost derivation’ as
one that proceeds by replacing the leftmost nonterminal.

For a formal definition of shift-reduce parsing, we should also define an ‘accept’ and
‘error’ action.

2.6.3 Handles

Finding the derivation of a legal string is not trivial. Sometimes we have a choice
between shifting and reducing, and reducing ‘as soon as possible’ may not be the right
solution. Consider the grammar

Victor Eijkhout

58 CHAPTER 2. PARSING

S −→ aAcBe
A −→ bA | b
B −→ d

and the string abbcde. This string can be derived (writing the derivation backwards
for a change) as

abbcde⇐ abAcde⇐ aAcde⇐ aAcBe⇐ S.

However, if we had started

abbcde⇐ aAbcde⇐ aAAcde⇐?

we would be stuck because no further reductions would be applicable.

The problem then is to know where to start replacing terminal symbols and, later in
the derivation, non-terminals. The shift-reduce strategy of the previous section is here
seen to lead to problems, so some extra power is needed. We introduce the concept
of ‘handle’ as a formal definition of ‘the right production and place to start reducing’.
The following definition is totally unhelpful:

If S ⇒∗ αAw ⇒ αβw is a right-most derivation, then A → β
at the position after α is a handle of αAw.

Clearly, if we can identify handles, we can derive a parse tree for a given string. How-
ever, the story so far has not been constructive. Next we will look at ways of actually
finding handles.

2.6.4 Operator-precedence grammars

It is easy to find handles if a grammar is of an ‘operator grammar’ form. Loosely, by
this we mean that expressions in the language look like expression-operator-expression.
More strictly, we look at grammars where there are never two adjacent nonterminals,
and where no right hand side is ε. We also assume that precedence relations between
operators and terminals are known.

Let us look again at arithmetic expressions; we will introduce relations op1lop2 if the
first operator has lower precedence, and op1 m op2 if it has higher precedence. If the
two operators are the same, we use predence to force associativity rules. For instance,
right associativity corresponds to definitions such as + m +.

For the + and ∗ operators we then have the following table:
number + ×

number m m
+ l m l
× l m m

TEX – LATEX – CS 594

2.6. PARSING CONTEXT-FREE LANGUAGES 59

Now we can find a handle by scanning left-to-right for the first m character, then scan-
ning back for the matching l. After reducing handles thus found, we have a string
of operators and nonterminals. Ignoring the nonterminals, we insert again the compar-
isons; this allows us to find handles again.

For example, 5 + 2∗3 becomes l5m+l2m∗l3m; replacing handles this becomes
E+E ∗E. Without the nonterminals, the precedence structure is l+l ∗m, in which
we find lE ∗Em as the handle. Reducing this leaves us with E +E, and we find that
we have parsed the string correctly.

This description sounds as if the whole expression is repeatedly scanned to insert
precedence relations and find/reduce handle. This is not true, since we only need to
scan as far as the right edge of the first handle. Thus, a shift/reduce strategy will still
work for operator grammars.

2.6.5 LR parsers

We will now consider LR parsers in more detail. These are the parsers that scan the
input from the left, and construct a rightmost derivation, as in the examples we have
seen in section 2.6.2. Most constructs in programming languages can be parsed in an
LR fashion.

An LR parser has the following components

• A stack and an input queue as in the shift-reduce examples you have already
seen in section 2.6.2. The difference is that we now also push state symbols
on the stack.
• Actions ‘shift’, ‘reduce’, ‘accept’, ‘error’, again as before.
• An Action and Goto function that work as follows:

– Suppose the current input symbol is a and the state on top of the stack
is s.

– If Action(a, s) is ‘shift’, then a and a new state s′ = Goto(a, s) are
pushed on the stack.

– If Action(a, s) is ‘reduce A → β’ where |β| = r, then 2r symbols
are popped from the stack, a new state s′ = Goto(a, s′′) is computed
based on the newly exposed state on the top of the stack, and A and s′

are pushed. The input symbol a stays in the queue.

An LR parser that looks at the first k tokens in the queue is called an LR(k) parser. We
will not discuss this issue of look-ahead any further.

It is clear that LR parser are more powerful than a simple shift-reduce parser. The latter
has to reduce when the top of the stack is the right hand side of a production; an LR

Victor Eijkhout

60 CHAPTER 2. PARSING

parser additionally has states that indicate whether and when the top of the stack is a
handle.

2.6.5.1 A simple example of LR parsing

It is instructive to see how LR parsers can deal with cases for which simple shift/reduce
parsing is insufficient. Consider again the grammar

E −→ E + E | E * E

and the input string 1 + 2∗ 3 + 4. Give the + operator precedence 1, and the * operator
precedence 2. In addition to moving tokens onto the stack, we also push the highest
precedence seen so far. In the beginning we declare precedence 0, and pushing a non-
operator does not change the precedence.

Shift/reduce conflicts are now resolved with this rule: if we encounter at the front of the
queue a lower precedence than the value on top of the stack, we reduce the elements
on top of the stack.

1 + 2 ∗ 3 + 4 push symbol; highest precedence is 0
1 S0 +2 ∗ 3 + 4 highest precedence now becomes 1
1 S0 + S1 2 ∗ 3 + 4
1 S0 + S1 2 S1 ∗3 + 4 highest precedence becoming 2
1 S0 + S1 2 S1 * S2 3 + 4
1 S0 + S1 2 S1 * S2 3 S2 +4 reduce because P(+) < 2
1 S0 + S1 6 S1 +4 the highest exposed precedence is 1
1 S0 + S1 6 S1 + S1 4
1 S0 + S1 6 S1 + S1 4 S1 at the end of the queue we reduce
1 S0 + S1 10 S1

11

Even though this example is phrased very informally, we see the key points:

• only the top of the stack and the front of the queue are inspected;
• we have a finite set of rules governing shift/reduce behaviour.

As we shall see, this mechanism can also identify handles.

2.6.5.2 States of an LR parser

An LR parser is constructed automatically from the grammar. Its states are somewhat
complicated, and to explain them we need a couple of auxiliary constructs.

item An ‘item’ is a grammar rule with a location indicated. From the rule A → B C
we get the items A → •B C, A → B •C, A → B C•. The interpretation
of an item will be that the symbols left of the dot are on the stack, while the

TEX – LATEX – CS 594

2.6. PARSING CONTEXT-FREE LANGUAGES 61

right ones are still in the queue. This way, an item describes a stage of the
parsing process.

closure The closure of an item is defined as the smallest set that
• Contains that item;
• If the closure contains an item A → α •B β with B a nonterminal

symbol, then it contains all items B → •γ. This is a recursive notion:
if γ starts with a non-terminal, the closure would also contain the items
from the rules of γ.

The states of our LR parser will now be closures of items of the grammar. We motivate
this by an example.

Consider now an item A → β1•β2 in the case that we have recognized αβ1 so far. The
item is called valid for that string, if a rightmost derivation S ⇒∗ αAw ⇒ αβ1β2w
exists. If β2 = ε, then A → β1 is a handle and we can reduce. On the other hand, if
β2 6= ε, we have not encountered the full handle yet, so we shift β2.

As an example, take the grammar

E −→ E+T | T
T −→ T*F | F
F −→ (E) | id

and consider the partially parsed string E+T*. The (rightmost) derivation

E ⇒ E + T ⇒ E + T ∗ F
shows that T → T*•F is a valid item,

E ⇒ E + T ⇒ E + T ∗ F ⇒ E + T ∗ (E)

gives F → •(E) as a valid item, and

E ⇒ E + T ⇒ E + T ∗ F ⇒ E + T ∗ id

gives F → •id as a valid item.

2.6.5.3 States and transitions

We now construct the actual states of our parser.

• We add a new start symbol S’, and a production S′ → S.
• The starting state is the closure of S′ → •S.
• The transition function d(s, X) of a state s and a symbol X is defined as the

closure of
{A → α X• β|A → α •X β is in s}

• The ‘follow’ of a symbol A is the set of all terminal symbols that can follow
its possible expansions. This set is easy to derive from a grammar.

Victor Eijkhout

62 CHAPTER 2. PARSING

Here is an example

We construct the states and transition for the grammar
S −→ (S)S | ε

which consists of all strings of properly matched left and right paren-
theses.

Solution: we add the production S′ → •S. We now find the
states

1. {S′ → •S, S → •(S)S, S → •}
2. {S′ → S•}
3. {S → (•S)S, S → •(S)S, S → •}
4. {S → (S•)S}
5. {S → (S)•S, S → •(S)S, S → •}
6. {S → (S)S•}

with transitions
d(0, S) = 1
d(0,′ (′) = 2
d(2, S) = 3
d(2,′ (′) = 2
d(3,′)′) = 4
d(4, S) = 5
d(4,′ (′) = 2

The only thing missing in our parser is the function that describes the stack handling.
The parsing stack consists of states and grammar symbols (alternating). Initially, push
the start state onto the stack. The current state is always the state on the top of the
stack. Also, add a special endmarker symbol to the end of the input string.

Loop:
(1) if the current state contains S′ → S•

accept the string
(2) else if the current state contains any other final item A → α•

pop all the tokens in α from the stack, along with the corresponding states;
let s be the state left on top of the stack: push A, push d(s,A)

(3) else if the current state contains any item A → α •x β,
where x is the next input token

let s be the state on top of the stack: push x, push d(s,x)
else report failure

Explanation:

1. If we have recognized the initial production, the bottom-up parse process was
successful.

TEX – LATEX – CS 594

2.6. PARSING CONTEXT-FREE LANGUAGES 63

2. If we have a string of terminals on the stack, that is the right hand side of a
production, replace by the left hand side non-terminal.

3. If we have a string of terminals on the stack that is the start of a right hand
side, we push the current input symbol.

Exercise 19. Give the states and transitions for the grammar
S −→ x
S −→ (L)
L −→ S
L −→ L S

Apply the above parsing algorithm to the string (x,x,(x)).

The parsers derived by the above algorithm can only handle cases where there is no
ambiguity in condition (3). The class of grammars recognized by this type of parser
is called LR(0) and it is not very interesting. We get the more interesting class of
SLR(1) by adding to condition (2) the clause that the following symbol is in the
follow of A. Another similar class, which is the one recognized by yacc, is LALR(1).

2.6.6 Ambiguity and conflicts

The problem of finding out how a string was derived is often important. For instance,
with a grammar

〈expr〉 −→ 〈number〉 | 〈expr〉 + 〈expr〉 | 〈expr〉 × 〈expr〉

the expression 2 + 5 ∗ 3 is ambiguous: it can mean either (2 + 5) ∗ 3 or 2 + (5 ∗ 3).

*
�
��

H
HH

+
�� HH

2 5

3

+
�
��

H
HH

2 *
�� HH

5 3

An LR parser would report a ‘shift/reduce conflict’ here: after 2 + 5 has been reduced
to <expr> + <expr>, do we reduce that further to <expr>, or do we shift the
minus, since <expr> - is the start of a legitimate reducible sequence?

Another example of ambiguity is the ‘dangling else’ problem. Consider the grammar

〈statement〉 −→ if 〈clause〉 then 〈statement〉
| if 〈clause〉 then 〈statement〉 else 〈statement〉

and the string

if c1 then if c2 then s1 else s2

Victor Eijkhout

64 CHAPTER 2. PARSING

This can be parsed two ways:

S

��
��

��
�

�
��

@
@@

PP
PP

PP
P

If Then S
�� HH

If Then

Else

S

�
��

�
��

H
HH

H
HH

If Then S

��
��

HH
HH

If Then Else

Does the else clause belong to the first if or the second?

Let us investigate the first example. We can solve the ambiguity problem in two ways:

• Reformulate the grammar as
〈expr〉 −→ 〈mulex〉 | 〈mulex〉 + 〈mulex〉
〈mulex〉 −→ 〈term〉 | 〈term〉 × 〈term〉
〈term〉 −→ number

so that the parser can unambiguously reconstruct the derivation,
expr

�
��

��

H
HH

HH

mulex

term

2

+ mulex

��
�

HH
H

term

5

* term

3
or
• Teach the parser about precedence of operators. This second option may be

easier to implement if the number of operators is large: the first option would
require a large number of rules, with probably a slower parser.

Exercise 20. Rewrite the grammar of the second example to elim-
inate the dangling else problem.

Since we are not used to thinking of keywords such as then in terms of precedence, it
is a better solution to eliminate the dangling else problem by introducing a fi keyword
to close the conditional. Often, however, ambiguity is not so easy to eliminate.

TEX – LATEX – CS 594

2.6. PARSING CONTEXT-FREE LANGUAGES 65

Exercise 21. In case of a shift-reduce conflict, yacc shifts. Write
an example that proves this. Show what this strategy implies for the
dangling else problem.

Another type of conflict is the ‘reduce/reduce conflict’. Consider this grammar:

A −→ B c d | E c f
B −→ x y
E −→ x y

and the input string that starts x y c.

• An LR(1) parser will shift x y, but can not decide whether to reduce that to
B or E on the basis of the look-ahead token c.
• An LR(2) parser can see the subsequent d or f and make the right decision.
• AnLL parser would also be confused, but already at the x. Up to three tokens

(x y c) is unsufficient, but an LL(4) parser can again see the subsequent d
or f.

The following grammar would confuse any LR(n) or LL(n) parser with a fixed
amount of look-ahead:

A −→ B C d | E C f
B −→ x y
E −→ x y
C −→ c | C c

which generates x y cn {d|f}.

As usual, the simplest solution is to rewrite the grammar to remove the confusion e.g.:

A −→ BorE c d | BorE c f
BorE −→ x y

or assuming we left-factorise the grammar for an LL(n) parser:

A −→ BorE c tail
tail −→ d | f
BorE −→ x y

Another example of a construct that is not LR parsable, consider languages such as
Fortran, where function calls and array indexing both look like A(B,C):

〈expression〉 −→ 〈function call〉
| 〈array element〉

Victor Eijkhout

66 CHAPTER 2. PARSING

〈function call〉 −→ name (〈parameter list〉)
〈array element〉 −→ name (〈expression list〉)
〈parameter list〉 −→ name
| name , 〈parameter list〉
〈expression list〉 −→ name
| name, 〈expression list〉

After we push B on the stack, it is not clear whether to reduce it to the head of a
parameter list or of an expression list, and no amount of lookahead will help. This
problem can be solved by letting the lexical analyzer have access to the symbol table,
so that it can distinguish between function names and array names.

TEX – LATEX – CS 594

2.7. INTRODUCTION 67

Lex.

2.7 Introduction

The unix utility lex parses a file of characters. It uses regular expression matching;
typically it is used to ‘tokenize’ the contents of the file. In that context, it is often used
together with the yacc utility. However, there are many other applications possible. By
itself, lex is powerful enough to build interesting programs with, as you will see in a
few examples.

2.8 Structure of a lex file

A lex file looks like

...definitions...
%%

...rules...
%%

...code...

Here is a simple example:

%{
int charcount=0,linecount=0;

%}

%%

. charcount++;
\n {linecount++; charcount++;}

%%
int main()
{

yylex();
printf("There were %d characters in %d lines\n",

charcount,linecount);
return 0;

}

Victor Eijkhout

68 CHAPTER 2. PARSING

In this example, all three sections are present:
definitions All code between %{ and %} is copied to the beginning of the resulting C

file.
rules A number of combinations of pattern and action: if the action is more than a

single command it needs to be in braces.
code This can be very elaborate, but the main ingredient is the call to yylex, the

lexical analyser. If the code segment is left out, a default main is used which
only calls yylex.

2.8.1 Running lex

If you store your lex code in a file count.l, you can build an executable from it by
lex -t count.l > count.c
cc -c -o count.o count.c
cc -o counter count.o -ll

You see that the lex file is first turned into a normal C file, which is then compiled and
linked.

If you use the make utility (highly recommended!) you can save a few steps because
make knows about lex:
counter: count.o

cc -o counter count.o -ll

2.9 Definitions section
There are three things that can go in the definitions section:
C code Any indented code between %{ and %} is copied to the C file. This is typically

used for defining file variables, and for prototypes of routines that are defined
in the code segment.

definitions A definition is very much like a #define cpp directive. For example
letter [a-zA-Z]
digit [0-9]
punct [,.:;!?]
nonblank [ˆ \t]
These definitions can be used in the rules section: one could start a rule
{letter}+ {...

state definitions If a rule depends on context, it’s possible to introduce states and
incorporate those in the rules. A state definition looks like %s STATE, and
by default a state INITIAL is already given. See section 2.10.2 for more
info.

TEX – LATEX – CS 594

2.10. RULES SECTION 69

2.10 Rules section

The rules section has a number of pattern-action pairs. The patterns are regular expres-
sions (see section 2.11, and the actions are either a single C command, or a sequence
enclosed in braces.

If more than one rule matches the input, the longer match is taken. If two matches are
the same length, the earlier one in the list is taken.

It is possible to associate one action with more than one pattern:
[0-9]+ process_integer();
[0-9]+\.[0-9]* |
\.[0.9]+ process_real();

2.10.1 Matched text

When a rule matches part of the input, the matched text is available to the programmer
as a variable char* yytext of length int yyleng.

To extend the example from the introduction to be able to count words, we would write
%{
int charcount=0,linecount=0,wordcount=0;
%}
letter [ˆ \t\n]

%%

{letter}+ {wordcount++; charcount+=yyleng;}
. charcount++;
\n {linecount++; charcount++;}

Exercise 22. Write an integer postfix calculator in lex: expres-
sion such as 1 2 + and 1 2 3 4/*- should be evaluated to 3
and -.5 respectively. White space only serves to separate number,
but is otherwise optional; the line end denotes the end of an expres-
sion. You will probably need the C function int atoi(char*)
which converts strings to ints.

2.10.2 Context

If the application of a rule depends on context, there are a couple of ways of dealing
with this. We distinguish between ‘left context’ and ‘right context’, basically letting a
rule depend on what comes before or after the matched token.

Victor Eijkhout

70 CHAPTER 2. PARSING

See section 2.13.1 for an elaborate example of the use of context.

2.10.2.1 Left context

Sometimes, using regular expression as we have seen so far is not powerful enough.
For example:

%%
"/*".*"*/" ;
. |
\n ECHO;

works to filter out comments in

This line /* has a */ comment

but not in

This /* line has */ a /* comment */

What we want is, after the /* string to change the behaviour of lex to throw away all
characters until */ is encountered. In other words, we want lex to switch between two
states, and there is indeed a state mechanism available.

We can consider states to implement implement a dependence on the left context of
a rule, since it changes the behaviour depending on what came earlier. To use a state,
a rule is prefixed as

<STATE>(some pattern) {...

meaning that the rule will only be evaluated if the specified state holds. Switching
between states is done in the action part of the rule:

<STATE>(some pattern) {some action; BEGIN OTHERSTATE;}

where all state names have been defined with %s SOMESTATE statements, as de-
scribed in section 2.9. The initial state of lex is INITIAL.

Here is the solution to the comment filtering problem:

%x COMM

%%

. |
\n ECHO;
"/*" BEGIN COMM;
<COMM>"*/" BEGIN INITIAL;

TEX – LATEX – CS 594

2.11. REGULAR EXPRESSIONS 71

<COMM>. |
<COMM>\n ;

%%

We see that the state is defined with %x COMM rather than as indicated above with %s.
This is called an ‘exclusive state’. If an exclusive state is active, rules without state
prefix will not be matched if there is a match in a rule with the prefix of the current
state.

2.10.2.2 Right context

It is also possible to let a rule depend on what follows the matched text. For instance

abc/de {some action}

means ‘match abc but only when followed by de. This is different from matching on
abcde because the de tokens are still in the input stream, and they will be submitted
to matching next.

It is in fact possible to match on the longer string; in that case the command

abcde {yyless(3);}

pushes back everything after the first 3 characters. The difference with the slash ap-
proach is that now the right context tokens are actually in yytext so they can be
inspected.

2.11 Regular expressions

Many Unix utilities have regular expressions of some sort, but unfortunately they don’t
all have the same power. Here are the basics:

. Match any character except newlines.
\n A newline character.
\t A tab character.
ˆ The beginning of the line.
$ The end of the line.
<expr>* Zero or more occurrences of the expression.
<expr>+ One or more occurrences of the expression.
(<expr1>|<expr2>) One expression of another.
[<set>] A set of characters or ranges, such as [,.:;] or [a-zA-Z].
[ˆ<set>] The complement of the set, for instance [ˆ \t].

Victor Eijkhout

72 CHAPTER 2. PARSING

Exercise 23. It is possible to have] and - in a character range.
The] character has to be first, and - has to be either first or last.
Why?

Exercise 24. Write regular expressions that match from the be-
ginning of the line to the first letter ‘a’; to the last letter ‘a’. Also
expressions that match from the first and last ‘a’ to the end of the
line. Include representative input and output in your answer.

2.12 Remarks

2.12.1 User code section

If the lex program is to be used on its own, this section will contain a main program.
If you leave this section empty you will get the default main:

int main()
{
yylex();
return 0;

}

where yylex is the parser that is built from the rules.

2.12.2 Input and output to lex

Normally, the executable produced from the lex file will read from standard in and
write to standard out. However, its exact behaviour is that it has two variables

FILE *yyin,*yyout;

that are by default set that way. You can open your own files and assign the file pointer
to these variables.

2.12.3 Lex and Yacc

The integration of lex and yacc will be discussed in the yacctutorial; here are just a few
general comments.

2.12.3.1 Definition section

In the section of literal C code, you will most likely have an include statement:

#include "mylexyaccprog.h"

TEX – LATEX – CS 594

2.13. EXAMPLES 73

as well as prototypes of yacc routines such as yyerror that you may be using. In
some yacc implementations declarations like

extern int yylval;

are put in the .h file that the yacc program generates. If this is not the case, you need
to include that here too if you use yylval.

2.12.3.2 Rules section

If you lexprogrammer is supplying a tokenizer, the yacc program will repeatedly call
the yylex routine. The rules will probably function by calling return everytime
they have constructed a token.

2.12.3.3 User code section

If the lex program is used coupled to a yacc program, you obviously do not want a
main program: that one will be in the yacc code. In that case, leave this section empty;
thanks to some cleverness you will not get the default main if the compiled lex and
yacc programs are linked together.

2.13 Examples

2.13.1 Text spacing cleanup

(This section illustrates the use of contexts; see section 2.10.2.)

Suppose we want to clean up sloppy spacing and punctuation in typed text. For exam-
ple, in this text:

This text (all of it)has occasional lapses , in
punctuation(sometimes pretty bad) ,(sometimes not so).

(Ha!) Is this : fun?Or what!

We have

• Multiple consecutive blank lines: those should be compacted.
• Multiple consecutive spaces, also to be compacted.
• Space before punctuation and after opening parentheses, and
• Missing spaces before opening and after closing parentheses.

Victor Eijkhout

74 CHAPTER 2. PARSING

That last item is a good illustration of where context comes in: a closing paren followed
by punctuation is allowed, but followed by a letter it is an error to be corrected.

We can solve this problem without using context, but the lex code would be longer and
more complicated. To see this, consider that we need to deal with spacing before and
after a parenthesis. Suppose that there arem cases of material before, and n of material
after, to be handled. A lex code without context would then likely have m × n rules.
However, using context, we can reduce this to m+m.

2.13.1.1 Right context solution

Let us first try a solution that uses ‘right context’: it basically describes all cases and
corrects the spacing.

punct [,.;:!?]
text [a-zA-Z]

%%

")"" "+/{punct} {printf(")");}
")"/{text} {printf(") ");}
{text}+" "+/")" {while (yytext[yyleng-1]==’ ’) yyleng--; ECHO;}

({punct}|{text}+)/"(" {ECHO; printf(" ");}
"("" "+/{text} {while (yytext[yyleng-1]==’ ’) yyleng--; ECHO;}

{text}+" "+/{punct} {while (yytext[yyleng-1]==’ ’) yyleng--; ECHO;}

ˆ" "+ ;
" "+ {printf(" ");}
. {ECHO;}
\n/\n\n ;
\n {ECHO;}

In the cases where we match superfluous white space, we manipulate yyleng to re-
move the spaces.

2.13.1.2 Left context solution

Using left context, we implement a finite state automaton in lex, and specify how to
treat spacing in the various state transitions. Somewhat surprisingly, we discard spaces
entirely, and reinsert them when appropriate.

TEX – LATEX – CS 594

2.13. EXAMPLES 75

We recognise that there are four categories, corresponding to having just encountered
an open or close parenthesis, text, or punctuation. The rules for punctuation and closing
parentheses are easy, since we discard spaces: these symbols are inserted regardless the
state. For text and opening parentheses we need to write rules for the various states.

punct [,.;:!?]
text [a-zA-Z]

%s OPEN
%s CLOSE
%s TEXT
%s PUNCT

%%

" "+ ;

<INITIAL>"(" {ECHO; BEGIN OPEN;}
<TEXT>"(" {printf(" "); ECHO; BEGIN OPEN;}
<PUNCT>"(" {printf(" "); ECHO; BEGIN OPEN;}

")" {ECHO ; BEGIN CLOSE;}

<INITIAL>{text}+ {ECHO; BEGIN TEXT;}
<OPEN>{text}+ {ECHO; BEGIN TEXT;}
<CLOSE>{text}+ {printf(" "); ECHO; BEGIN TEXT;}
<TEXT>{text}+ {printf(" "); ECHO; BEGIN TEXT;}
<PUNCT>{text}+ {printf(" "); ECHO; BEGIN TEXT;}

{punct}+ {ECHO; BEGIN PUNCT;}

\n {ECHO; BEGIN INITIAL;}

%%

Exercise 25. Write a lex parser that analyzes text the way the TEX
input processor does with the normal category code values. It should
print its output with
• <space> denoting any space that is not ignored or skipped,

and
• <cs: command> for recognizing a control sequence \command;

Victor Eijkhout

76 CHAPTER 2. PARSING

• open and close braces should also be marked as <{>, <}>.
Here is some sample input:
this is {a line} of text.
handle \control sequences \andsuch
with \arg{uments}.

Aha!
this line has %a comment

x
y%
z

\comm%
and

TEX – LATEX – CS 594

2.14. INTRODUCTION 77

Yacc.

2.14 Introduction

The unix utility yacc (Yet Another Compiler Compiler) parses a stream of token, typi-
cally generated by lex, according to a user-specified grammar.

2.15 Structure of a yacc file

A yacc file looks much like a lex file:

...definitions...
%%

...rules...
%%

...code...

definitions As with lex, all code between %{ and %} is copied to the beginning of the
resulting C file. There can also be various definitions; see section 2.17.

rules As with lex, a number of combinations of pattern and action. The patterns are
now those of a context-free grammar, rather than of a regular grammar as was
the case with lex.

code This can be very elaborate, but the main ingredient is the call to yyparse, the
grammatical parse.

2.16 Motivating example

It is harder to give a small example of yacc programming than it was for lex. Here is
a program that counts the number of different words in a text. (We could have written
this particular example in lex too.)

First consider the lex program that matches words:

%{

#include "words.h"
int find_word(char*);
extern int yylval;
%}

Victor Eijkhout

78 CHAPTER 2. PARSING

%%

[a-zA-Z]+ {yylval = find_word(yytext);
return WORD;}

. ;
\n ;

%%

The lexer now no longer has a main program, but instead returns a WORD return code.
It also calls a routine find_word, which inserts the matched word in a list if it is not
already there.

The routine find_word is defined in the yacc code:

%{

#include <stdlib.h>
#include <string.h>

int yylex(void);
#include "words.h"

int nwords=0;
#define MAXWORDS 100

char *words[MAXWORDS];
%}

%token WORD

%%

text : ;
| text WORD ; {

if ($2<0) printf("new word\n");
else printf("matched word %d\n",$2);

}

%%

int find_word(char *w)
{

int i;

TEX – LATEX – CS 594

2.17. DEFINITIONS SECTION 79

for (i=0; i<nwords; i++)
if (strcmp(w,words[i])==0) {

return i;
}

words[nwords++] = strdup(w);
return -1;

}

int main(void)
{

yyparse();
printf("there were %d unique words\n",nwords);

}

Other things to note:

• The WORD token that was used in the lex code is defined here in the definitions
section; lex knows about it through including the words.h file.
• The lex rule also sets a variable yylval; this puts a value on the stack top,

where yacc can find it with $1, $2, et cetera.

All of this will be explained in detail below.

2.17 Definitions section

There are three things that can go in the definitions section:

C code Any code between %{ and %} is copied to the C file. This is typically used for
defining file variables, and for prototypes of routines that are defined in the
code segment.

definitions The definitions section of a lex file was concerned with characters; in yacc
this is tokens. These token definitions are written to a .h file when yacc
compiles this file.

associativity rules These handle associativity and priority of operators; see section 2.20.

2.18 Lex Yacc interaction

Conceptually, lex parses a file of characters and outputs a stream of tokens; yacc ac-
cepts a stream of tokens and parses it, performing actions as appropriate. In practice,
they are more tightly coupled.

Victor Eijkhout

80 CHAPTER 2. PARSING

If your lex program is supplying a tokenizer, the yacc program will repeatedly call the
yylex routine. The lex rules will probably function by calling return every time
they have parsed a token. We will now see the way lex returns information in such a
way that yacc can use it for parsing.

2.18.1 The shared header file of return codes

If lex is to return tokens that yacc will process, they have to agree on what tokens there
are. This is done as follows.

• The yacc file will have token definitions
%token NUMBER
in the definitions section.
• When the yacc file is translated with yacc -d -o, a header file <file>.h3

is created that has definitions like
#define NUMBER 258
This file can then be included in both the lex and yacc program.
• The lex file can then call return NUMBER, and the yacc program can match

on this token.

The return codes that are defined from %TOKEN definitions typically start at around 258,
so that single characters can simply be returned as their integer value:

/* in the lex program */
[0-9]+ {return NUMBER}
[-+*/] {return *yytext}

/* in the yacc program */
sum : NUMBER ’+’ NUMBER

The yacc code now recognizes a sum if lex returns in sequence a NUMBER token, a
plus character, and another NUMBER token.

See example 2.22.1 for a worked out code.

2.18.2 Return values

In the above, very sketchy example, lex only returned the information that there was a
number, not the actual number. For this we need a further mechanism. In addition to
specifying the return code, the lex parser can return a value that is put on top of the
stack, so that yacc can access it. This symbol is returned in the variable yylval. By
default, this is defined as an int, so the lex program would have

3. If you leave out the -o option to yacc, the file is called y.tab.h.

TEX – LATEX – CS 594

2.19. RULES SECTION 81

extern int yylval;
%%
[0-9]+ {yylval=atoi(yytext); return NUMBER;}

See section 2.19.1 for how the stack values are used by yacc.

If more than just integers need to be returned, the specifications in the yacc code be-
come more complicated. Suppose we are writing a calculator with variables, so we
want to return double values, and integer indices in a table. The following three ac-
tions are needed.

1. The possible return values need to be stated:
%union {int ival; double dval;}

2. These types need to be connected to the possible return tokens:
%token <ival> INDEX
%token <dval> NUMBER

3. The types of non-terminals need to be given:
%type <dval> expr
%type <dval> mulex
%type <dval> term

The generated .h file will now have

#define INDEX 258
#define NUMBER 259
typedef union {int ival; double dval;} YYSTYPE;
extern YYSTYPE yylval;

This is illustrated in example 2.22.2.

2.19 Rules section

The rules section contains the grammar of the language you want to parse. This looks
like

name1 : THING something OTHERTHING {action}
| othersomething THING {other action}

name2 :

This is the general form of context-free grammars, with a set of actions associated with
each matching right-hand side. It is a good convention to keep non-terminals (names
that can be expanded further) in lower case and terminals (the symbols that are finally
matched) in upper case.

Victor Eijkhout

82 CHAPTER 2. PARSING

The terminal symbols get matched with return codes from the lex tokenizer. They are
typically defines coming from %token definitions in the yacc program or character
values; see section 2.18.1.

A simple example illustrating the ideas in this section can be found in section 2.22.1.

2.19.1 Rule actions

The example in section 2.22.1 had such rules as:

expr:
expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }
| mulex { $$ = $1; }

The action belonging to the different right hand sides refer to $n quantities and to $$.
The latter refers to the stack top, so by assigning to it a new item is put on the stack
top. The former variables are assigned the values on the top of the stack: if the right
hand side has three terms, terminal or nonterminal, then $1 through $3 are assigned
and the three values are removed from the stack top.

2.20 Operators; precedence and associativity

The example in section 2.22.1 had separate rules for addition/subtraction and multipli-
cation/division. We could simplify the grammar by writing

expr:
expr ’+’ expr ;
expr ’-’ expr ;
expr ’*’ expr ;
expr ’/’ expr ;
expr ’ˆ’ expr ;
number ;

but this would have 1+2*3 evaluate to 9. In order to indicate operator precedence, we
can have lines

%left ’+’ ’-’
%left ’*’ ’/’
%right ’ˆ’

The sequence of lines indicates increasing operator precedence and the keyword sets
the associativity type: we want 5-1-2 to be 2, so minus is left associative; we want
2ˆ2ˆ3 to be 256, not 64, so exponentiation is right associative.

TEX – LATEX – CS 594

2.21. FURTHER REMARKS 83

Operators that can be both unary and binary are handled by declaring a non-associative
token, and explicitly indicating its precedence.

%left ’-’ ’+’
%nonassoc UMINUS
%
expression : expression ’+’ expression

| expression ’-’ expression
| ’-’ expression %prec UMINUS

2.21 Further remarks

2.21.1 User code section

The minimal main program is

int main()
{

yyparse();
return 0;

}

Extensions to more ambitious programs should be self-evident.

In addition to the main program, the code section will usually also contain subroutines,
to be used either in the yacc or the lex program. See for instance example 2.22.3.

Exercise 26. Try to write lex or yacc programs for the following
languages:

anbm, anbn, anbncn

Discuss the theoretical power of lex and yacc.

2.21.2 Errors and tracing

So far we have assumed that the input to yacc is syntactically correct, and yacc need
only discover its structure. However, occasionally input will be incorrect.

2.21.2.1 Tracing

If you assign yydebug=1;, yacc will produce trace output. While its states may not
make sense to you, at least you will see which tokens it matches, and which rules it
can reduce.

Victor Eijkhout

84 CHAPTER 2. PARSING

2.21.2.2 Syntax errors

Sometimes, yacc reports ‘syntax error’ and stops processing. This means that an
unexpected symbol is found. A common source for this is the case that you have made
a typo in your grammar, and the symbol it is trying to match is not defined. Example:
suppose we have just matched an open token:

group : open body close
bodytext : ;

| character bodytext

If you are tracing yacc’s workings, you will probably see it matching the character,
then giving the syntax error message.

The ‘syntax error’ message is actually yacc’s default implementation of the yyerror
routine, but it can be redefined at will. For example, suppose we have a declaration

int lineno=1; /* in yacc */
extern int lineno; /* in lex */

and every line with \n in lex increases this variable. We could then define

void yyerror(char *s)
{

printf("Parsing failed in line %d because of %s\n",
lineno,s);

}

2.21.2.3 Error recovery

Error recovery in yacc is possible through the error token. In the rule

foo : bar baz ;
| error baz printf("Hope for the best\n");

recognizing any token but bar will make yacc start skipping tokens, hoping to find
baz and recover from that point. This is not guaranteed to work.

2.21.2.4 Semantical errors

Both lex and yacc are stronger than simple finite-state or pushdown automata, for in-
stance if they are endowed with a symbol table. This can be used to detect semantic
errors. For instance, while you would like to write

array_slice : array_name ’[’ int_expr ’]’

you may be limited to

TEX – LATEX – CS 594

2.21. FURTHER REMARKS 85

array_slice : ident ’[’ int_expr ’]’
{if (!is_array($1)) {

There are a couple of tools here:

yyerror(char*) is a default write to stderr; you can redefine it.
YYABORT is a macro that halts parsing.

2.21.3 Makefile rules for yacc

The make utility knows about lex and yacc, but if you want to do things yourself, here
are some good rules:

disable normal rules
.SUFFIXES:
.SUFFIXES: .l .y .o

lex rules
.l.o :

lex -t $*.l > $*.c
cc -c $*.c -o $*.o

yacc rules
.y.o :

if [! -f $*.h] ; then touch $*.h ; fi
yacc -d -t -o $*.c $*.y
cc -c -o $*.o $*.c ;
rm $*.c

link lines
lexprogram : $(LEXFILE).o

cc $(LEXFILE).o -o $(LEXFILE) -ll
yaccprogram : $(YACCFILE).o $(LEXFILE).o

cc $(YACCFILE).o $(LEXFILE).o -o $(YACCFILE) -ly -ll

2.21.4 The power of yacc

Theoretically, yacc implements an LALR(1) parser, which is essentially an LR parser
with one token look-ahead. This describes a large class of useful grammars. As an
example of a grammar with two tokens look-ahead, consider

phrase −→ CART ANIMAL and cart
| WORK ANIMAL and plow

Victor Eijkhout

86 CHAPTER 2. PARSING

CART ANIMAL −→ horse | goat
WORK ANIMAL −→ horse | ex

Now to distinguish between horse and cart and horse and plow from the
word horse takes two tokens look-ahead.

Exercise 27. Use the TEX parser you wrote in lex to parse LATEX
documents. The parser should
• Report the documentclass used;
• Check that \begin{document} and \end{document}

are used, with no text before the begin command;
• Know about some commands with one argument, such as \textbf,

and properly recognize that argument
• Recognize proper matching of begin/end of an environment.

Bonus: let your parser interpret \newcommand correctly. You can
limit yourself to the the case of commands with one argument, that
is
\newcommand{\foo}[1]{ ...}

2.22 Examples

2.22.1 Simple calculator

This calculator evaluates simple arithmetic expressions. The lex program matches num-
bers and operators and returns them; it ignores white space, returns newlines, and gives
an error message on anything else.

%{
#include <stdlib.h>
#include <stdio.h>
#include "calc1.h"
void yyerror(char*);
extern int yylval;

%}

%%

[\t]+ ;
[0-9]+ {yylval = atoi(yytext);

return INTEGER;}

TEX – LATEX – CS 594

2.22. EXAMPLES 87

[-+*/] {return *yytext;}
"(" {return *yytext;}
")" {return *yytext;}
\n {return *yytext;}
. {char msg[25];

sprintf(msg,"%s <%s>","invalid character",yytext);
yyerror(msg);}

Accepting the lex output, the following yacc program has rules that parse the stream
of numbers and operators, and perform the corresponding calculations.

%{
#include <stdlib.h>
#include <stdio.h>
int yylex(void);
#include "calc1.h"
%}

%token INTEGER

%%

program:
line program
| line

line:
expr ’\n’ { printf("%d\n",$1); }
| ’n’

expr:
expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }
| mulex { $$ = $1; }

mulex:
mulex ’*’ term { $$ = $1 * $3; }
| mulex ’/’ term { $$ = $1 / $3; }
| term { $$ = $1; }

term:
’(’ expr ’)’ { $$ = $2; }
| INTEGER { $$ = $1; }

%%

Victor Eijkhout

88 CHAPTER 2. PARSING

void yyerror(char *s)
{

fprintf(stderr,"%s\n",s);
return;

}

int main(void)
{

/*yydebug=1;*/
yyparse();
return 0;

}

Here we have realized operator precedence by having separate rules for the different
priorities. The rule for plus/minus comes first, which means that its terms, the mulex
expressions involving multiplication, are evaluated first.

2.22.2 Calculator with simple variables

In this example the return variables have been declared of type double. Furthermore,
there can now be single-character variables that can be assigned and used. There now
are two different return tokens: double values and integer variable indices. This neces-
sitates the %union statement, as well as %token statements for the various return
tokens and %type statements for the non-terminals.

This is all in the yacc file:

%{
#include <stdlib.h>
#include <stdio.h>
int yylex(void);
double var[26];
%}

%union { double dval; int ivar; }
%token <dval> DOUBLE
%token <ivar> NAME
%type <dval> expr
%type <dval> mulex
%type <dval> term

TEX – LATEX – CS 594

2.22. EXAMPLES 89

%%

program:
line program
| line

line:
expr ’\n’ { printf("%g\n",$1); }
| NAME ’=’ expr ’\n’ { var[$1] = $3; }

expr:
expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }
| mulex { $$ = $1; }

mulex:
mulex ’*’ term { $$ = $1 * $3; }
| mulex ’/’ term { $$ = $1 / $3; }
| term { $$ = $1; }

term:
’(’ expr ’)’ { $$ = $2; }
| NAME { $$ = var[$1]; }
| DOUBLE { $$ = $1; }

%%

void yyerror(char *s)
{

fprintf(stderr,"%s\n",s);
return;

}

int main(void)
{

/*yydebug=1;*/
yyparse();
return 0;

}

The lex file is not all that different; note how return values are now assigned to a
component of yylval rather than yylval itself.

Victor Eijkhout

90 CHAPTER 2. PARSING

%{
#include <stdlib.h>
#include <stdio.h>
#include "calc2.h"
void yyerror(char*);
%}

%%

[\t]+ ;
(([0-9]+(\.[0-9]*)?)|([0-9]*\.[0-9]+)) {

yylval.dval = atof(yytext);
return DOUBLE;}

[-+*/=] {return *yytext;}
"(" {return *yytext;}
")" {return *yytext;}
[a-z] {yylval.ivar = *yytext;

return NAME;}
\n {return *yytext;}
. {char msg[25];

sprintf(msg,"%s <%s>","invalid character",yytext);
yyerror(msg);}

2.22.3 Calculator with dynamic variables

Basically the same as the previous example, but now variable names can have regular
names, and they are inserted into a names table dynamically. The yacc file defines a
routine for getting a variable index:
%{
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int yylex(void);
#define NVARS 100
char *vars[NVARS]; double vals[NVARS]; int nvars=0;
%}

%union { double dval; int ivar; }
%token <dval> DOUBLE
%token <ivar> NAME

TEX – LATEX – CS 594

2.22. EXAMPLES 91

%type <dval> expr
%type <dval> mulex
%type <dval> term

%%

program:
line program
| line

line:
expr ’\n’ { printf("%g\n",$1); }
| NAME ’=’ expr ’\n’ { vals[$1] = $3; }

expr:
expr ’+’ mulex { $$ = $1 + $3; }
| expr ’-’ mulex { $$ = $1 - $3; }
| mulex { $$ = $1; }

mulex:
mulex ’*’ term { $$ = $1 * $3; }
| mulex ’/’ term { $$ = $1 / $3; }
| term { $$ = $1; }

term:
’(’ expr ’)’ { $$ = $2; }
| NAME { $$ = vals[$1]; }
| DOUBLE { $$ = $1; }

%%

int varindex(char *var)
{

int i;
for (i=0; i<nvars; i++)

if (strcmp(var,vars[i])==0) return i;
vars[nvars] = strdup(var);
return nvars++;

}

int main(void)
{

/*yydebug=1;*/
yyparse();

Victor Eijkhout

92 CHAPTER 2. PARSING

return 0;
}

The lex file is largely unchanged, except for the rule that recognises variable names:

%{
#include <stdlib.h>
#include <stdio.h>
#include "calc3.h"
void yyerror(char*);
int varindex(char *var);
%}

%%

[\t]+ ;
(([0-9]+(\.[0-9]*)?)|([0-9]*\.[0-9]+)) {

yylval.dval = atof(yytext);
return DOUBLE;}

[-+*/=] {return *yytext;}
"(" {return *yytext;}
")" {return *yytext;}
[a-z][a-z0-9]* {

yylval.ivar = varindex(yytext);
return NAME;}

\n {return *yytext;}
. {char msg[25];

sprintf(msg,"%s <%s>","invalid character",yytext);
yyerror(msg);}

TEX – LATEX – CS 594

2.23. INTRODUCTION 93

Hashing. Hashing, hash functions, hash tables, come into play when a compiler,

and in particular its parser, needs to store names (of identifiers) and further information
about the object of that name.

2.23 Introduction

A compiler, and in particular its parser, needs to store variables and information about
them. The data structure for this is in effect addressed by the name of the variable,
rather than by any numerical index. This sort of storage is sometimes called ‘associa-
tive’. The design of a data structure for this is a good example of trade-offs between
efficiency and expediency.

• If variables are stored in the order in which they are encountered, storage is
very fast, but searching will take time linear in the number of items stored.
• If the list if kept sorted, searching for an item will take logarithmic time.

However, insertion is now more expensive, taking linear time because all
elements following have to be copied up.
• A naively implemented linked list would give both insertion and retrieval

time linearly in the number of stored items. In the insertion phase we avoid
the copying, but finding the place to insert is harder, and in fact we can not
use bisection here.
• Items can be stored in a treewise fashion:

•

��
��
�

HH
HH

H

B

�
��

H
HH

ART E
�� HH

GIN LL

E
�� HH

LSE ND

The cost of inserting and retrieving is then linear in the length of the string,
at least for as far as is necessary to disambiguate from other strings.

These are then the issues we need to address:

• What is the cost of inserting a new item?
• What is the cost of finding and retrieving an item?
• What is the cost of deleting an item?

Victor Eijkhout

94 CHAPTER 2. PARSING

Figure 2.1: A hash function without conflicts

2.24 Hash functions

A hash function is function that maps non-numeric keys into a range of integers, in-
terpreted as the locations in a table. It would be nice if this function was injective, to
avoid mapping two keys to the same location but surprisingly hard, as is clear from
the ‘birthday paradox’: it takes only 23 random picks from a 365-entry table to have
even chances of a collision. If we know all keys in advance, it is possible to design
a function that maps them uniquely into a table of precisely the right size, but this is
unrealistic, since the number of possible keys in a programming language is very large,
indeed unbounded.

A ‘hash function’ is then a function that maps keys in some space to a range of inte-
gers 0 . . .M − 1. A good hash function has the following properties:

• The hash value is fully determined by the data being hashed. For instance, it
should not have a ‘memory’.
• The hash function uses as much as possible of the input data. Program vari-

ables often have names such as ikey, so emphasis on the first letter is a bad
idea.
• The hash function ”uniformly” distributes the data across the entire set of

possible hash values.
• The hash function generates very different hash values for similar strings.

Variables like key1, key2, et cetera should not be mapped into a cluster.

Figure 2.1 illustrates a hash function without conflicts.

Let us assume that we have found a way of mapping the names onto a large integer

TEX – LATEX – CS 594

2.24. HASH FUNCTIONS 95

space, for instance by interpreting the bit pattern of the name as an integer. A simple
hash function would be

h(K) = K modM, (2.2)

where M is the size of the hash table.

Certain values of M are less desirable. For instance, if M is even, say M = 2M ′, then
the statement r = K modM (say K = nM + r for some n) implies

K = 2K ′ ⇒ r = 2(nM ′ −K ′)
K = 2K ′ + 1 ⇒ r = 2(nM ′ −K ′) + 1

so the key is even, iff the original number is. This places an undue influence on the
last digit. If M is a multiple of 3, we find for numbers stored decimally or in bytes
that keys that are a permutation of each other get mapped to numbers that differ by a
multiple of 3, since both 10n mod 3 = 1 and 28 mod 1 = 1.

2.24.1 Multiplication and division strategies

A good strategy is to take M prime, and such that rk 6= ±amodM , where r the radix
of the number system, and a, k small. (There is a list of suitable primes on http:
//planetmath.org/encyclopedia/GoodHashTablePrimes.html.)

Equation (2.2) requires you to perform a division. The same equation based on mul-
tiplication would use an integer A ≈ w/M , where w is the maxint value. Then
1/M = A/w, which is simply A with an imaginary decimal point to its left. Ob-
serving that

K modM = M(K/M mod 1)

we define

h(K) = bM
((

A

w
K

)
mod 1

)
c.

As an example of the value of using a prime table size, consider hashing the Bible,
which consists of 42,829 unique words, into an open hash table with 30,241 elements
(a prime number). In the end, 76.6 percent of the slots were used and that the aver-
age chain was 1.85 words in length (with a maximum of 6). The same file run into a
hash table of 30,240 elements (evenly divisible by integers 2 through 9) fills only 60.7
percent of the slots and the average chain is 2.33 words long (maximum: 10).

2.24.2 String addition strategies

One could Derive a hash key by adding or XORing together all bytes in a string.

Victor Eijkhout

http://planetmath.org/encyclopedia/GoodHashTablePrimes.html
http://planetmath.org/encyclopedia/GoodHashTablePrimes.html

96 CHAPTER 2. PARSING

h = <some value>
for (i=0; i<len(var); i++)

h = h + <byte i of string>;

This runs into the problem that anagrams map into the same key, and nearby strings
into nearby keys. This could be remedied by introducing a table of random numbers:

h = <some value>
for (i=0; i<len(var); i++)

h = Rand(h XOR <byte i of string>);

Exercise 28. This algorithm only gives a one-byte key. How would
you derive longer keys? Give pseudo-code for the algorithm.

2.24.3 Examples

Here are a couple of published hash functions:

/* UNIX ELF hash

* Published hash algorithm used in the UNIX ELF format for object files

*/
unsigned long hash(char *name)
{

unsigned long h = 0, g;

while (*name) {
h = (h << 4) + *name++;
if (g = h & 0xF0000000)

h ˆ= g >> 24;
h &= ˜g;

}

}

This hash key is then reduced to an index in the hash table by

#define HASHSIZE 997
static int M = HASHSIZE;
return h % M;

Another hash function:

/* djb2

* This algorithm was first reported by Dan Bernstein

* many years ago in comp.lang.c

*/

TEX – LATEX – CS 594

2.25. COLLISIONS 97

unsigned long hash(unsigned char *str)
{

unsigned long hash = 5381;
int c;
while (c = *str++) hash = ((hash << 5) + hash) + c;
return hash;

}

Note the use of bit shifts to implement multiplication.

2.25 Collisions

The above techniques for generating randomly spread out addresses are generally suffi-
cient. The problem to worry about is how to handle collisions, that is, if h(k1) = h(k2)
for different keys k1, k2. We will investigate several techniques for dealing with this.

For all of the strategies below, any performance analysis is statistical in nature. The
average expected behaviour is often excellent, but the worst case behaviour is always
very bad. In the worst case, all hash addresses map to the same location, and search
time is propertional to the number of elements in the table.

The question is now how to find the storage locations for the elements with conflicting
hash keys. We will look at one strategy that allocates space outside the hash table
(‘open hash table’), and two that resolve the conflict by finding different locations in
the table (‘closed hash table’).

2.25.1 Separate chaining

A simple solution to hash conflicts is the create a linked list from each table entry, as
shown in figure 2.5. This way of implementing a hash table is called ‘separate chain-
ing’ or ‘open hashing’. One problem with this approach is that we need to maintain
two different kinds of storage: static in the table and dynamic for the linked lists.

The linked lists can be created by malloc (and released by free) calls. However,
these are very expensive compared to using a freespace pointer in a list. To amortize
the cost, one could allocate a block of cells, and dole them out gradually. The problem
with this strategy is dealing with deletions. If a cell is deleted, rerouting the pointers is
easy, but additionally we have to keep track of which cells in the allocated chunk are
free. This makes the open hash table somewhat complicated to implement.

Another problem is that, while this strategy is fairly efficient if the number of collisions
is low, in order to get the number of collisions low, one typically chooses the table size

Victor Eijkhout

98 CHAPTER 2. PARSING

Figure 2.2: Separate chaining as a solution for hash conflicts

fairly large, and then this solution is wasteful of storage. It is then better to store all
elements in the hash table and maintain links in the table.

Exercise 29. Discuss the value of keeping the lists ordered by key:
how does this influence the run time of insertion and retrieval? Pro-
gramming languages like C have local variables. Does this change
your argument?

2.25.2 Linear probing

The easiest solution is to store a conflicting element in the location immediately after
the computed hash address.

struct { ... } node;
node Table[M]; int Free;
/* insert K */
addr = Hash(K);
if (IsEmpty(addr)) Insert(K,addr);
else {

/* see if already stored */
test:

if (Table[addr].key == K) return;
else {

addr = Table[addr].link; goto test;}
/* find free cell */
Free = addr;

TEX – LATEX – CS 594

2.25. COLLISIONS 99

Figure 2.3: Linear probing as a solution for hash conflicts

I

J

I

J

J3

J2

I

J

K

I

J

K

J3

J2

I

J

K

I

J

K

J3

J2

L

L

Figure 2.4: Coalescing of blocks in linear probing

do { Free--; if (Free<0) Free=M-1; }
while (!IsEmpty(Free) && Free!=addr)
if (!IsEmpty(Free)) abort;
else {

Insert(K,Free); Table[addr].link = Free;}
}

However, this is not the best solution. Suppose that the blocks of size N is occupied,
then the free pointer will search N/2 locations on average for an address that maps
into this block. While this is acceptable, if two blocks coalesce, this makes the search
time double. Note that the chance of the cell between two blocks filling up is much
larger than the chance of that exact address being generated as hash: each hash in the
top block will cause the address to be filled.

This is illustrated in figure 2.4. There is a gap of size one between h(I) and a block
starting at h(J). When a conflict h(K) = h(I) occurs, the free space pointer fills
the gap. A subsequent conflict h(L) = h(I) (or h(L) = h(K)) needs the free space

Victor Eijkhout

100 CHAPTER 2. PARSING

pointer to traverse the whole J block to find the next location.

With α = N/M the ratio between occupied cells and total table size, the expected
search time with this algorithm is

T ≈


1
2

(
1 +

(
1

1−α

)2
)

unsuccessful

1
2

(
1 + 1

1−α

)
successful

It is clear that when α approaches 1, this time will go up unbounded.

The clumping behaviour of this algorithm makes it sensitive to the hash algorithm
used. Care has to be taken that successive keys, such as Ptr1, Ptr2. . . , do not get
mapped to successive hash values K,K + 1,

2.25.3 Chaining

The problems with linear probing can be prevented by storing conflicting elements at
the start or end of the table.

struct { ... } node;
node Table[M]; int Free = M;
/* insert K */
addr = Hash(K);
if (IsEmpty(addr)) Insert(K,addr);
else {

/* see if already stored */
test:

if (Table[addr].key == K) return;
else {

addr = Table[addr].link; goto test;}
/* find free cell */
do { Free--; }
while (!IsEmpty(Free)
if (Free<0) abort;
else {

Insert(K,Free); Table[addr].link = Free;}
}

This algorithm does the same list traversal as linear probing in the case a search is ulti-
mately successful. However, for an unsuccessful search the Free pointer will usually
be decreased by one, and only occasionally by two or more, when it runs into already
occupied positions. Since these are likely to be spread out, having to search more than
two steps will be rare.

TEX – LATEX – CS 594

2.25. COLLISIONS 101

Figure 2.5: Chaining as a solution for hash conflicts

In this algorithm, occasionally a hash address will be an address that has further links.
We say that we have lists coalescing. This increases search time slightly, but not by
much, and preventing this increases insertion time, because we would have to move
cells.

With α = N/M the fraction of used to total table entries, find that the number of
entries searched is

T ≈
{

1 + (e2α − 1− 2α)/4 unsuccessful
1 + (e2α − 1− 2α)/8α+ α/4 successful

The hash algorithm of TEX is a variant of this chaining algorithm.

2.25.4 Other solutions

The solutions to the conflict problem given so far can be called ‘linear rehashing’. The
following strategies are called ‘nonlinear rehashing’.

Random probing Try (h(m)+pi)mods, where pi is a sequence of random numbers.
This requires either reproducible random numbers, or storing these numbers.
In order to prevent colliding keys to collide on the next try too, the random
number needs to depend on the key.

Add the hash Try (i× h(m)) mod s. This requires s to be a prime number; with this
approach clumping is prevented.

They have the advantage that occupied locations in the table remain fairly scattered.
On the other hand, they require further hash calculations. Also, because of the irregular
memory access pattern, the cost of memory operations may become significant here.

2.25.5 Deletion

A surprising aspect of closed hash table algorithms is that generally it is hard to delete
elements. Since most algorithms give coalescing lists, we can not mark a cell empty if
its key is to be removed. Instead, we mark a cell ‘deleted’, which removes the key, but

Victor Eijkhout

102 CHAPTER 2. PARSING

leaves the link intact. There are algorithms that can deal with deletions, but they have
a fairly high complexity.

On the other hand, deleting in an open hash table algorithm is simple. The complication
there is the freeing of the memory. If the cells are allocated in chunks, the decision to
free a chunk becomes complicated.

2.26 Other applications of hashing
The foremost application of hashing is in compilers. However, there are other uses.

2.26.1 Truncating searches

In applications such as chess programs, you want to avoid evaluating a configuration
twice if it’s arrived at two different ways. This can be done by storing evaluations in a
table. This table can be addressed by the configuration as a key itself, but these keys
are long and span a large space, so searching will probably be expensive. Instead, one
can use a hash table.

If two configurations generate the same hash key, they can be, but need not be the
same, so further decision might be needed. To avoid this second stage work, a good
quality hash function is essential.

(This example comes from http://www.seanet.com/˜brucemo/topics/
hashing.htm.)

2.26.2 String searching

The question ‘does a string of length M appear anywhere in a document of length N ’
can be answered in O(NM) time by a sequence of string comparisons. However, we
can do considerably better, reducing the complexity to O(N +M).

A hash function that adds characters together will give the same hash key for strings
that are anagrams of each other. This means that instead of doing a string comparison
we can compare hash keys, and only if they are equal resort to a full string comparison.
To get the complexity down, we note that if the hash function is of the form

h(k) =

{∑
i

k[i]

}
modK,

where k is a character string, then (for a text t long enough)
h(t[2 . . . n+ 1]) = h(t[1 . . . n]) + t[n+ 1]− t[1]

(with addition/subtraction modulo K) so we can cheaply update the hash key in O(1)
time.

TEX – LATEX – CS 594

http://www.seanet.com/~brucemo/topics/hashing.htm
http://www.seanet.com/~brucemo/topics/hashing.htm

2.27. DISCUSSION 103

2.27 Discussion

In a comparison between hash tables and, for instance, tree-based storage, there is
no clear preference. Hash tables can be faster, because, until the table fills up, access
is O(1). A similar complexity can be obtained for trees, but

• memory access in trees is more chaotic, leading to worse cache or paging
behaviour;
• memory is allocated and freed dynamically; circumventing that takes consid-

erable programming effort;
• trees can become unbalanced, and balancing them is tricky to program, and

takes time;
• the optimal search time can be made approximately equal, but that is again

hard to code.

Closed hash tables have the advantage of simpler storage management, and, until they
fill up, no worse performance than open tables.

Victor Eijkhout

104 CHAPTER 2. PARSING

Projects for this chapter.
Project 2.1. Use the lex and yacc programs you have written for LATEX to write a full

LATEX-to-HTML translator.
Project 2.2. A number of projects involve parsers or code generators for (parts of)

TEX or LATEX.
formulas Reinhold Heckmann and Reinhard Wilhelm. 1997. A functional

description of TeX’s formula layout. Journal of Functional Program-
ming 7(5):451-485. Available online at http://rw4.cs.uni-sb.
de/users/heckmann/doc.html. For software, see ftp://ftp.
cs.uni-sb.de/formulae/.

also formulas Preview-LaTeX (http://preview-latex.sourceforge.
net/) displays formulas right in the emacs edit buffer.

math on web pages see http://www.forkosh.com/mimetex.html.
LATEX to HTML HeVeA, TtH, TeX4ht and LaTeX2HTML.
front end for LATEX http://www.lyx.org/Ages ago there was ‘griff’.

Scientific Word still exists but is commercial.
reimplementation of TEX TEX in Python: http://www.pytex.org/
Investigate these parsers: what is their basic approach and theoretical power,
what are they good at, what are they bad at.

Project 2.3. Develop the full theory of the compound NFA that does lexical analysis.
• This automaton basically parses the whole file, rather than small chunks;

every once in a while it will report that it has recognized an identifier,
number, special symbol &c. This means that the definition of the out-
put alphabet has to be expanded. Analyze the structure of this output
language.

• As explained, the returning ε-transition only has to be taken if a maxi-
mal string is recognized. Formalyze this notion.
• The automaton may need look-ahead of one or more tokens. Formalize

this notion and give equivalence proofs.
Project 2.4. Do an experimental study of hashing. Implement open and closed hash

table algorithms, and do a search on the web for hash functions. Compare
to storing the names in a tree. Find some documents to hash: the source of
some programs, books. Construct some input data sets to trip up the various
algorithms. Measure statistics and do timings.

TEX – LATEX – CS 594

http://rw4.cs.uni-sb.de/users/heckmann/doc.html
http://rw4.cs.uni-sb.de/users/heckmann/doc.html
ftp://ftp.cs.uni-sb.de/formulae/
ftp://ftp.cs.uni-sb.de/formulae/
http://preview-latex.sourceforge.net/
http://preview-latex.sourceforge.net/
http://www.forkosh.com/mimetex.html
http://www.lyx.org/
http://www.pytex.org/

Chapter 3

Breaking things into pieces

The line breaking algorithm of TEX is interesting, in that it produces an aesthetically
optimal solution in very little time.

Handouts and further reading for this chapter

If you still have the book ‘Introduction to Algorithms’ by Cormen et al., you can
find a discussion of Dynamic Programming and NP-completeness there. The books by
Bellman are the standard works in this field. Bellman’s ‘Applied Dynamic Program-
ming’ [1] has been put on reserve, QA264.B353 . The TEX line breaking algorithm is
described in an article by Knuth and Plass [13], reprinted in [9].

The standard work on Complexity Theory, including NP-completeness, is Garey and
Johnson ‘Computers and intractibility’ [7]. There is excellent online material about this
subject on Wikipedia, for instance http://en.wikipedia.org/wiki/Complexity_
classes_P_and_NP. Issues in page breaking are discussed in Plass’ thesis [18].

105

http://en.wikipedia.org/wiki/Complexity_classes_P_and_NP
http://en.wikipedia.org/wiki/Complexity_classes_P_and_NP

106 CHAPTER 3. BREAKING THINGS INTO PIECES

Dynamic Programming. Dynamic programming is an optimization tech-

nique, that is, a way of solving problems where a yield function is to be maximized,
or a cost function minimized, under certain constraints. Certain optimization problems
can be solved using calculus – unconstrained optimization being a prime example –
and others by such linear algebra techniques as the simplex method. However, such
continuous methods have a hard time dealing with integer constraints. For instance, in
computing the yield of a car factory, the number of cars has to be integer.

The type of problems that dynamic programming is suited for is the type where the
problem can be formulated as a series of decisions. For instance, in work allocation
problems, there is a separate decision for the amount of work to be allocated in each
month.

We will start with some examples that show the essential features of the dynamic
programming approach.

3.1 Some examples

3.1.1 Decision timing

Our first example concerns the problem of when to make a one-time decision, giving
a number of opportunities to do so. This example illustrates the concept of a series of
decisions, and of starting at the final stage and working backward from that.

The surprise menu in a new restaurant works as follows. You will be shown 5 dishes
in sequence, and you can pick one that you like, but if you turn one down, you can
not reconsider. Let us say that each dish scores between 0 and 1 on your attractiveness
scale. How do you maximize your choice of dish?

Call the scores you give the dishes xi, and N the number of dishes.

• If you wait till the last dish, you have no choice.
• The last dish can be anything, so the best you can say is that it will have an

expected attractiveness of 0.5. Therefore, if xN−1 > 0.5, you take that one,
since it is better than what you can expect in the next step.
• Now, you will take dish N − 1 in half the cases, giving you on average a
.75 score, and the other half of the cases you take dish N , with a score of .5.
Therefore, you are expecting to score .625, and you will take dish N − 2 if it
scores more than that.
• In .375 of the cases, dish N − 3 will score higher than that.
• Et cetera.

From this example we see some characteristics:

TEX – LATEX – CS 594

3.1. SOME EXAMPLES 107

Stages The optimization problem involves a sequence of stages, each involving a
choice.

Principle of optimality Once you arrive at a certain stage, the optimal solution for
the rest of the path is independent of how you got to that stage.

Stepwise solution The solution (here: solution strategy) is arrived at by starting at
the final and working backward. We will also examples that are solved for-
ward; in general it is a characteristic that dynamic programming problems
are solved stage-by-stage.

Often, the fact that the problem is solved starting at the last stage is considered an
essential feature. We will not do so: many dynamic programming problems can also
be solved forward.

Exercise 30. For this example, draw up the recurrence relation be-
tween the expected scores. Prove that the relation is monotonically
increasing (for decreasing index), and bounded above by 1, in fact
with limit 1. Bonus: solve this relation explicitly.

3.1.2 A manufacturing problem

Suppose a factory has N months time to produce a quantity S of their product, which
we will for now assume to be bulk. Because of seasonal variations, in month k the cost
of producing an amount pk is wkp2

k. The problem is to produce the requested amount
in the given time, at minimal cost, that is

min∑
pk=S

∑
wkp

2
k.

We break down the problem by looking at the cost for producing the remaining amount
in the remaining time. Define the minimum cost as

v(s|n) = min∑
k>N−n pk=s

∑
wkp

2
k

and p(s|n) as the work that has to be done n months from the end, given that s work is
left, then, by splitting this into the cost this month plus the cost for the then remaining
time, we get

v(s|n) = min
pn≤s

wnp2
n +

∑
k>N−n+1∑

pk=s−pn

wkp
2
k


= min

pn≤s

{
wnp

2
n + v(s− pn|n− 1)

}
That is, we get a recurrence where the remaining work for n months is expressed in
that for n− 1 months.

Victor Eijkhout

108 CHAPTER 3. BREAKING THINGS INTO PIECES

Starting off is easy: p(s|1) = s, and v(s|1) = w1s
2. By the above rule then

v(s|2) = min
p2
{w2p

2
2 + v(s− p2|1)} = min

p2
c(s, p2)

where c(s, p2) = w2p
2
2+w1(s−p2)2. We find the minimum by taking δc(s, p2)/δp2 =

0, which gives us p(s|2) = w1s/(w1 + w2) and v(s|2) = w1w2s
2/(w1 + w2).

Solving one or two more steps like this, we notice the general form:

p(s|n) =
1/wn∑n
i=1 1/wi

s, v(s|n) = s2
n∑
i=1

1/wi.

This solution can in fact be derived by a variational approach to the constraint mini-
mization problem∑

k

wkp
2
k + λ(

∑
k

pk − S)

for which we set the derivatives to both pn and λ to zero.

This problem shows another characteristic of dynamic programming:

State The cost (yield) function that we define as a function of the stage, also has a state
parameter. It typically describes the amount of some constrained quantity that
is still left. In this case, that is the amount still to be produced.

We see that for this problem there is both an analytical solution, and one found by
dynamic programming, using analytical techniques for local optimization. However,
these techniques would become increasingly cumbersome, if we imposed restrictions
such as that the factory does not have unlimited production capacity, or even impossi-
ble, if the product can only be made in discrete units, meaning that the pn have to be
integers.

The next problem is a good example of the sort of discrete choices that dynamic pro-
gramming is well suited for.

3.1.3 The stagecoach problem

A business man in the Old West needs to travel from city 0 to city 8. For this, he has
to go through 3 other cities, but in each stage of the trip there are choices. This being
the Wild West, he decides to get travel insurance. However, not all routes are equally
safe, so the cost of insurance varies. The problem is to find the trip that minimizes the
total cost of the insurance.

TEX – LATEX – CS 594

3.1. SOME EXAMPLES 109

0

1

2

3

4

5

6

7

8

1

3
4

4 2

2

1
5

2

4

4

3

5

2

We will look at various ways of solving this problem. First let us define the data.

table = [[0, 5, 4, 0, 0, 0, 0, 0, 0], # first stage: 0
[0, 0, 0, 1, 3, 4, 0, 0, 0], # second: 1 & #2
[0, 0, 0, 4, 2, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 5, 1, 0], # third: 3, #4, #5
[0, 0, 0, 0, 0, 0, 2, 4, 0],
[0, 0, 0, 0, 0, 0, 4, 3, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 5], # fourth: 6 & #7
[0, 0, 0, 0, 0, 0, 0, 0, 2]
]

final = len(table);

3.1.3.1 The wrong way to solve this

The solution to the stage coach problem is easy to formulate recursively, given that
you are in some city:

• If you are in the final city, the cost is zero;
• Otherwise it is the minimum – over all cities reachable from here – of the

cost of the next leg plus the minimum cost from that city.

the wrong way
def cost_from(n):

if you’re at the end, it’s free
if n==final: return 0
otherwise range over cities you can reach
and keep minimum value
val = 0
for m in range(n+1,final+1):

for all later cities
local_cost = table[n][m]

Victor Eijkhout

110 CHAPTER 3. BREAKING THINGS INTO PIECES

if local_cost==0: continue
if there is a connection from here,
compute the minimum cost
local_cost += cost_from(m)
if val==0 or local_cost<val:

val = local_cost
return val

print "recursive minimum cost is",cost_from(0)

If there are N cities, divided into S stages of L cities in each stage, and assuming
that in each stage all cities of the next stage are reachable, the cost of this algorithm
is O(LS).

3.1.3.2 Dynamic programming solution

The implementation strategy of the previous section is wasteful. Consider some city 1,
and cities 2 and 3 in the stage before that. The cost computations from 2 and 3 both
compute the cost from 1, which is clearly redundant. We call this characteristic

Overlapping subproblems: A straightforward (recursive) solution to the problem would
revisit a subproblem, meaning that different solution attempts have a common
subproblem.

Recognizing this leads us to a better solution strategy: once the minimum cost from
one city has been computed, we store it for future reference.

An equivalent interpretation of this strategy is that we compute in each stage a cost
function fn(xn), describing the cost of reaching the end starting at the nth step, giving
that we start there in city xn. This is in fact a dynamic programming solution, with xn
the state variable in the nth stage.

Formally, fk(s) is the minimum cost for traveling the from stage k given that your are
in city s in that stage. Then

fk−1(s) = min
t
{cst + fk(t)

where cst is the cost of traveling from city s to t.

Initially, the cost from every city till the final one (in particular from the final one itself)
is zero:

initialization
cost = (final+1)*[0]

Now we loop backwards over the stages, computing in each stage the cost of all city
we can go through. These two loops – the stages, and the cities in each stage – can
actually be collapsed into one loop:

TEX – LATEX – CS 594

3.1. SOME EXAMPLES 111

compute cost backwards
for t in range(final-1,-1,-1):

computing cost from t

For each city t we consider the ones i that are reachable from it. By induction, for
these later ones we already know the cost of going from them to the final one, so the
cost from t to the final one is the cost from t to i plus the cost from i:

for i in range(final+1):
local_cost = table[t][i]
if local_cost==0: continue
local_cost += cost[i]

If there was no cost yet associated with t, we set it now, otherwise we compare the
cost from t over i with the cost of an earlier evaluated route:

if cost[t]==0 or local_cost<cost[t]:
cost[t] = local_cost

In the end, the minimum cost is given in cost[0].

We see that the main difference between this solution and the recursive one given
above, is that the recursive function call has been replaced by a lookup in a table.

The running time of this algorithm is O(N · L) or O(L2S), which is a considerable
improvement over LS for the straightforward implementation. This solution carries an
extra cost of N memory locations; on the other hand, it does not build up a recursion
stack.

3.1.3.3 Forward dynamic programming solution

This problem was solved by starting at the end point. We can also work our way to
the solution forwards, with a code that is essentially the same. Instead of computing
the cost of reaching the final city from an intermediate, we now compute the cost of
reaching the intermediate city from the initial one.

We loop over all cities and all their connections:

cost = (final+1)*[0]
for t in range(final):

for i in range(final+1):
local_cost = table[t][i]
if local_cost == 0: continue

Now we can compute the cost to the connecting city as the transition cost, plus the
known minumum cost to get where we are:

Victor Eijkhout

112 CHAPTER 3. BREAKING THINGS INTO PIECES

cost_to_here = cost[t]
newcost = cost_to_here+local_cost
if cost[i]==0 or newcost<cost[i]:

cost[i] = newcost

The result is now in cost[final].

The minimization problem corresponding to this algorithm concerns fks, the cost to
get to city s in stage k. Then

fk+1(t) = min
s
{cst + fk(s)

which is equivalent to the earlier problem.

Exercise 31. A ‘sparse matrix’ is a matrix where a number of
matrix elements are zero, sufficiently many that you do not want
to store them. To compute the matrix vector product y = Ax you
then do not compute the full sum yi =

∑
j aijxj , but only those

terms for which aij 6= 0. This sort of operation is easy enough to
code, but is pretty inefficient in execution.
Suppose that for small k the product with k consecutive matrix el-
ements (that is aijxj + aij+xj+1 + · · · + aij+k−1xj+k−1 can be
executed more efficiently than doing it as k separate operations. For
instance, suppose that with k = 3 the time per ai·x· reduced to .4 of
the normal multiply time, that is, doing three consecutive multipli-
cations as a block takes time 1.2, while doing them separately takes
time 3.
Now, if a11 6= 0, a12 = 0, a13 6= 0, the multiplication a11x1+a13x3

takes time 2, but if we store the intermediate zero at a12, the size 3
block multiplication takes time 1.2. This means that doing some
superfluous operations (multiplying by zero) we can actually speed
up the matrix-vector product.
Let a pattern of nonzeros and reduction factors be given. The pattern
stands for the locations of the nonzeros in a matrix row, for instance
row = [1,0,0,1,0,1,1,0,0,1,0,0,0,1,1,0,1,1]
redux = [1, .75, .4, .28]
Formulate a principle of optimality for this problem, and write a dy-
namic programming solution for finding the covering of the sparse
row that will lead to the shortest multiplication time. Tinker with the
redux times (but make sure the n-th is more than 1/n in base-1
indexing) and see how the solution changes.

TEX – LATEX – CS 594

3.1. SOME EXAMPLES 113

3.1.4 Traveling salesman

The above problems all had dynamic programming solutions with a cost slightly more
than linear in the input problem size. Dynamic programming does not always give that
low a complexity.

The traveling salesman problem looks a bit like the stagecoach problem above. How-
ever, now the traveler does not only need to go from a starting to a final city, he also
has to visit every city on his travel.

This problem can be solved by dynamic programming, but the concept of stage is now
more complicated. We can no longer map the cities into a linear ordered set of stages
since they can be visited in any sequence.

The solution is to let stage n correspond to picking the nth city, and to define the
current state as the last visited city, plus the set of the remaining ones. Initially we loop
over all possible last cities, so the cost is the sum of the single leg trip to the end point,
plus the minimum cost through remaining cities. unvisited cities.

To be precise: a state is a pair (S, f) of a set of cities left to be visited, and the current
city f ∈ S.

We can now construct a cost function that depends on the stage and the current state.

C({1}, 1) = 0

C({f}, f) = a1f for f = 2, 3, . . .

C(S, f) = min
m∈S−f

[C(S − f,m)] + amf]

This is easily enough implemented:

def shortest_path(start,through,lev):
if len(through)==0:

return table[start][0]
l = 0
for dest in through:

left = through[:]; left.remove(dest)
ll = table[start][dest]+shortest_path(dest,left,lev+1)
if l==0 or ll<l:

l = ll
return l

to_visit = range(1,ntowns);
s = shortest_path(0,to_visit,0)

This solution has factorial complexity.

Victor Eijkhout

114 CHAPTER 3. BREAKING THINGS INTO PIECES

3.2 Discussion

In the example above we saw various properties that a problem can have that make it
amenable to dynamic programming.

Stages The optimization problem involves a sequence of stages, each involving a
choice, or a discrete or continuous parameter to be determined.

Stepwise solution The solution is arrived at by solving the subproblems in the stages
one by one. Often this is done starting at the final stage and working back-
ward.

State The cost (yield) function that we define as a function of the stage, also has a state
parameter. It typically describes the amount of some constrained quantity that
is still left to be consumed or produced.

Overlapping subproblems This is the property that a straightforward (recursive) so-
lution to the problem would revisit a subproblem, meaning that different so-
lution attempts have a common subproblem.

Principle of optimality This is the property that the restriction of a global solution to
a subset of the stages is also an optimal solution for that subproblem.

The principle of optimality is often phrased thus:

An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must be an optimal
policy with regard to the state resulting from the first decision.

It is easy to show that the principle of optimality holds for certain functions and con-
straints. For example, consider the problem of maximizing

∑N
i gi(xi) under the con-

straint
∑

i xi = X where xi ≥ 0. Call this maximal sum fN (X), then

fN (X) = max∑N
i xi=X

N∑
i

gi(xi)

= max
xN<X

{
gN (xN) + max∑N−1

i xi=X−xN

N−1∑
i

gi(xi)

}
= max

xN<X
{gN (xN) + fN−1(X − xN)}

We see here that the form of the gi functions does not enter the argument, but the fact
that the total utility is a sum of gis does. Utility functions that are not symmetric in
the component gi functions clearly can not straightforwardly be solved with dynamic
programming.

"Diglio A. Simoni" <diglio@simoni.org> wrote in message
news:ouFTc.27970$Kt5.1192@twister.nyroc.rr.com...
> Suppose C(m,dist[d]) is the optimal solution to travel distance d using m
> gas stations

TEX – LATEX – CS 594

3.2. DISCUSSION 115

That won’t do, because:

> Two cases arise
> a) Buy gas at station m, in which case:
>
> cost = C(m-1,dist[m]) + price[m] * ((dist[m] - dist[j]) /
10)
> + D(dist[m] - dist[j])

You can’t do that. The problem says you have to fill your tank, and since
the parameters of the cost function don’t capture how much gas you have
left, you don’t know how much filling your tank will cost.

In fact, the number of gas stations you’ve used at any point is irrelevant.
If you could put in however much gas you liked, you wouldn’t need to use
dynamic programming to find a solution.

Since your prof asked for complexity analysis in terms of distance, I can
tell that he expects you to use something like C(n,i) = the minimum price
paid to get to dist[i] with n gallons of gas left in the tank, which works
just fine.

You’ll probably get extra marks if you expain how you can use a different
cost function, or just a little finesse in the implementation, to get a
better complexity result in terms of the number of gas stations.

Victor Eijkhout

116 CHAPTER 3. BREAKING THINGS INTO PIECES

TEX paragraph breaking. Breaking a paragraph into lines is the problem

of, given a string of words and other material with intervening spaces, breaking that
string into chunks (lines) of approximately equal length, and doing so in a visually
attractive way. Simple strategies (see the ‘first fit’ algorithm below) give a result that
is easy to compute, but that can be visually very unappealing. While the problem of
finding globally optimal line breaks sounds very hard – with n words there are 2n

ways of breaking the paragraph; also, this problem resembles the bin-packing problem
which is NP-complete – it can actually be solved fairly efficiently.

TEX’s basic strategy is to calculate the badness of breaking the lines at certain points,
and to minimize the badness over the whole paragraph.

3.3 The elements of a paragraph

TEX’s paragraph breaking algorithm is based around the concepts of

• Boxes: this comprises letters, formulas, TEX boxes, and other material of a
fixed with.
• Glue: this is white space; a glue item has a natural width, stretchability, and

shrinkability.
• Penalties: these are items that express the desirability or undesirability of

breaking a line at a particular point.

The same elements are also present in a vertical list; in both cases there are some other,
more rare items, that we will ignore here.

3.3.1 Some details

3.3.1.1 Boxes

The boxes in a paragraph are such things as words, rules, math formulas, and actual
TEX \boxes. A box can not be broken: it is completely described by its height, depth,
width. Actually, looking at words as boxes is too simplistic, since words can often be
hyphenated. This means that a word is a sequence of boxes alternating with penalties.

3.3.1.2 Penalties

A penalty item describes the desirability or undesirability of breaking a list at some
point. Penalties can be inserted by hand (most often as the \nobreak macro, which
is equivalent to \penalty10000), or in a macro, or are inserted by TEX itself. An

TEX – LATEX – CS 594

3.3. THE ELEMENTS OF A PARAGRAPH 117

example of the latter case is the \hyphenpenalty which discourages breaking at a
hyphen in a word.

Hyphenating a word can be simulated by having a penalty of zero at the hyphenation
location. Since this usually introduces a hyphen character, TEX internally pretends that
penalties can have a width if the list is broken at that place.

The most common types of penalty are the infinite penalty that starts a non-breaking
space, and the penalty associated with breaking by hyphenating a word. The latter kind
is called a ‘flagged penalty’, and TEX has an extra amount of demerits associated with
them, for instance to prevent two consecutive lines ending in a hyphen.

Penalties can have positive and negative values, to discourage or encourage breaking at
a specific place respectively. The values +∞ and−∞ are also allowed, corresponding
to a forbidden and forced break respectively.

3.3.1.3 Glue

A ‘glue’ is a dimension with possible stretch and/or shrink. There are glue denotations,
such as 2cm plus .5cm minus .1cm, or glue parameters, such as \leftskip
or \abovedisplayskip. The parameters are inserted automatically by the various
TEX mechanisms.

Glue can be measured in points pt, centimeters cm, millimeters mm, inches in. There
is also infinite glue: fil, fill, and filll. Presence of TEX’s infite glue (fill)
causes all other glue to be set at natural width, that is, with zero stretch and shrink.

If there is more than one glue item in a list, the natural widths and the stretch and
shrink amounts are added together. This means that a list with both 2cm plus 1cm
and 2cm plus -1cm has no stretch since the stretch amounts add up to zero. On
the other hand, with 2cm plus 1cm and 2cm minus 1cm it has both stretch and
shrink.

The stretch and shrink components of glue are not treated symmetrically. While in a
pinch we can allow a line to be stretched further than the indicated maximum, we can
not allow spaces to be shrunk to zero, or even close to that.

3.3.1.4 Stretch and shrink

Each space can have stretch and shrink. When we consider a line, we add up all the
stretch and shrink and compute an ‘adjustment ratio’ as the ratio of the shortfall or
excess space to the available stretch or shrink repectively. This ratio r is negative for
lines that need to be shrunk.

Victor Eijkhout

118 CHAPTER 3. BREAKING THINGS INTO PIECES

A simple algorithm would be to impose a limit of |r| ≤ 1 (and then to minimize
the number of hyphenations under that restriction), but that might be too restrictive.
Instead, TEX uses a concept of ‘badness’. The badness of a line break is infinite
if r < −1; otherwise it is cubic in the absolute size of r.

3.3.1.5 Line break locations

Here are the main (but not the only) locations where TEX can decide to break a line.

• At a penalty
• At a glue, if it is preceeded by a non-discardable item, meaning, not a penalty

or other glue
• At a hyphen in a word
• At a place where TEX knows how to hyphenate the word. (There is actually a

mechanism, called ‘discretionaries’ that handles these last two cases.)

3.3.2 Examples

Here are a few examples of the things that the boxes/penalties/glue mechanism is ca-
pable of.

3.3.3 Centered text

By using \leftskip and \rightskip we can get centered text.

\begin{minipage}{4cm}
\leftskip=0pt plus 1fil \rightskip=0pt plus 1fil
\parfillskip=0pt
This paragraph puts infinitely stretchable glue at
the left and right of each line.
The effect is that the lines will be centered.
\end{minipage}

Output:
This paragraph puts

infinitely stretchable glue
at the left and right of
each line. The effect is
that the lines will be

centered.
The following centers only the last line. This is done by letting the \leftskip and
\rightskip cancel each other out, except on the last line.

TEX – LATEX – CS 594

3.3. THE ELEMENTS OF A PARAGRAPH 119

\begin{minipage}{5cm}
\leftskip=0pt plus 1fil \rightskip=0pt plus -1fil
\parfillskip=0pt plus 2fil
This paragraph puts infinitely stretchable glue at
the left and right of each line, but the amounts cancel out.
The parfillskip on the last line changes that.
\end{minipage}

Output:

This paragraph puts infinitely
stretchable glue at the left and
right of each line, but the
amounts cancel out. The parfill-
skip on the last line changes that.

3.3.3.1 Hanging punctuation

Hanging punctuation is a style of typesetting where punctuation that would wind up
against the right margin is actually set in the right margin. Optically, this makes the
margin look straighter.

\newbox\pbox \newbox\cbox
\setbox\pbox\hbox{.} \wd\pbox=0pt
\setbox\cbox\hbox{,} \wd\cbox=0pt
\newdimen\csize \csize=\wd\cbox
\newdimen\psize \psize=\wd\pbox

\catcode‘,=13 \catcode‘.=13
\def,{\copy\cbox \penalty0 \hskip\csize\relax}
\def.{\copy\pbox \penalty0 \hskip\psize\relax}

Victor Eijkhout

120 CHAPTER 3. BREAKING THINGS INTO PIECES

3.3.3.2 Mathematical Reviews

In ‘Mathematical Reviews’ the name of the reviewer should be separated sufficiently
from the review, but fit on the same line if space allows.

We do this by having two separate infinite glues with a break in between, and with a
total natural width equal to the minimum separation. The trick is to make sure that the
second glue is not discarded after a break, which we do by putting an invisible box at
the beginning.

\def\signed#1{\unskip
\penalty10000 \hskip 40pt plus 1fill
\penalty0
\hbox{}\penalty10000

\hskip 0pt plus 1fill
\hbox{#1}%

\par
}

3.4 TEX’s line breaking algorithm

3.4.1 Elements

3.4.1.1 Glue setting and badness

In order to make a list fit a prescribed dimension, there is a process called ‘glue setting’.
The natural size of the list and the desired size are compared. Let ρ be the ratio of
the amount stretched (shrunk) to the possible amount of stretch (shrink). The exact
definition is such that the ratio is positive for stretch and negative for shrink: let ` be
the desired length of the line, L the natural width, X the available stretch and Y the
available shrink, then

ρ =


0 ` = L
(`− L)/X (stretch:) ` > L and X > 0
(`− L)/Y (shrink:) ` < L and Y > 0
undefined otherwise

TEX – LATEX – CS 594

3.4. TEX’S LINE BREAKING ALGORITHM 121

Then the ‘badness’ of the needed glue setting is

b =

{
10 000 ρ < 1 or undefined
min

{
10 000, 100|ρ|3

}
otherwise

Since 10 000 is considered infinite in glue arithmetic, this algorithm allows glue to be
stretched further than the indicated amount, but not shrunk beyond what is available.

A list that is stretched or shrunk is put in one of the following four categories:

tight (3) if it has shrunk with b ≥ 13

decent (2) if b ≤ 12

loose (1) if it has stretched with 100 > b ≥ 13

very loose (0) if it has stretched with b ≥ 100

Note that 100× (1/2)3 = 12.5, so the crossover values denote that half the stretch or
shrink is used.

Lines that differ by more than one in their classifications are called ‘visually incom-
patible’.

3.4.1.2 Demerits

Breaking a line at a certain points gives the penalty p associated with that point, and the
badness b of the resulting stretch/shrink. These are combined into a ‘demerits’ figure:

d =

{
b2 + p2 0 ≤ p < 10 000
b2 − p2 −10 000 < p < 0

The demerits for breaking a paragraph along a certain sequence of break points is then
the sum of the demerits of the lines, plus \adjdemerits for every two lines that are
not visually compatible (section 3.4.1.1), \doublehyphendemerits for pairs of
lines that end in a hyphen, and \finalhyphendemerits if the last full line ends
in a hyphen.

TEX acts as if before the first line there is a line that is ‘decent’; the last line will
typically contain infinite glue, so all spaces are set at natural width.

For full generality, the last line of a paragraph is handled like any other. Filling out the
line to the margin is realized by added infinite glue plus a trailing penalty that forces a
line break at the end of the paragraph.

3.4.2 Breaking strategies

We will now look at a couple of line breaking strategies. The first two will be strictly
local; the third – TEX’s algorithm – is able to optimize in a more global sense.

Victor Eijkhout

122 CHAPTER 3. BREAKING THINGS INTO PIECES

The problem with local algorithms is that they can not take a slightly worse solution
in one line to prevent much worse from happening later. This will for instance allow
tight and very loose lines to occur next to each other.

3.4.2.1 First fit

The traditional algorithm for line breaking only looks at the current line. Once a word
is starting to exceed the right margin, the following cases are investigated.

1. If the spaces in the line can be compressed without exceeding some maxi-
mum shrinkage, break after this word.

2. Otherwise, if the spaces can be stretched short of some maximum, break
before this word.

3. Otherwise, try hyphenating this word.
4. If no hyphenation point can be found, accept a line with spaces stretched to

whatever degree is needed to break before this word.

If you have set text with TEX, you will have noticed that TEX’s solution to the last
point is slightly different. It will let a word protrude into the right margin as a visual
indicator that no good breakpoint could be found. (TEX’s tolerance to bad breaks can
be increased by setting the \emergencystretch parameter.)

This method can be called ‘first fit’, because it will the first option (compress), without
comparing if later options (stretching) look better. This is remedied in TEX by, instead
of having an all-or-nothing it fits / it doesn’t fit distinction, there is a continuous scale
of evaluation.

3.4.2.2 Best fit

A slight improvement on the first fit algorithm results from deciding between the pos-
sibilities 1–3 based on badness calculations. This can be termed ‘best fit’, and while it
may work slightly better than fit, it is still a local decision process.

3.4.2.3 Total fit

TEX’s actual algorithm calculates the ‘demerits’ of a line break as a compound of
badness, the breakpoint penalty, plus any flagged penalties. It then adds together the
demerits of the whole paragraph, and minimizes this number. This makes it possible
to use a slightly worse line break early in the paragraph, to prevent a much worse one
later.

TEX – LATEX – CS 594

3.4. TEX’S LINE BREAKING ALGORITHM 123

Exercise 32. In dynamic programming, many solutions start from
a final stage and work backwards. Why is this approach inappropri-
ate for TEX’s line breaking algorithm? Why would it be even less
appropriate for a page breaking algorithm?

3.4.3 Model implementation

We will here only discuss implementations of solutions based on dynamic program-
ming.

The line breaking algorithm goes linearly through the items in the horizontal list, and
for each considers whether there is a valid breakpoint after it, and with what cost. For
the latter point, it needs to know what the beginning of the line is, so there is an inner
loop over all preceeding words. This would make the running time of the algorithm
quadratic in the number of words, which is much better than the initial estimate of 2n.

However, the situation is better than that. The number of words that can fit on a line
is limited by what can fit when all spaces are sqeezed to zero. The easiest way to
implement this is by maintaining an ‘active list’ of possible words to begin the line
with. A word can be removed from the active list if the material from it to the current
word does not fit: if it does not fit now, it will certainly not fit when the next word is
considered.

This is then the main program; we will mainly vary the function that computes the
breakpoint cost.

active = [0]
nwords = len(paragraph)
for w in range(1,nwords):

compute the cost of breaking after word w
for a in active:

line = paragraph[a:w+1]
ratio = compute_ratio(line)
if w==nwords-1 and ratio>0:

ratio = 0 # last line will be set perfect
print "..line=",line,"; ratio=",ratio
if ratio<-1:

active.remove(a)
print "active point",a,"removed"

else:
update_cost(a,w,ratio)

report_cost(w)

Victor Eijkhout

124 CHAPTER 3. BREAKING THINGS INTO PIECES

active.append(w)
print

The only thing different between various strategies is how the cost of a line break is
computed by update_cost(a,w,ratio).

Exercise 33. Not every word should be added to the active list.
For instance, for any realistic line length, the second word in the
paragraph will not have a valid breakpoint after it, so we need not
consider it. Take the model implementation and add this modifi-
cation. Measure the improvement in running time, for instance by
counting the number of calls to some inner routine. Give a theoreti-
cal argument for how this reduces the complexity of the algorithm.

3.4.3.1 First fit implementation

Since at first we are looking only locally, for each breakpoint we only keep track of the
cost and the previous breakpoint that the cost was computed from. Here we set up the
data structure cost. Element cost[w] describes the cost of breaking after word w;
the ’from’ component is the number of the first word of the line.

def init_costs():
global cost
cost = len(paragraph)*[0]
for i in range(len(paragraph)):

cost[i] = {’cost’:0, ’from’:0}
cost[0] = {’cost’:10000, ’from’:-1}

The essential function is the cost computation. In first fit we accept any stretch or
shrink that is |ρ| < 1.

def update_cost(a,w,ratio):
global cost
if a>0 and cost[a-1][’cost’]<10000:

if ratio<=1 and ratio>=-1:
to_here = abs(ratio)

else: to_here = 10000
if cost[w][’cost’]==0 or to_here<cost[w][’cost’]:

cost[w][’cost’] = to_here; cost[w][’from’] = a-1

(The first test serves to make sure that the previous point being considered is in fact a
valid breakpoint.)

Here is the remaining function that constructs the chain of breakpoints:

TEX – LATEX – CS 594

3.4. TEX’S LINE BREAKING ALGORITHM 125

def final_report():
global cost,nwords,paragraph
print "Can break this paragraph at cost",\

cost[nwords-1][’cost’]
cur = len(paragraph)-1; broken = []
while cur!=-1:

prev = cost[cur][’from’]
line = paragraph[prev+1:cur+1]
broken.insert(0,line)
cur = prev;

set_paragraph(broken)

A small example text, faked in monospace:

You may never have thought of it, but fonts (better: -0.111111111111
typefaces) usually have a mathematical definition somehow. -0.666666666667
If a font is given as bitmap, this is often 0.888888888889
a result originating from a more compact description. 0.0
Imagine the situation that you have bitmaps at 300dpi, and -0.777777777778
you buy a 600dpi printer. It wouldn’t look pretty. 0.25
There is then a need for a mathematical way of 0.555555555556
describing arbitrary shapes. These shapes can also be 0.0
three-dimensional; in fact, a˜lot of the mathematics in -0.285714285714
this chapter was developed by a car manufacturer for 0.0
modeling car body shapes. But let us for now only 0.222222222222
look in two dimensions, which means that the curves 0.125
are lines, rather than planes.

We see ugly stretched break in line 3, especially after the compressed line 2. However,
both of them fit the test.

It is in fact simple to turn this into a dynamic programming solution that considers a
global minimum:

def update_cost(a,w,ratio):
global cost
if ratio<=1 and ratio>=-1:

to_here = abs(ratio)
else: to_here = 10000
if a>0:

from_there = cost[a-1][’cost’]
to_here = to_here+from_there

else: from_there = 0
if cost[w][’cost’]==0 or to_here<cost[w][’cost’]:

cost[w][’cost’] = to_here; cost[w][’from’] = a-1

Victor Eijkhout

126 CHAPTER 3. BREAKING THINGS INTO PIECES

3.4.3.2 Best fit

In the best fit strategy, we compute badness from the stretch/shrink ratio. This involves
only a slight change in the cost computation function:

def update_cost(a,w,ratio):
global cost
to_here = 100*abs(ratio)**2
if a>0:

from_there = cost[a-1][’cost’]
to_here = to_here+from_there

else: from_there = 0
if cost[w][’cost’]==0 or to_here<cost[w][’cost’]:

cost[w][’cost’] = to_here; cost[w][’from’] = a-1
The same text:
You may never have thought of it, but fonts (better: -0.111111111111
typefaces) usually have a mathematical definition somehow. -0.666666666667
If a font is given as bitmap, this is often a 0.5
result originating from a more compact description. 0.5
Imagine the situation that you have bitmaps at 300dpi, and -0.777777777778
you buy a 600dpi printer. It wouldn’t look pretty. 0.25
There is then a need for a mathematical way of 0.555555555556
describing arbitrary shapes. These shapes can also be 0.0
three-dimensional; in fact, a˜lot of the mathematics in -0.285714285714
this chapter was developed by a car manufacturer for 0.0
modeling car body shapes. But let us for now only 0.222222222222
look in two dimensions, which means that the curves 0.125
are lines, rather than planes.

While there are no lines stretched with ρ >, the quadratic function has improved the
break in line 3.

3.4.3.3 Total fit

For the algorithm that TEX uses, we have to distinguish between lines that are tight,
decent, loose. This makes our datastructure more complicated:

def init_costs():
global cost
nul = [0,0,0]
cost = len(paragraph)*[0]
for i in range(len(paragraph)):

cost[i] = nul[:]
for j in range(3):

cost[i][j] = {’cost’:10000, ’from’:-2}

TEX – LATEX – CS 594

3.4. TEX’S LINE BREAKING ALGORITHM 127

for j in range(3):
cost[0][j] = {’cost’:10000, ’from’:-1}

An element cost[i] is now an array of three possible breakpoints, one in each of
the classifications. An actual breakpoint is now in cost[word][type][’from’]
and cost[word][type][’cost’].

The cost computation becomes more complicated:
def minimum_cost_and_type(w):

global cost
c = 10000; t = 0
for type in range(3):

nc = cost[w][type][’cost’]
if nc<c:

c = nc; t = type
return [c,t]

def update_cost(a,w,ratio):
global cost
type = stretch_type(ratio)
to_here = 100*abs(ratio)**2
if a>0:

[from_there,from_type] = minimum_cost_and_type(a-1)
to_here += from_there

else: from_there = 0
if cost[w][type][’cost’]==0 or\

to_here<cost[w][type][’cost’]:
cost[w][type][’cost’] = to_here;
cost[w][type][’from’] = a-1

Exercise 34. The total fit code does not yet contain the equivalent
of TEX’s \adjdemerits. Add that.

Let us look at the same test text again:
You may never have thought of it, but fonts (better: -0.111111111111
typefaces) usually have a mathematical definition 1.2
somehow. If a font is given as bitmap, this is often a -0.454545454545
result originating from a more compact description. 0.5
Imagine the situation that you have bitmaps at 1.0
300dpi, and you buy a 600dpi printer. It wouldn’t look -0.333333333333
pretty. There is then a need for a mathematical way of -0.4
describing arbitrary shapes. These shapes can also be 0.0
three-dimensional; in fact, a˜lot of the mathematics in -0.285714285714
this chapter was developed by a car manufacturer for 0.0
modeling car body shapes. But let us for now only 0.222222222222
look in two dimensions, which means that the curves 0.125

Victor Eijkhout

128 CHAPTER 3. BREAKING THINGS INTO PIECES

are lines, rather than planes.

In this output, line 2 is stretched further than before, to prevent lower badnesses later.

Exercise 35. Add the functionality for hanging indentation to this
code.

Exercise 36. (bonus point exercise) TEX has the possibility of
forcing a paragraph to be a line longer or shorter than optimal. Im-
plement that.

3.4.3.4 Utility parts

File header: we read a text and store it.

#! /usr/bin/env python

import sys

max_line_length = 60

paragraph = []
while 1:

try:
a = raw_input()
paragraph.extend(a.split())

except (EOFError):
break

In order to fake stretch and shrink with a monospace font, we let a ‘space’ be two
spaces by default.

def line_length(words):
l = 2*(len(words)-1)
for w in words:

l += len(w)
return l

#
ratio = -1 : shrink each double space to one
ratio = 1 : stretch each double space to three
#
def compute_ratio(line):

spaces = len(line)-1
need = 1.*(max_line_length-line_length(line))

TEX – LATEX – CS 594

3.4. TEX’S LINE BREAKING ALGORITHM 129

#print "ratio:",need,spaces
if spaces==0: return 10000
else: return need/spaces

Output formatting with this idea:

def set_paragraph(para):
for l in range(len(para)-1):

line = para[l]
set_line(line)

set_last_line(para[len(para)-1])
def set_line(line):

shortfall = max_line_length-line_length(line)
for w in range(len(line)-1):

sys.stdout.write(line[w])
if shortfall>0:

sys.stdout.write(’ ’); shortfall = shortfall-1
elif shortfall<0:

sys.stdout.write(’ ’); shortfall = shortfall+1
else:

sys.stdout.write(’ ’)
sys.stdout.write(line[len(line)-1])
print " ",compute_ratio(line)

def set_last_line(line):
for w in range(len(line)-1):

sys.stdout.write(line[w])
sys.stdout.write(’ ’)

sys.stdout.write(line[len(line)-1])
print

Victor Eijkhout

130 CHAPTER 3. BREAKING THINGS INTO PIECES

NP completeness.

3.5 Introduction

The ‘NP’ stands for ‘nondeterministic polynomial time’, which stands for the fact that
a solution can be checked (not: found) in polynomial time. This class of algorithms
is informally characterized by the fact there is polymomial time for checking their
solution. However, it is also true that there is no polynomial algorithm known for
solving them.

The fact that there is no efficient algorithms known would not be bad if it could be
proved that no efficient algorithm exists.

TEX – LATEX – CS 594

3.5. INTRODUCTION 131

However, also there exists no non-polynomial lower bound on the solution time. Thus,
the question whether they can be solved in polynomial time is still open. Since methods
in this class can all be translated into each other, having a solution method for one
implies that methods exist for all of them. This also means that none of the problems
in this class have been solved so far.

Victor Eijkhout

132 CHAPTER 3. BREAKING THINGS INTO PIECES

3.6 Basics

3.6.1 Optimization versus decision problems

Many problems that are said to be NP-complete are optimization problems. For in-
stance, in the traveling salesman problem the shortest route through a set of cities is
asked. However, it is more convenient to look at decision problems, that is, problems
that have a yes or no answer for each input.

It is not hard to transform an optimization problem into a decision problem. Rather
than asking for an optimal solution, we determine a bound B, and ask whether there is
a solution that is within that bound.

Exercise 37. Finish this argument. Show that, if we can solve the
optimization problem, we can solve the decision problem. Now,
supposing we can solve the decision problem, how does that give
a solution of the optimization problem? Assume that the outcome
of the optimization problem is an integer quantity. Do you have to
make other assumptions; discuss? What is the complexity of the one
solution method given a certain complexity for the other?

3.6.2 Language of a problem

For each optimization or decision problem we can defined ‘instances’, which are ways
of setting all the free variables of the problem. Since these variables are in sets of types
that depend on the problem, we can not be more precise here. A problem can then
be phrased as a question over this set of instances: which instances optimize the cost
function, or which give a yes answer. That last set we will denote YΠ.

Again depending on the problem, we can encode instances of a problem. For instance,
in the traveling salesman problem, an instance would be encoded as the ordered list of
cities to pass through.

With this, we can define the language of a problem:

L[Π, e] = {the instances in YΠ encoded under e}

3.6.3 Turing machines

A Turing machine, given some input, can halt with the yes state qY , the no state qN ,
or can never halt. We say that a string is accepted if it leads the Turing machine to
halt with qY . The language LM of a Turing machine M is the set of strings that are
accepted.

TEX – LATEX – CS 594

3.7. COMPLEXITY CLASSES 133

A deterministic Turing machine (DTM) M is said to solve a problem Π (under some
encoding e), or equivalently to recognize L[Π, e], if

• it halts for all strings over its input alphabet, and
• its language LM is L[Π, e].

Note that ‘solving a problem’ here actually means ‘recognizing a solution of the prob-
lem’. This DTM is a solution checker, not a solution generator.

As an example, consider the recast the traveling salesman problem ‘does a route,
shorter than B, exist?’. The set of purported solutions are then lists of cities, and the
DTM gives for each list a verdict ‘yes, this route is shorter than B’ or ‘no, this route is
not shorter than B’.

3.7 Complexity classes

3.7.1 Class P

This allows us to define class P :

P = {L : there is DTM that recognizes L in polynomial time}
and with this

Π ∈ P ≡ L[Π, e] ∈ P for some encoding e

≡ there is a polynomial time DTM that recognizes L[Π, e]

What this means is that for problems in P there is a polynomial time Turing machine
that recognizes strings in YΠ as valid, and that on strings not in YΠ it both halts, and
gives a negative verdict.

3.7.2 Class NP

Solving the traveling salesman problem may be hard, but if we have a network and
some bound, and someone gives us an itinerary with the claim that it satisfies that
bound, we can check this with a DTM in polynomial time. We can now build a non-
deterministic Turing machine (NDTM) which ‘solves’ such problems: given a decision
problem it ‘guesses’ some purported solution, and then checks (with a DTM) whether
that solves the decision problem. The guessed solution is called a ‘certificate’.

Clearly, only if the decision problem has an answer of ‘true’ can the NDTM guess a
solution, so the YΠ of this problem is precisely the set of decision problem instances
with a yes answer.

For instance, for the traveling salesman problem, the instances in YΠ are a combination
of a cities network plus a feasible bound on the travel time. The non-deterministic

Victor Eijkhout

134 CHAPTER 3. BREAKING THINGS INTO PIECES

Turing machine would then guess an itinerary, and it can be checked in polynomial
time that that is indeed a valid route, and that is satisfies the bound.

We can write this whole story compactly: a problem Π is in NP if there is a polynomial
time function A(·, ·) such that

w ∈ YΠ ⇔ ∃C : A(w,C) = true

and C itself can be polynomially generated.

The final condition on the generation of the certificate is needed for a total polynomial
runtime, but in practice it is not much of a limitation. For instance, in the traveling
salesman problem, a list of cities can be guessed in linear time.

Exercise 38. Prove that NP is closed under union and intersection.
What difficulty is there in showing that it is closed under comple-
ment taking?

3.7.3 Examples

As was indicated above, while finding a solution to a problem is often hard, check-
ing that something is a solution is often fairly simply and doable in polynomial time.
A nontrivial example of a polynomial time problem is checking whether a number
is prime. This question was only settled in 2002. Before that there were polynomial
time probabilistic testers, which would test a number and return a verdict with high
reliability, or with a high probability of polynomial running time.

Exercise 39. Why is the following algorithm not a linear time so-
lution to the PRIME problem?
for i = 0 . . .

√
n:

if mod(n, i) ≡ 0
return true

Other algorithms have provably an exponential running time. Examples here are find-
ing the best move in chess, or checking statements in Pressburger arithmetic.

It is possible to find levels in between polynomial and exponential. The problem of
factoring an integer (note that this is more powerful than primality testing) has a
runtime of O(exp((n · 64/9)1/3)(log n)2/3). Interestingly, on a quantum computer, a
polymial algorithm is known; see http://en.wikipedia.org/wiki/Shors_
algorithm.

In the next section we will go further into the middle ground, of algorithms for which
no polymomial time algorithm is known, but for which no exponential bound is known
either.

TEX – LATEX – CS 594

http://en.wikipedia.org/wiki/Shors_algorithm
http://en.wikipedia.org/wiki/Shors_algorithm

3.8. NP-COMPLETENESS 135

3.8 NP-completeness

3.8.1 Transformations

Often it is possible to transform one problem into another. This has the advantage that,
if you prove that one problem is in a certain class, the other one is also in that class. Of
course this depends on the nature of the transformation.

We will here consider ‘polynomial transformations’. Let L1 and L2 be the languages
of two problems over alphabets

∑∗
1 and

∑∗
2 respectively, then f is a polymomial

transformation of problem 1 into problem 2 if

• There is a DTM that computes f(x) in time Tf (x) ≤ pf (|x|) for some poly-
nomial pf , and
• For all x ∈

∑∗
1, x ∈ L1 iff f(x1) ∈ L2.

The transformation does not have to be a one-to-one mapping, so it is sometimes ex-
plicitly terms a ‘many-to-one polynomial transformation’.

Lemma 1 Suppose f is a polynomial transformation from L1 to L2, then

L2 ∈ P ⇒ L1 ∈ P

Proof: assume that M2 : L2 → {0, 1} is a DTM that recognizes L2, then M2 ◦ f is a
DTM that recognizesL1, and this composition still runs in polynomial time TM2◦f (x) ≤
pT2(|pf (|x|)|).

If L1 transforms to L2 (in polynomial time), we notate that as L1 ≤ L2. This notation
also suggests the idea that L1 is easier than L2.

It is easy to see that

L1 ≤ L2 ∧ L2 ≤ L3 ⇒ L1 ≤ L3,

that is, the ‘transforms into’ relation is transitive.

3.8.2 NP-complete

A language L is said to be NP-complete if

• L ∈ NP , and
• for all L′ ∈ NP : Ł′ ≤ L

(Languages that satisfy the second clause but not the first are called ‘NP-hard’. One
example is the halting problem, which is known not to be decidable. In other words,
the DTM that should recogize the language does not always halt with yes or no.)

Victor Eijkhout

136 CHAPTER 3. BREAKING THINGS INTO PIECES

Informally, the class NP-complete is that of the problems where a solution can be
verified quickly (meaning, in polynomial time). On the other hand, P is the class of
problems where the solution can be computed quickly. The question whether these
classes are disjoint is open. In fact, you can win a million dollars by settling it one way
or another.

Lemma 2 If L1, L2 ∈ NP , L1 is NP-complete, and L1 ≤ L2, then L2 is NP-
complete.

Proof: the only thing we need to check is that every L′ ≤ L2 for all L2 ∈ NP . Since
L1 is NP-complete, L′ ≤ L1. Now use the transitivity of the transform relation.

3.8.3 Proving NP-completeness

Above we saw that, given one NP-complete problem, others can easily be proved NP-
complete by constructing a mapping between the one problem and the other. This
raises a bootstrapping question.

Stephen Cook was the first to prove the NP-completeness of any problem (1971), in his
case the satisfiability problem. This is the problem of, given boolean variables x1 . . . xn
and a logical formula F (x1, . . . , xn), deciding whether there is a way of specifying the
variables such that the result is true.

Examples: the formula x1∨ 6= x1 is always true; x1∧ 6= x1 is always false, and
x1∧ 6= x2 is only true for the pair (x1 = T, x2 = F). For the first and third examples,
there are values of x1, x2 for which the formula is true, so these are satisfiable. The
second example is not satisfiable.

The Boolean satisfiability problem is in NP because a non-deterministic Turing ma-
chine can guess an assignment of truth values to the variables, determine the value of
the expression under that assignment, and accept if the assignment makes the entire
expression true.

Now, to prove that the satisfiability problem is NP-complete, it remains to show that
any language L ∈ NP can polynomially be transformed into it. This is done by as-
suming a NDPT Turing machine for L, and transforming it into a logical formula, so
that there is a correspondence between successful computation in the NDTM, and a
satisfied logical formula.

Let the Turing machine be

M = 〈Q, s,Σ, F, δ〉
where

TEX – LATEX – CS 594

3.8. NP-COMPLETENESS 137

Q is the set of states, and s ∈ Q the initial state,
Σ the alphabet of tape symbols,
F ⊂ Q the set of accepting states, and
δ ⊂ Q× Σ×Q× Σ× {−1,+1} the set of transitions,

and that M accepts or rejects an instance of the problem in time p(n) where n is the
size of the instance and p(·) is a polynomial function.

We describe for each instance I a Boolean expression which is satisfiable if and only
if the machine M accepts I .

The Boolean expression uses the variables set out in the following table, where q ∈ Q,
−p(n) ≤ i ≤ p(n), j ∈ Σ, and 0 ≤ k ≤ p(n):

Variables Intended interpretation How many
Tijk True iff tape cell i contains sym-

bol j at step k of the computation
O(p(n)2)

Hik True iff the M ’s read/write head
is at tape cell i at step k of the
computation.

O(p(n)2)

Qqk True iff M is in state q at step k
of the computation.

O(p(n))

Define the Boolean expression B to be the conjunction of the clauses in table ??, for
all −p(n) ≤ i ≤ p(n), j ∈ Σ, and 0 ≤ k ≤ p(n).

This table describes how to construct a logical formula in the variables Tijk, Hik, Qqk
(describing tape contents, head positions, and states, respectively) that corresponds to
the Turing machine. If there is an accepting computation for M on input I , then B is
satisfiable, by assigning Tijk, Hik and Qik their intended interpretations. On the other
hand, if B is satisfiable, then there is an accepting computation for M on input I that
follows the steps indicated by the assignments to the variables.

How large is B? There are O(p(n)2) Boolean variables, each of which may be en-
coded in space O(log p(n)). The number of clauses is O(p(n)2). So the size of B is
O((log p(n))p(n)2). This is polynomial in n, the size of the input, so the transforma-
tion is certainly a polynomial-time reduction, as required.

Victor Eijkhout

138 CHAPTER 3. BREAKING THINGS INTO PIECES

For all: Add the clauses Interpretation How many
clauses?

initial conditions
Tape cell i of the
input I contains
symbol j.

Tij0 Initial contents of the
tape.

O(p(n))

Qs0 Initial state of M O(1)
H00 Initial position of

read/write head.
O(1)

physical constraints
symbols j 6= j′ Tijk → ¬Tij′k One symbol per tape

cell.
O(p(n)2)

states q 6= q′ Qqk → ¬Qq′k Only one state at a time. O(p(n))
cells i 6= i′ Hik → ¬Hi′k Only one head position

at a time.
O(p(n))

Turing machine basics
i, j, k Tijk = Tij(k+1) ∨Hik Tape remains unchanged

unless written.
O(p(n)2)

f ∈ F The disjunction of the
clauses Qf,p(n)

Must finish in an accept-
ing state.

O(1)

transition table
(q, σ, q′, σ′, d) ∈
δ

The disjunction of the
clauses
(Hik ∧ Qqk ∧ Tiσk) →
(H(i+d)(k+1) ∧Qq′(k+1) ∧
Tiσ′(k+1))

Possible transitions at
computation step k when
head is at position i.

O(p(n)2)

Table 3.1: Translation table from a NDPT Turing machine to a logic formula

Page breaking.

3.9 Introduction

TEX’s page breaking algorithm is simpler than the line breaking one. The reason for
this is probably that global optimization of breakpoints, the way it is done in the para-
graph algorithm, would take prohibitively much memory, at least, for the amount of
memory that computers around 1980 had. The algorithm used is related to the ‘best fit’
algorithm we discussed in the line breaking chapter.

TEX – LATEX – CS 594

3.10. TEX’S PAGE BREAKING ALGORITHM 139

Theoretically, page breaking is a more complicated problem than line breaking. We
will explore the issues in section 3.11, but first we will briefly go into the algorithms
that TEX actually uses.

3.10 TEX’s page breaking algorithm

The problem of page breaking has two components. One is that of stretching or shrink-
ing available glue (mostly around display math or section headings) to find typograph-
ically desirable breakpoints. The other is that of placing ‘floating’ material, such as
tables and figures. These are typically placed at the top or the bottom of a page, on or
after the first page where they are referenced. These ‘inserts’, as they are called in TEX,
considerably complicate the page breaking algorithms, as well as the theory.

3.10.1 Typographical constraints

There are various typographical guidelines for what a page should look like, and TEX
has mechanisms that can encourage, if not always enforce, this behaviour.

1. The first line of every page should be at the same distance from the top. This
changes if the page starts with a section heading which is a larger type size.

2. The last line should also be at the same distance, this time from the bottom.
This is easy to satisfy if all pages only contain text, but it becomes harder
if there are figures, headings, and display math on the page. In that case,
a ‘ragged bottom’ can be specified.

3. A page may absolutely not be broken between a section heading and the
subsequent paragraph or subsection heading.

4. It is desirable that
(a) the top of the page does not have the last line of a paragraph started on

the preceding page
(b) the bottom of the page does not have the first line of a paragraph that

continues on the next page.

3.10.2 Mechanisms

The basic goal of page breaking in TEX is to fill up a box of height \vsize. The is
the goal size of the material without header and footer lines. The box is constructed by
adding material to the vertical list until an optimal breakpoint is found. The material
before that breakpoint is then put in \box255, and the code in \output, the ‘output
routine’ is executed. The command to send a box to the output file is \shipout.

The typographical rules in the previous section can be realized fairly simply in TEX.

Victor Eijkhout

140 CHAPTER 3. BREAKING THINGS INTO PIECES

1 The vertical location of the first line on a page is controlled by \topskip.
If the baseline of the first line is closer to the top than this parameter, glue is
inserted to make up for the difference.

2 The vertical location of the last line of a page is controlled by \maxdepth.
If the last line of the page is deeper than this amount, the reference point of
the box is shifted down accordingly.

3 Preventing page breaks between vertical material of different kinds can be
done by the proper use of penalties and glue.

4a A break after the first line of a paragraph is prevented by setting the \clubpenalty.
4b A break before the last line of a paragraph is prevented by setting the \widowpenalty.

3.10.3 Breakpoints

TEX builds up a current page that is a vertical list of material. It regularly tests whether
there is enough material to fill a box of height \vsize while incurring a badness
less than 10, 000. The breakpoints are similar to those in the line breaking algorithm,
mostly occurring at a penalty, or at a glue that follows non-discardable material.

3.10.4 Some output routines

The very simplest output routine simply takes the vertical list and ships it to the output
file:

\output={\shipout\box255}

Slighly more sophisticated, a header and footer are added:

\output={
\setbox255=\vbox{ <header>

\box255
<footer>

}
\shipout\box255
}

The following example makes the page one line longer if a widow (break before the
last line of a paragraph) occurs. First we save the original \vsize and we declare a
recognizable value for the \widowpenalty:

\newif\ifEnlargedPage \widowpenalty=147
\newdimen\oldvsize \oldvsize=\vsize

The output routine now works by testing for the widow penalty, and if it is found,
increasing the \vsize and returning the page material to the list by \unvbox255:

TEX – LATEX – CS 594

3.11. THEORY OF PAGE BREAKING 141

\output={
\ifEnlargedPage <output the page>
\else \ifnum \outputpenalty=\widowpenalty

\global\EnlargedPagetrue
\global\advance\vsize\baselineskip
\unvbox255 \penalty\outputpenalty

\else \shipout\box255
\fi \fi}

Here is the missing bit of code that outputs the enlarged page:

\ifEnlargedPage \shipout\box255
\global\LargePagefalse
\global\vsize=\oldvsize

3.10.5 Insertions

Floating material, such as tables and figures, are handled by a mechanism called ‘in-
sertions’. Insertions fall in different classes, and insertion material is specified by

\insert<class number>{ <material> }

If the class number is n, then

• When the output routine is active, \boxn contains the material of insertion
class n.
• \dimenn specifies the maximum amount of insertion material that is al-

lowed to be placed on one page. If there is more material, it is split with the
remainder carried over to the next page.
• There are further fine points to this algorithm.

Insertions are thus added, for as far as possible, to the page being formed when the
\insert command is given. TEX has no way of moving insertions to an earlier page,
although moving material to a later page – presumable where more space is available –
is possible.

3.11 Theory of page breaking

At first glance, the page breaking problem is much like the line breaking problem, ex-
cept with larger basic blocks, and vertically instead of horizontally. In the line breaking
problem, a long list of words is broken into lines, adjusting the margins by stretching
or shrinking the interword space. In the page breaking problem, a vertical list of lines,
display formulas, and other vertical material, is broken into equal sized pages, using
the various amounts of vertical space for taking up the slack.

Victor Eijkhout

142 CHAPTER 3. BREAKING THINGS INTO PIECES

However, the page breaking problem becomes much harder if we include the possi-
bility of figures and other floating material. In that case, the computed badness (the
measure we try to minimize in the breaking process) will include reflect that we want
a figure to be close to pages that reference it, or satisfy other ordering rules involv-
ing references to it. Maybe surprisingly, even rather simple cost functions make page
breaking into an NP-complete problem.

To get an appreciation of the issues, consider this sequence of pages with figures:

References to the figures are here indicated with parenthesized numbers. We see that
out of 5 references, 3 are not to a figure on the same page. However, if we move one
line from page 1 to 2, and move figure 3 forward a page, we get:

where we see that only one reference is not to the same page. Unfortunately this is a
backward reference.

In the remainder of this chapter we will investigate theoretical aspects of functions
that try to optimize placement of floating material in a global fashion. It should be
noted that this is considerably more sophisticated than what is implemented in TEX.
The available algorithm is closer to a ‘first fit’ strategy.

We will investigate two closely related page breaking algorithms. We show how a

TEX – LATEX – CS 594

3.11. THEORY OF PAGE BREAKING 143

particular form of the page breaking problem (the ‘MQ’ problem) is equivalent to the
2-satisfyability problem, which is known NP-complete. As is usual in the context of
proving NP-completeness, we transform our minimization problem ‘give the solution
with minimum cost’ into a decision problem by asking ‘is there a solution with a
cost ≤ B’ where B is some predetermined bound.

The very similar ‘ML’ problem, which only differs in the form of the badness function,
does have a polynomial time solution.

3.11.1 The MQ problem is NP-complete

We consider the MQ page breaking problem: Multiply referenced figures, and Quadratic
badness measure. Under the simplifying assumptions that each figure takes a whole
page, we then have a set T = {t1, . . . , tN} of text blocks and a set F = {f1, . . . , fN}
of figures and a function W : T × F such that W (ti, fj) describes how many times
text block i references figure j. We assume a bound W (ti, fj) ≤ q(N) (where q is a
polynomial) dependent on the size of the problem.

The MQ problem is now the question whether there is an page ordering of text blocks
and figures, that is, a mapping P : (T ∪ F)→ {1, 2, . . . , 2N} such that

P (ti) < P (tj)
P (fi) < P (fj)

∀1≤i<j≤N

and so that

S =
∑
i,j

W (ti, fj)(P (ti)− P (fj))
2 ≤ B

In order to show that this problem is NP-complete, we show that it can be transformed
into an instance of the maximum 2-satisfiability problem. This means that solving the
one problem is equivalent to solving the other, and since the transformation is done in
polynomial time, the two problems have the same complexity.

The maximum 2-satisfiability (MAX 2-SAT problem can be formulated as follows. Let
there be given n binary variables x1, . . . , xn and m clauses {u1 ∨ v1, . . . , um ∨ vm},
where ui = xj or ui = ¬xj for some j. Given a bound K, is there a way of setting the
xi variables such that at least K of the clauses are satisfied? This problem is known to
be NP-complete.

We will now make a pagination problem that ‘translates’ an instance of the 2-satisfyability
problem. That is, given a configuration of binary variables and clauses and a bound K
to satisfy, we will make a pagination problem with bound B such that the one bound is
satisfied if and only if the other is. Then, since MAX 2-SAT is NP-complete, it follows
that this particular pagination problem is also NP-complete.

Victor Eijkhout

144 CHAPTER 3. BREAKING THINGS INTO PIECES

3.11.1.1 Construction of the translation

We make the translation between the two types of problems by constructing the page
assignment function P , and the weight function W . There are three aspects we need
to take care of, so we let B = B1 + B2 + B3, and we will determine the Bi bounds
separately.

First of all we setW (ti, fi) = b1 sufficiently large that only configuration with |P (ti)−
P (fi)| = 1 will satisfy the bound. (Recall that the badness is a sum ofW (ti, fj)(P (ti)−
P (fj))

2 terms.) To allow for the pages to be ordered this way, we let B1 = Nb1. The
b1 quantity will be defined in terms of B2 and B3 as

b1 = d(B2 +B3)/3e+ 1

Supposing that at least one ti, fi pair is not adjacent, then it follows from this bound
that the badness will be

S ≥ (N − 1)b1 + 22b1 = (N + 3)b1 > B

where the N − 1 corresponds to the pairs that are adjacent, and the 22 to at least one
pair at distance 2.

Since text blocks and are next to each other, the only remaining question is which
comes first. This limits the number of cases we need to consider in the remainder of
this proof.

Now let parameters n for the number of variables and m for the number of clauses be
as described above, then our pagination problem will have N text blocks and figures,
where N = 2n + 2m. The first 4n pages encode the values of the variables xi, with
each consecutive 4 pages corresponding to one variable:

4i− 3 4i− 2 4i− 1 4i
t2i−1 f2i−1 f2i t2i if xi is true
f2i−1 t2i−1 t2i f2i if xi is false

To ensure that these are the only configuration that will satisfy the bound, setW (t2i−1, f2i) =
W (f2i−1, t2i) = b2 large enough. Either of the above patterns then contributes 2 ·
22b2 = 8b2, while the other possibilities (t f t f and f t f t) would contribute (12 +
32)b2 = 10b2.

Correspondingly, we allow a bound of B2 = 4b2
∑

(i − j)2 where i, j range over the
pairs that satisfy W (ti, fj) = b2. Defining

b2 = 8(m− k) + 5

is sufficient to make violation of this condition outweigh the gain from more clauses
being satisfied.

TEX – LATEX – CS 594

3.11. THEORY OF PAGE BREAKING 145

Next, the 4m remaining pages will encode the clauses in a similar manner:

4n+ 4j − 3 4n+ 4j − 2 4n+ 4j − 1 4n+ 4j
t2n+2j−1 f2n+2j−1 if uj is true
f2n+2j−1 t2n+2j−1 if uj is false

t2n+2j f2n+2j if vj is true
f2n+2j t2n+2j if vj is false

Further conditions onW ensure that the uj variables indeed correspond to the proper xi.
For instance

W (t2n+2j−1, f2i) = W (t2i = f2n+2j−1) = b2 if uj = xi

This term contributes 2d2b2 to the badness, where d is twice the difference between the
subscripts, in this case d = (2n+2j−2i). With a mismatch, a t and f page assignment
are reversed, so the contribution becomes ((d− 1)2 + (d+ 1)2) = 2(d2 + 1)b2.

Proper truth values of the clauses are enforced as follows. Observe that the combination
where uj and vj are both false is the only one that gives a false result. This corresponds
to the pagination

f2n+2j−1 t2n+2j−1 f2n+2j t2n+2j

In this configuration f2n+2j1 and t2n+2j are spread the furthest apart, so we penalize
that with

W (t2n+2j , f2n+2j1) = 5, W (t2n+2j−1, f2n+2j) = 3.

This gives a contribution of 32 for the three true cases, and 48 for the false result.
Correspondingly, to allow for K clauses to be satisfied we allow B3 = 48(m−K) +
32K.

Finally, by defining the polynomial q(i) = 64(i + 1)4, we have q(N) > b1 ≥ b2 >
5 > 3, so W is bounded as required.

3.11.1.2 NP-completeness

In order to establish NP-completeness of the problem MQ, we need to establish that
something is a true instance of MAX 2-SAT iff the translated instance is true for MQ.

Given a truth assignment of the xis that makes K clauses true, we can now construct
a pagination P with a satisfied bound of B.

Conversely, let a pagination with bound B be given, then the corresponding truth as-
signment makes K clauses true. To see this, inspect each of the details of the transla-
tion between the problems, and observe that any violation will cause the bound B to
be exceeded.

Victor Eijkhout

146 CHAPTER 3. BREAKING THINGS INTO PIECES

3.11.2 The ML problem has a polynomial time solution

The ‘ML’ problem (Multiply referenced figures, Linear badness function) is identical
to MQ, except for the form of the badness function. Having a linear badness function
makes it possible to solve this problem by dynamic programming in linear time.

As in MQ, we have text blocks ti and figures fj that take up whole pages. We general-
ize the problem slightly to having different numbers of text and figure blocks:

T = {t1, . . . , tN}, F = {f1, . . . , fM}
The function W : T × F is such that W (ti, fj) ≥ 0 describes how many times text
block i references figure j.

The ML problem is now the question whether, given the above, and given a bound B,
there is an page ordering of text blocks and figures, that is, a mapping P : (T ∪ F)→
{1, 2, . . . ,M +N} such that

P (ti) < P (tj)
P (fi) < P (fj)

∀1≤i≤N,1≤j≤M

and so that

S =
∑
i,j

W (ti, fj) |P (ti)− P (fj)| ≤ B

3.11.2.1 Dynamic programming solution

The key to a dynamic programming solution of ML is to identify subproblems. The
subproblem we consider is

Given i text blocks and j figures, what is the least badness of placing
these on the first i+ j pages. Call this partial badness Bij .

The problem here is the ‘dangling’ references (tr, fs) with r > i, s ≤ j or r ≤ i, s >
j. The measure Ri,j is defined as the number of dangling references after these blocks
and figures have been placed.

A dangling reference is either

A forward reference: A text block refering to a figure not yet placed. The number of
forward references from the i+ j block is

Fij =
∑
1≤r≤i
j<s≤M

W (tr, fs)

A backward reference: A figure that will be reference on a text block not yet placed.)
The number of backward references from the i+ j block is

Bij =
∑

i<r≤N
1≤s≤j

W (tr, fs)

TEX – LATEX – CS 594

3.11. THEORY OF PAGE BREAKING 147

F

U B

(i,j)

r

s

Figure 3.1: The Fij , Bij , and Uij areas in (r, s) space

which makes Rij = Fij +Bij .

For badness calculations involving dangling references, we count only the part to the
boundary of the i, j region. Formally:

Bij = B
(1)
ij +B

(2)
ij

where

B
(1)
ij =

∑
r≤i
s≤j

W (tr, fs) |P (tr)− P (fs)|

is the part of the badness due to references that are fully resolved within the pages
already placed; the part of the badness due to dangling references is

(1)

(2)

Figure 3.2: Resolved and dangling references of a block of pages

B
(2)
ij =

∑
r>i
s≤j

W (tr, fs) `(i, j; r, s) +
∑
r≤i
s>j

W (tr, fs) `(i, j; r, s)

where

`(i, j; r, s) =

{
i+ j − P (fs) if r > i
i+ j − P (tr) if s > j

Victor Eijkhout

148 CHAPTER 3. BREAKING THINGS INTO PIECES

describes the part of the arc between tr and f2 that lies in the first i + j pages. These
two types of arcs are illustrated in figure 3.2.

Figure 3.3 illustrates how reference arcs change status when we go from i + j − 1 to
i+ j pages, say by placing text block ti:

(1)

(2)

i+j-1 i+j

(3)

Figure 3.3: Change in status of resolved and dangling references upon extending a
block of pages

(1) References that were unresolved with references originating in ti move their
contribution from the B(2) term to the B(1) term. (Note that a reference to
a page one location outside the current block is already fully counted in the
badness.)

(2) Dangling references that stay unresolved increase their contribution to the
B(2) term by (

∑
r≤i−1,s>j +

∑
r>i−1,s≤j)W (tr, fs)

(3) Arcs that used to fall completely outside the page block, but that are now
dangling in the new page block, add a contribution of

∑
r=i,s>jW (tr, fs) to

the B(2) term.∑
r>i,s≤jW (tr, fs) In sum, Bij = Bi−1,j + Rij . The same story holds for extending

i+ j − 1 pages by placing figure fj , so we have the recurrence

Bij = min(Bi−1,j , Bi,j−1) +Rij .

We still need to compute the Rij quantities, describing the number of dangling refer-
ences from placing i text blocks and j figures. Above we saw Rij = Fij + Bij . For
efficient calculation of these sums, it is convenient to make a table of

Uij =
∑
1≤r≤i
1≤s≤j

W (tr, fs)

which takes time O(NM), that is, quadratic in the total number of pages. Then

Rij = UiM + UNj − 2Uij ,

as is easily seen from figure 3.1.

TEX – LATEX – CS 594

3.11. THEORY OF PAGE BREAKING 149

3.11.3 Discussion

It is interesting to note that certain details of the NP-completeness proof of MQ rely
on the quadratic badness function, rather than on more ‘structural’ properties of the
problem.

Exercise 40. Find a place in the NP-completeness proof of MQ
that uses the quadratic badness function, and show that the under-
lying fact does not hold for linear functions. Does it hold for other
functions than quadratic?

Similarly, ML only has a dynamic programming solution thanks to the linear badness
function.

Exercise 41. Explain how the linearity of the badness function is
essential for the dynamic programming solution of ML.

Exercise 42. The discussion of the ML problem only gave the cost
computation. How can the actual page assignment be derived from
the given construction? What is the time and space complexity of
this part of the algorithm?

Victor Eijkhout

150 CHAPTER 3. BREAKING THINGS INTO PIECES

Projects for this chapter.
Project 3.1. What is the paragraph breaking algorithm of OpenOffice? Replace by

TEX’s algorithm.
Project 3.2. Write a paragraph breaking algorithm that prevents ‘rivers’ in the text.
Project 3.3. TEX’s line breaking algorithm is not just for good looks. Many aesthetic

decisions in typography actually influence readability of the document. Read
‘Digital Typography’ by Rubinstein [19] and find an issue to investigate.

Project 3.4. Many page layout parameters (Rubinstein [19] and the references therein)
have an influence on legibility. Has typographic design deteriorated in that
sense now that authors publish their own works? Do a study, using various
books in the library.

Project 3.5. The following sentence
Only the fool would take trouble to verify that this sentence was
composed of ten a’s, three b’s, four c’s, four d’s, forty-six e’s, six-
teen f’s, four g’s, thirteen h’s, fifteen i’s, two k’s, nine l’s, four m’s,
twenty-five n’s, twenty-four o’s. five p’s, sixteen r’s, forty-one s’s,
thirty-seven t’s, ten u’s, eight v’s, eight w’s, four x’s, eleven y’s,
twenty-seven commas, twenty-three apostrophes, seven hyphens
and, last but not least, a single !

is called a pangram. (There are other pangrams. Google for the combination
of ‘pangram’ and ‘Lee Sallows’ for this particular type.) Given a beginning
of the sentence (‘Only the fool. . . ’), solve the rest of the sentence by dynamic
programming.

TEX – LATEX – CS 594

Chapter 4

Fonts

Knuth wrote a font program, Metafont, to go with TEX. The font descriptions involve
some interesting mathematics.

Handouts and further reading for this chapter

Bezier curves and raster graphics are standard topics in computer graphics. The book
by Foley and Van Dam (section 11.2 about Splines) has been placed on reserve, T385.C587 .
More theoretical information can be found de Boor’s Practical Guide to Splines [2],
which unfortunately limits itself to spline functions.

Digital typography is a very wide area, spanning from perception psychology and
physiology to the electronics and mathematics of display equipment. The book by Ru-
binstein [19] is a good introduction. This book has been placed on reserve, Z253.3.R8 .

The relation between Bezier curves and aesthetics is explicitly discussed in http:
//www.webreference.com/dlab/9902/examples-ii.html.

151

http://www.webreference.com/dlab/9902/examples-ii.html
http://www.webreference.com/dlab/9902/examples-ii.html

152 CHAPTER 4. FONTS

Bezier curves.

4.1 Introduction to curve approximation

You may never have thought of it, but fonts (actually, typefaces) usually have a math-
ematical definition somehow. If a font is given as a bitmap, this is typically the re-
sult from a more compact description. Imagine the situation that you have bitmaps at
300dpi, and you buy a 600dpi printer. It wouldn’t look pretty.

There is then a need for a mathematical way of describing arbitrary shapes. These
shapes can also be three-dimensional; in fact, a lot of the mathematics in this chapter
was developed by a car manufacturer for modeling car body shapes. But let us for now
only look in two dimensions, which means that the curves are lines, rather than planes.

A mathematical formalism for curves should have these properties:

• The description should be clear and unambiguous.
• It should be easy to tinker with the shapes. This is important for the design

phase.
• Constructing and evaluating the curves should be computationally cheap.
• The curves should be well behaved: small changes in the definition should

not lead to unexpected bulges or spikes.
• Curves should be easily composable: if two curves describe adjacent pieces

of the shape, they should connect smoothly.

We actually have two problems that we want to solve:

1. The exact curve is known, and we want to approximate it, for instance by
something that is cheaper to compute, or

2. Only certain points are given, and we want to draw a smooth curve through
them.

We will tackle the second problem first.

4.1.1 Interpolation

The interpolation problem is that of, given points (x1, f1) . . . (xn, fn), drawing a curve
through them, for instance for purposes of computing intermediate values. Suppose
that we have decided on a polynomial for the interpolating curve. With n points we
need an n − 1st degree polynomial p(x) = pn−1x

n−1 + · · · + p1x + p0, which takes

TEX – LATEX – CS 594

4.1. INTRODUCTION TO CURVE APPROXIMATION 153

n coefficients. We can draw up the set of equations p(xi) = fi and solve that. The
system

pn−1x
n−1
1 + · · ·+ p1x1 + p0 = f1

. . .

pn−1x
n−1
n + · · ·+ p1xn + p0 = fn

can be written as Xp̄ = f̄ , where

X = (xji), p̄ =

 p1
...

pn−1

 , f̄ =

 f1 − p0
...

fn − p0


Solving this system is not overly expensive, but its numerical stability is questionable.
A better way of computing the same polynomial p is to define auxiliary polynomi-
als p(k):

p(k)(x) = ck(x− x1) · · · (x− xk−1) (x− xk+1) · · · (x− xn)

where ck is chosen so that p(k)(xk) = 1. From the fact that p(i)(xj) = δij , it follows
that

p(x) =
∑
i

fip
(i)(x), p(i)(x) =

∏
j 6=i

x− xj
xi − xj

(4.1)

interpolates the points as intended. It is easy enough to prove that polynomials are
uniquely defined by these interpolation points, so we have now computed the same
polynomial in a more stable way. A polynomial that is based on exact interpolation of
values in a number of points is called a ‘Lagrange interpolation’ polynomial.

Another type of interpolation is ‘Hermite interpolation’, where the derivatives are dic-
tated, rather than function values. Analogous to the above construction, we can define
polynomials

q(k) = ck(x− x1)2 · · · (x− xk−1)2 · (x− xk) · (x− xk+1)2 · · · (x− xn)2

where ck is chosen so that q(k)′(xk) = 1.

4.1.2 Approximation

The above notion of interpolation is sometimes applied to known curves. For instance,
by finding an interpolating polynomial we may aim to find a cheaper way of com-
puting values on the curve. This raises the question how well the interpolation curve
approximates the original curve.

In classical approximation theory there is usually a family of functions {fn}, typically
polynomials of increasing degree, such that ‖fn− f‖ → 0, typically on a closed inter-
val I . The Weierstrass approximation theorem tells us that every continuous function
on a closed bounded interval can be approximated by polynomials.

Victor Eijkhout

154 CHAPTER 4. FONTS

Figure 4.1: A family of functions that converges pointwise but not uniformly.

Note that this is uniform convergence:

∀ε∃N∀x∈I,n≥N : |fn(x)− f(x)| ≤ ε.
This is a stronger statement than pointwise convergence:

∀x∈I,ε∃N∀n≥N : |fn(x)− f(x)| ≤ ε.
It is easy to find families of functions fn that convergence in the pointwise sense, but
not uniformly; see figure 4.1.

The spline curves that we will study later in this chapter are a special case of Bernstein
polymials: the n-th Bernstein polynomials for a function f is

Bn(f)(t) =
n∑
p=0

(
n

p
)f(

p

n
)(1− t)n−ptp.

If f is continuous on [0, 1], this sequence converges uniformly to f . It is worth remark-
ing that these polynomials do not require computation of derivatives.

While the ideas behind Lagrange and Hermite interpolation will find applicability later
in this story, the idea of interpolating with a single, high degree, polynomial may not be
a good one from a point of uniform convergence. The error can be unacceptably large,
as can be seen in figure 4.2, where the dashed line is an interpolation on equispaced
points. In this case there is in fact not even pointwise convergence. There are a few
ways out of that, such as better choice of interpolation points or of basis functions. In
figure 4.2 the dotted line uses Tchebyshev interpolation points which is seen to remedy
the problem to a large extent.

However, the approach we will use here is that of piecewise approximations with rela-
tively low degree polynomials. This simplifies certain aspects, but we need to take care
to piece together such curves smoothly. For instance, with Lagrange interpolation the
direction of the curve at the end points can not be specified.

TEX – LATEX – CS 594

4.1. INTRODUCTION TO CURVE APPROXIMATION 155

Figure 4.2: The Runge effect of interpolating with a high degree polynomial

4.1.3 Computation with interpolation curves

While we will mostly investigate theoretical properties of interpolation curves, the
practical matter of how efficient it is to work with them, also deserves attention. In
equation (4.1) there are n terms involving nmultiplications and additions each, making
for an O(n2) cost. This can be considerably reduced by rewriting the formula as

p(x) =
∏
i

(x− ti) ·
∑
i

yi
x− ti

, yi = fi/
∏
j 6=i

(xi − xj),

which takes n additions, multiplications, and additions if the yi quantities are precom-
puted. We will now see a formulation that dispenses with the divisions, and that will
also be simpler if derivatives need to be computed.

The k-th ‘divided difference’ of a function g in the points τ1 . . . τk+1, notation [τ1, . . . , τk+1]g,
is the leading coefficient of the k-th order1 polynomial pk+1 that agrees with g in the
points τ1 . . . τk+1.

The simplest examples of divided differences are:

• The zeroeth divided difference of a function is the leading coefficient of a
zeroth order polynomial p(x) = c that agrees with that function in one point:
g(τ1) = g1. Clearly [τ1]g = g1.
• The first divided difference is the leading coefficient of a linear function that

1. It is convenient to talk about polymomials of a certain order rather than degree: a polynomial of
order k has a degree no more than k. We denote this set with

∏
<k+1. One advantage of this set is that it

is closed under summing.

Victor Eijkhout

156 CHAPTER 4. FONTS

agrees in two points:

[τ1, τ2]g =
g(τ2)− g(τ1)

τ2 − τ1
=

[τ2]g − [τ1]g

τ2 − τ1This equation may suggest to the reader a relation for higher divided differ-
ences. We shall see in lemma 4 that this indeed holds.

We now prove some facts about divided differences.

Lemma 3 Let pk+1 ∈
∏
<k+1 agree with g in τ1 . . . τk+1, and pk ∈

∏
<k with g in

τ1 . . . τk, then

pk+1(x)− pk(x) = [τ1, . . . , τk+1]g
k∏
i=1

(x− τi). (4.2)

Proof. Since pk is of a lower order, we immediately have

pk+1 − pk = [τ1, . . . , τk+1]gxk + cxk−1 + · · · .
Observing that pk+1 − pk is zero in ti for i ≤ k, it follows that

pk+1 − pk = C

k∏
i=1

(x− τi).

From this we get that C = [τ1, . . . , τk+1]g. •

If we repeat this lemma we find that

pk+1(x) =

k+1∑
m=1

[τ1, . . . , τm]g

m−1∏
i=1

(x− τi), (4.3)

which we can evaluate as
pk+1(x) = [τ1, . . . , τk+1]g

∏k(x− τi) + [τ1, . . . , τk]g
∏k−1(x− τi)

= [τ1, . . . , τk+1]g(x− τk)(ck + [τ1, . . . , τk]g(x− τk−1)(ck−1 + · · ·
where ck = [τ1, . . . , τk]g/[τ1, . . . , τk+1]g. This is a very efficient evaluation by Horner’s
rule.

The remaining question is how to construct the divided differences. We approach this
recursively.

Lemma 4 Divided differences can be constructed by, eh, dividing differences

[τ1, . . . , τn+1]g = ([τ1, . . . , τn]g − [τ2, . . . , τn+1]g) /(τ1 − τn+1). (4.4)

Proof. Let three polynomials be given:

• p(1)
n ∈

∏
<n agrees with g on τ1 . . . τn;

• p(2)
n ∈

∏
<n agrees with g on τ2 . . . τn+1;

TEX – LATEX – CS 594

4.2. PARAMETRIC CURVES 157

• pn−1 ∈
∏
<n−1 agrees with g on τ2 . . . τn.

Then by lemma 3

p
(1)
n − pn−1 = [τ1, . . . , τn]g

∏n
j=2(x− τj)

p
(2)
n − pn−1 = [τ2, . . . , τn+1]g

∏n
j=2(x− τj)

Now let pn+1 be the polynomial that agrees with g on τ1 . . . τn+1, then

pn+1 − p(1) = [τ1, . . . , τn+1]g
∏n
j=1(x− τj)

pn+1 − p(2) = [τ1, . . . , τn+1]g
∏n+1
j=2 (x− τj)

Subtracting both pairs of equations, we find two expressions for p(1)
n − p(2)

n :

([τ1, . . . , τn]g − [τ2, . . . , τn+1]g)

n∏
j=2

(x− τj) = [τ1, . . . , τn+1]g

n+1∏
j=2

−
n∏
j=1

 (x− τj)

Filling in τ2 . . . τn in this equation, we find zero for both sides. Using x = τ1 we find

([τ1, . . . , τn]g − [τ2, . . . , τn+1]g)
n∏
j=2

(τ1 − τj) = [τ1, . . . , τn+1]g
n+1∏
j=2

(τ1 − τj)

from which the lemma follows. •

From this lemma, we see easily that [τ1, . . . , τn]g can be computed in approximately
n2/2 additions and divisions.

4.2 Parametric curves

So far we have been looking at approximation by a function of a single value. That is,
we have y as a function of x. This rules out many curves, such as circles. We could
try expressing x as a function of y, or more generally rotating them, but that is a big
hassle, and it would still rule out some curves.

Another approach is to let the curve be defined implicitly by f(x, y, z) = 0. This
suffers from several problems. We could get too many solutions, for instance as in
x2 + y2− 1 = 0, requiring constraints. Tracking a path is possible in theory, but is not
trivial in practice. Finally, many shapes are defined piecewise, and joining shapes in a
smooth way is also tricky.

Rather than considering a curve in the plane as a function, it is more productive to
describe the shape of the curve, as some imaginary point moves over the curve. That
is, we have a description of the points on the curve as

P = P (t) =

(
x(t)
y(t)

)
.

Victor Eijkhout

158 CHAPTER 4. FONTS

(Feel free to think of t as time.)

A simple example of how this works is to consider two points P1 and P2, and the curve
P = tP2 + (1 − t)P1. Then for t = 0, P (0) = P1, for t = 1, P (1) = P2, and for
intermediate values of t we get some point between P1 and P2.

That this solves our problems with multiple solutions that were present in both function
and implicit approaches is clear if we look at the example P (t) = (cos 2πt, sin 2πt),
which traces out a circle as t goes from 0 to 1.

While a description in terms of piecewise linear functions would be very simple, it is
not smooth. Using the various ideas sketched above, we will now concentrate on curves
that are piecewise parametric cubic splines. Cubics have the following property that
they are the lowest degree that allows specification of location and direction in the end
points. Higher degree functions would allow for instance the specification of higher
derivatives, but unless great care is taken, they would introduce unwanted ‘wiggles’ in
the curves.

Using piecewise cubic parametric curves then is a good mean between ease of use and
power of approximation.

4.2.1 Parametrized basis functions

To begin with we will concentrate on a single curve Q(t) where t = 0 . . . 1. We often
write this as Q(t) = C · T where the coefficient matrix

C =

 c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

 , T =


1
t
t2

t3


The direction of the curve is then given by

dQ(t)

dt
= C · dT

dt
= C ·


0
1
2t
3t2


We see that the C matrix can be derived if we know a total of four locations or
directions of the curve. For instance, if P1 = Q(0), R1 = Q′(0), P2 = Q(1),
and R2 = Q′(1) are given, then

C ·


1 0 1 0
0 1 1 1
0 0 1 2
0 0 1 3

 = [P1, R1, P2, R2],

TEX – LATEX – CS 594

4.2. PARAMETRIC CURVES 159

from which C follows.

Now, often we have a set of basis polynomials given, and we want to take combi-
nations of them to satisfy the constraints. That can be done by splitting C = GM ,
where M describes the basis polynomials, and G is the ‘geometry matrix’. We get the
equation

Q(t) = G ·M · T =

 g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

 ·
m11 . . . m14

...
...

m41 . . . m44

 · T (4.5)

If we introduce new basis polynomials πi(t) = Mi∗ · T , then we see that Qx =
G11π1 +G12π2 +G13π3 +G14π4, Qy = G21π1 + · · ·, et cetera.

4.2.2 Hermite basis functions

In equation (4.5) the matrix M describes the basis functions, so it is fixed for a certain
class of curves: we will have one set of basis functions for Lagrange type curves, one
for Hermite curves, et cetera. However, we have not yet seen a way to compute the
matrix M .

The geometry matrix G is used to derive a specific curve in the class described by M :
each choice of G corresponds to one curve. The columns of G will be points or direc-
tion vectors that somehow describe the intended curve.

Let us now consider Hermite curves. Here we want G to be the matrix of geometric
constraints, [P1, R1, P2, R2] in the above example. Recall that these constraints, using
the locations of the end points and the derivatives of the curve there, give us indeed an
example of Hermite interpolation.

We write out the equations. From Q = G ·M · T we get

Q(t) = GH ·MH · T (t), Q′(t) = GH ·MH · T ′(t).

Applying both these formulas to t = 0 and t = 1, we get

QH ≡ [Q(0), Q′(0), Q(1), Q′(1)] = GH ·MH · TH
where

TH = [T (0), T ′(0), T (1), T ′(1)] =


1 0 1 0
0 1 1 1
0 0 1 2
0 0 1 3


But this QH is the matrix that we had stipulated as the matrix of geometry constraints,

Victor Eijkhout

160 CHAPTER 4. FONTS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

P1(x)
P2(x)
P3(x)

Figure 4.3: Hermite polynomials

in other words: GH = QH . It now follows that

MH = T−1
H =


1 0 −3 2
0 1 −2 1
0 0 3 −2
0 0 −1 1

 .

Writing this out, we find the cubic Hermite polynomials

P1(t) = 2t3 − 3t2 + 1, P2(t) = t3 − 2t2 + t, P3(t) = −2t3 + 3t2, P1(t) = t3 − t2

illustrated in figure 4.3, and we get Q(t) = G · BH where BH = M · T is the matrix
of ‘Hermite blending functions’.

With this formula, we can take a set of geometric constraints, in this case the two
endpoints and the directions there, and derive the formula for the Hermite curve that
satisfies these constraints. As an example, figure 4.5 is the curve .3P1−2P2+P3−2P4,
that is, the curve through (0, .3) and (1, 1), with slope −2 in both x = 0, 1.

We make the transition to parametric curves by expressing both components as Her-
mite curves. For instance, figure 4.7 shows the curve

#
4 cubic Hermite polynomials
#
set terminal pdf
set xrange [0:1]
set yrange [-.2:1.2]

P1(x) = 2*x**3-3*x**2+1
P2(x) = x**3-2*x**2+x
P3(x) = -2*x**3+3*x**2
P4(x) = x**3-x**2
plot P1(x), P2(x), P3(x), P4(x) title ""

Figure 4.4: The gnuplot source for figure 4.3

TEX – LATEX – CS 594

4.2. PARAMETRIC CURVES 161

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

Figure 4.5: An example of Hermite interpolation

Qx(t) = .1 ∗ P1(t) + P2(t) + .9 ∗ P3(t), Qy(t) = .2 ∗ P1(t) + .3 ∗ P3(t)− P4(t)

that is

Q =

(
.1

.2

)
P1 +

(
1

0

)
P2 +

(
.9

.3

)
P3 +

(
0

−1

)
P4.

There is one aspect of these Hermite curves worth remarking on. In figure 4.9 we have
replaced the direction vector

(
1
0

)
in (0, 0) by

(
x
0

)
, where x = 1, 1.5, 2, 2.5, which all

have the same direction, but a different magnitude. Clearly there is a visual effect.

#
Hermite interpolation
#
set terminal pdf
set multiplot
set xrange [0:1]
set yrange [0:1.3]
P1(x) = 2*x**3-3*x**2+1
P2(x) = x**3-2*x**2+x
P3(x) = -2*x**3+3*x**2
P4(x) = x**3-x**2

p1y = .3
p1slope = -2
p2y = 1
p2slope = -2
plot p1y*P1(x) + p1slope*P2(x) \

+ P3(x) + p2slope*P4(x) title ""
set parametric
set style function lines
plot [t=0:.1] t, p1y+t*p1slope \

title "" with lines 2
plot [t=0:.1] 1-t,p2y-t*p2slope \

title "" with lines 2

Figure 4.6: The source for figure 4.5

Victor Eijkhout

162 CHAPTER 4. FONTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Figure 4.7: A Hermite interpolation curve

4.2.3 Splines

We will now take a close look at Bernshtein polynomials of degree 3:
z(t) = (1− t)3z1 + 3(1− t)2tz2 + 3(1− t)t2z3 + t3z4, (4.6)

also known as Bezier curves or Bezier cubics after Pierre Bezier, an engineer at Re-
nault2.

There are a couple of ways of looking at these polynomials. Consider the function
z(t) to be the sum of four basis functions, (1 − t)3, (1 − t)2t, (1 − t)t2, and t3, each

2. Pierre Bézier was born September 1, 1910 and died November 25, 1999 at the age of 89. In 1985
he was recognized by ACM SIGGRAPH with a ‘Steven A. Coons’ award for his lifetime contribution to
computer graphics and interactive techniques.

#
Parametric Hermite curve
#
set terminal pdf
set parametric
set multiplot
set xrange [0:1]
set yrange [0:.7]
P1(t) = 2*t**3-3*t**2+1
P2(t) = t**3-2*t**2+t
P3(t) = -2*t**3+3*t**2
P4(t) = t**3-t**2

p1x = .1 ; p1y = .2
p1dx = 1 ; p1dy = 0
p2x = .9 ; p2y = .3
p2dx = 0 ; p2dy = -1
plot [t=0:1] \

p1x*P1(t)+p1dx*P2(t)+p2x*P3(t)+p2dx*P4(t), \
p1y*P1(t)+p1dy*P2(t)+p2y*P3(t)+p2dy*P4(t) \
title ""

plot [t=0:.2] p1x+t*p1dx,p1y+t*p1dy \
title "" with lines 2

plot [t=0:.2] p2x-t*p2dx,p2y-t*p2dy \
title "" with lines 2

Figure 4.8: The source of figure 4.7

TEX – LATEX – CS 594

4.2. PARAMETRIC CURVES 163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Figure 4.9: The same curve, tinkering with the direction vector

multiplied by a factor deriving from a control point. From the formulas, and from
a picture (figure 4.11) we see that the first term p1(t) = (1 − t)3 is the only one
with p(0) 6= 0. Likewise, p4 is the only one with p(1) 6= 0. That means z(0) = z1

and z(1) = z4. Furthermore, the second term is (after the first term) the only remaining
one with p′(0) 6= 0, so by choosing z2 we can change z′(0) without changing z(0)
or z(1). Likewise z3 for z′(1).

Bezier curves can be derived from cubic Hermite splines by replacing the direction
vectors R1, R2 by control points P ′1, P

′
2, so that R1 = 3(P ′1 − P1) and R2 = 3(P2 −

P ′2). For the Bezier geometry vector we then have
GB = [P1, P

′
1, P

′
2, P2]

and the relation with the Hermite geometry vector
GH = [P1, R1, P2, R2] = [P1, P

′
1, P

′
2, P2]MBH = GB ·MBH

where

MBH =


1 −3 0 0
0 3 0 0
0 0 0 −3
0 0 1 3

 (4.7)

Defining

MB = MBH ·MH =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 (4.8)

we now get for Bezier curves
Q(t) = GH ·MH · T (t) = GB ·MBH ·MH · T (t) = GB ·MB · T (t)

Victor Eijkhout

164 CHAPTER 4. FONTS

We can also write that as Qx(t) = g11B1(t) + g12B2(t) + · · · where

B1(t) = 1− 3t+ 3t2 − t3 = (1− t)3

B2(t) = 3t− 6t2 + 3t3 = 3t(1− t)2

B3(t) = 3t2 − 3t3 = 3t2(1− t)
B4(t) = = t3

which are the Bernstein polynomials we started this section with.

The sum of these polynomials (this is equivalent to setting the zi coefficients to one
in equation (4.6)) is z(t) = (t + (1 − t)))3 ≡ 1. Also, the polynomials are positive
on [0, 1], so the components Qx, Qy, Qz are weighted averages of the polynomials.
This means that the curve, consisting of weighted sums of the control points, is con-
tained in the convex hull of the control points.

Exercise 43. One could also define quadratic Bezier curves. These
have only a single control point, and the curve is such that in both
the endpoints it is aimed at the control point.

set terminal pdf
set parametric
set multiplot
set dummy t
set xrange [0:1]
set yrange [0:.7]
P1(t) = 2*t**3-3*t**2+1
P2(t) = t**3-2*t**2+t
P3(t) = -2*t**3+3*t**2
P4(t) = t**3-t**2
p1x = .1 ; p1y = .2
p2x = .9 ; p2y = .3
p2dx = 0 ; p2dy = -1
direction 1:
p1dx = 1 ; p1dy = 0
plot [t=0:1] \
p1x*P1(t)+p1dx*P2(t)+p2x*P3(t)+p2dx*P4(t), \
p1y*P1(t)+p1dy*P2(t)+p2y*P3(t)+p2dy*P4(t) \
title ""

direction 2:
p1dx = 1.5 ; p1dy = 0
plot [t=0:1] \

p1x*P1(t)+p1dx*P2(t)+p2x*P3(t)+p2dx*P4(t), \
p1y*P1(t)+p1dy*P2(t)+p2y*P3(t)+p2dy*P4(t) \
title ""

direction 3:
p1dx = 2 ; p1dy = 0
plot [t=0:1] \

p1x*P1(t)+p1dx*P2(t)+p2x*P3(t)+p2dx*P4(t), \
p1y*P1(t)+p1dy*P2(t)+p2y*P3(t)+p2dy*P4(t) \
title ""

direction 4:
p1dx = 2.5 ; p1dy = 0
plot [t=0:1] \

p1x*P1(t)+p1dx*P2(t)+p2x*P3(t)+p2dx*P4(t), \
p1y*P1(t)+p1dy*P2(t)+p2y*P3(t)+p2dy*P4(t) \
title ""

Figure 4.10: The source for figure 4.9

TEX – LATEX – CS 594

4.2. PARAMETRIC CURVES 165

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x**3
3*x**2*(1-x)
3*x*(1-x)**2

(1-x)**3

Figure 4.11: Bernshtein polynomials

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

Quadratic Bezier curve

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1
 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

Derive the basis functions and geometry matrix for this case. Make
a gnuplot figure of a single quadratic Bezier curve, and of two
curves joined smoothly.
Hint: you can follow the construction of the cubic splines in the lec-
ture notes. The only problem is defining the control point. First draw
up the Hermite geometry matrix based on end points q0 and q1, and
the derivative q′0 in the first end point. Derive from them the deriva-
tive q′1 in the other end point. The control point then lies on the
intersection of two lines. Solving this looks like a single equation

Victor Eijkhout

166 CHAPTER 4. FONTS

in two unknowns, but it can be solved: write it as a matrix-vector
equation that is satisfied no matter the choice of the geometry ma-
trix.

4.2.4 Calculation of Bezier curves

Suppose we have a Bezier curve defined by four control points, and we want to draw
points on the curve, meaning that we have to evaluate the function Q(t) for a number
of values of t. The relation Q(t) = G ·M · T (t) allows us to do this calculation in

• 2 multiplications to form the terms t2 and t3 in T ;
• 16 multiplications and 12 additions forming M · T ;
• 12 multiplications and 9 additions forming G · (M · T).

An obvious improvement is to store M̃ = G ·M , which brings the cost down to two
multiplications for T and

• 12 multiplications and 9 additions for forming M̃ · T .

A similar count is arrived at by looking at divided differences. Additionally, this way
of computing is more stable.

From the formula Q(t) = G ·M · T (t) we get for each component

qi(t) =
∑
j

Gij(MT)j =
∑
j,k

GijMjkt
k−1.

Looking at only one component for simplicity, we find, for instance

x(t) =
∑
k

ckt
k−1 ck =

∑
j

G1jMjk.

We recall equation (4.8):

MB =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1


and writing gj ≡ G1j we find

c1 = g1, c2 = 3(g2 − g1), c3 = 3(g3 − 2g2 + g1), c4 = g4 − 3g3 + 3g2 − g1.

In this we recognize divided differences of g:
[2, 1]g = g2 − g1,
[3, 2, 1]g = [3, 2]g − [2, 1]g = (g3 − g2)− (g2 − g1)

= g3 − 2g2 + g1

[4, 3, 2, 1] = [4, 3, 2]g − [3, 2, 1]g = (g4 − 2g3 + g2)− (g3 − 2g2 + g1)
= g4 − 3g3 + 3g2 − g1

using lemma 4.

TEX – LATEX – CS 594

4.3. PRACTICAL USE 167

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

Figure 4.12: Two Hermite curves, joined together smoothly in (.5, .3)

4.3 Practical use

4.3.1 Piecewise curves

As we indicated earlier, complicated shapes can be approximated by piecewise cubics.
Figure 4.12 shows two Hermite curves joined together. The curve is continuous and
the directions at the join are proportional. This is called ‘geometric continuity’, and
is denoted G1. So-called B-splines (‘basis splines’) are constructed by piecing to-
gether Bezier curves, not only continuously, but differentiably. For this, if P1 . . . P4

set terminal pdf
set parametric
set multiplot
set dummy t
set xrange [0:1]
set yrange [0:.8]
P1(t) = 2*t**3-3*t**2+1
P2(t) = t**3-2*t**2+t
P3(t) = -2*t**3+3*t**2
P4(t) = t**3-t**2
p1x = .1 ; p1y = .2
p2x = 1 ; p2y = 0
p3x = .5 ; p3y = .3
p4x = 0 ; p4y = -1
plot [t=0:1] \

p1x*P1(t)+p2x*P2(t)+p3x*P3(t)+p4x*P4(t), \
p1y*P1(t)+p2y*P2(t)+p3y*P3(t)+p4y*P4(t) \
title ""

p5x = .9 ; p5y = .6
p6x = 0 ; p6y = -1
plot [t=0:1] \

p3x*P1(t)+.5*p4x*P2(t)+p5x*P3(t)+p6x*P4(t), \
p3y*P1(t)+.5*p4y*P2(t)+p5y*P3(t)+p6y*P4(t) \
title "" with lines 2

plot [t=0:1] \
p3x*P1(t)+2*p4x*P2(t)+p5x*P3(t)+p6x*P4(t), \
p3y*P1(t)+2*p4y*P2(t)+p5y*P3(t)+p6y*P4(t) \
title "" with lines 2

Figure 4.13: The source for figure 4.12

Victor Eijkhout

168 CHAPTER 4. FONTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6

Figure 4.14: Two Bezier curves, joined together smoothly

and P4 . . . P7 are the control points of the two curves, then we require

P4 = (P3 + P5)/2.

This is shown in figure 4.14.

set terminal pdf
set xrange [0:6]
set yrange [0:3]
set parametric
B1(x) = x**3
B2(x) = 3*x**2*(1-x)
B3(x) = 3*x*(1-x)**2
B4(x) = (1-x)**3
P1x = .5 ; P1y = .2
P2x = 1.2 ; P2y = .4
P3x = 2.2 ; P3y = 1.3
P4x = 3 ; P4y = 1.2
P5x = 2*P4x-P3x
P5y = 2*P4y-P3y
P6x = 4.5 ; P6y = .2
P7x = 5 ; P7y = 2.5
set multiplot

plot [t=0:1] \
P1x*B1(t)+P2x*B2(t)+P3x*B3(t)+P4x*B4(t), \
P1y*B1(t)+P2y*B2(t)+P3y*B3(t)+P4y*B4(t) \
title ""

plot [t=0:1] \
P4x*B1(t)+P5x*B2(t)+P6x*B3(t)+P7x*B4(t), \
P4y*B1(t)+P5y*B2(t)+P6y*B3(t)+P7y*B4(t) \
title ""

plot [t=-1:1] \
P4x+t*(P5x-P4x),P4y+t*(P5y-P4y) \
title "" with lines 2

plot [t=0:1] \
P1x+t*(P2x-P1x),P1y+t*(P2y-P1y) \
title "" with lines 3

plot [t=0:1] \
P7x+t*(P6x-P7x),P7y+t*(P6y-P7y) \
title "" with lines 3

Figure 4.15: The source for figure 4.14

TEX – LATEX – CS 594

4.3. PRACTICAL USE 169

4.3.2 Drawing splines

Even if we can evaluate a Bezier curve efficiently (section 4.2.4) in a given point, we
can improve on this considerably in the context of line drawing. Consider the problem
of drawing a cubic curve on the interval [0, 1] by drawing consecutive points Q(nδ)
for n = 0, 1,

We will discuss one line-drawing technique in the chapter on raster graphics. A tech-
nique that is attractive for splines, and which is used in METAFONT, is recursive sub-
division. Here, a curve is subdivided until a segment is a straight line within the pixel
resolution, so that a line drawing algorithm can be used. The test for a straight line can
be implemented efficiently through using the spline control points.

Victor Eijkhout

170 CHAPTER 4. FONTS

Curve plotting with gnuplot. The gnuplot utility can be used for

plotting sets of points. However, here we will only discuss drawing curves.

4.4 Introduction

The two modes for running gnuplot are interactive and from file. In interactive
mode, you call gnuplot from the command line, type commands, and watch output
appear (see next paragraph); in the second case you call gnuplot <your file>.

The output of gnuplot can be a picture on your screen, or drawing instructions
in a file. Where the output goes depends on the setting of the terminal. By default,
gnuplot will try to draw a picture. This is equivalent to declaring

set terminal x11

or aqua, windows, or any choice of graphics hardware.

For output to file, declare

set terminal pdf

or fig, latex, pbm, et cetera.

4.5 Plotting

The basic plot command is plot. By specifying

plot x**2

you get a plot of f(x) = x2; gnuplot will decide on the range for x. With

set xrange [0:1]
plot 1-x title "down", x**2 title "up"

you get two graphs in one plot, with the x range limited to [0, 1], and the appropriate
legends for the graphs. The variable x is the default for plotting functions.

Plotting one function against another – or equivalently, plotting a parametric curve –
goes like this:

set parametric
plot [t=0:1.57] cos(t),sin(t)

which gives a quarter circle.

To get more than one graph in a plot, use the command set multiplot.

TEX – LATEX – CS 594

4.5. PLOTTING 171

4.5.1 Styles

You can change the default drawing style with

set style function dots

(lines, dots, points, et cetera), or change on a single plot with

plot f(x) with points

Victor Eijkhout

172 CHAPTER 4. FONTS

Raster graphics.

4.6 Vector graphics and raster graphics

We may use fancy techniques such as Bezier curves for describing shapes, but at some
point the graphic needs to be rendered on an actual device with pixels or ink dots. Thus
we need algorithms for deciding which pixels to turn on or off, and, in case the device
has a larger bitdepth, with what intensity.

The technical terms here are ‘vector graphics’ for a description of the lines and curves,
and ‘raster graphics’ for the pixel-by-pixel description. A description of a raster is also
called ‘bitmap’. Common bitmap-based formats are JPEG, GIF, TIFF, PNG, PICT, and
BMP.

Vector graphics make for a much more compact file, but they rely on the presence
of a final rendering stage. For instance, Macromedia’s Flash format (now an open
Internet standard) is a vector graphics format, that relies on a browser plugin. However,
presence of a Flash renderer is pretty much standard in browsers these days. Adobe
Postscript is also a vector format. The first popular printer to incorporate it, the Apple
Laserwriter, had a Motorola 68000 processor, exactly as powerful as the Macintosh
computer it connected to.

Two vector standards are being proposed to the W3C: the Precision Graphics Markup
Language and the Vector Markup Language. PGML is backed by Adobe Systems,
IBM, Netscape, and Sun Microsystems. VML is supported by Microsoft, Hewlett-
Packard, Autodesk, Macromedia, and Visio. Both standards are based on Extensible
Markup Language (XML).

4.7 Basic raster graphics

4.7.1 Line drawing

We limit the discussion to lines with slope less than 1. For those, on a grid of pixels,
one pixel per column will be switched on, and the question to be addressed is which
pixel to turn on in each column.

Probably the simplest way to draw a line is by using an ‘incremental’ drawing algo-
rithm. Let a line y = mx+ B be given, and we write the slope as m = δy/δx. In the
case of pixel graphics, we set δx ≡ 1, so δy = m and we can recursively state

yi+1 = yi + δy.

The simplest implementation of this is

TEX – LATEX – CS 594

4.7. BASIC RASTER GRAPHICS 173

Figure 4.16: Line with slope ≤ 1 and one pixel per column on

Figure 4.17: The midpoint algorithm for line drawing

let x0, y0 and m be given, then
for i = 0 . . . n− 1

WritePixel(xi,Round(yi))
xi+1 = xi + 1
yi+1 = yi +m

Since (xi, yi) is never related to the actual formula for the line, there will be an ac-
cumulation of round-off error. However, this will be negligible. More seriously, the
rounding operation is relatively expensive. In the next algorithm we will eliminate it.
If possible, we want to operate completely in integer quantities.

The ‘midpoint algorithm’ proceeds fully by integer addition. First we write the equa-
tion for the line in two different ways as

y =
dy

dx
x+B, F (x, y) = ax+ by + c = 0.

Clearly, a = dy, b = −dx, c = B, and we can derive dx, dy from the end pixels of the
line. The function F is zero on the line, positive in the half plane under it, and negative
above it.

Now we consider how to progress given that we have switched on a pixel at (xp, yp).
With the initial assumption that the line has a slope between 0 and 1, the next pixel

Victor Eijkhout

174 CHAPTER 4. FONTS

will be either (xP + 1, yP + 1), or (xp + 1, yp), depending on which is closer to the
line.

Instead of measuring the distance of the candidate next pixels to the line, we de-
cide whether their midpoint M is above or under the line. For this, we use the func-
tion F (·, ·) introduced above, and evaluate the ‘decision value’ of the midpoint:

d = F (xp + 1, yp + 1/2).

The two cases to consider then are

d < 0: M lies over the line, so we take yp+1 = yp;
d ≥ 0: M lies under the line, so we take yp+1 = yp + 1.

Similarly we update the mid point: if d ≥ 0, the midpoint moves up. Note that the new
midpoint is at xp+1 + 1.

Now, we do not actually use the midpoint, only the value of d. The algorithm is then
complete once we find a way to update d cheaply. For this we look at its next value

d′ = F (xp+1 + 1, yp+1 + 1/2).

Corresponding to the above two cases:

d′ = a(xp+1 + 1) + b(yp+1 + 1/2) + c =
d < 0 : = a(xp + 2) + b(yp + 1/2) = d+ a = d+ dy
d ≥ 0 : = a(xp + 2) + b(yp + 3/2) + c = d+ a+ b = d+ dy − dx

In other words, we update d with dy or dy − dx depending on whether it’s negative or
non-negative.

To start off the algorithm, dx and dy are computed from the endpoints, and the initial
value of d follows from

d0 = F (x0 + 1, y0 + 1/2) = F (x0, y0) + a+ b/2 = 0 + dy − dx/2.

To get rid of the division by 2, which would cause real rather than integer values to be
used throughout the algorithm, we can redefine F̃ (x, y) = 2F (x, y); correspondingly
we update d with 2dy and 2(dy − dx) in the two cases.

Exercise 44. Can you modify the DDA line drawing algorithm so
that it works (as well as possible) when the line is given between
points that are not on pixels?

These algorithms are sometimes referred to as ‘Digital Differential Analyzers’, since
they trace out a curve by proceeding with small differences. The line algorithm was
first derived by Bressenham.

TEX – LATEX – CS 594

4.7. BASIC RASTER GRAPHICS 175

Figure 4.18: The midpoint algorithm for circle drawing

4.7.2 Circle drawing

Circles can be drawn with a similar algorithm. We observe that, because of 8-fold
symmetry, we can limit the algorithm to the part of a circle from x = 0 to x = y. The
midpoint argument is now slightly more complicated. The function for the circle is

F (x, y) = x2 + y2 −R2,

and the decision value in the midpoint M is

d = F (xp + 1, yp + 1/2) = x2 + 2x+ y2 + y + 5/4.

The two cases to consider are similar to before:

d < 0: M lies in the circle, so we take yp+1 = yp;
d ≥ 0: M lies outside the circle, so we take yp+1 = yp + 1.

To update the decision value we get the two cases

d′ = F (xp+1 + 1, yp+1 + 1/2) =
d < 0 : = x2 + 4x+ y2 + y + 4 1/4 = d+ 2x+ 3
d ≥ 0 : = x2 + 4x+ y2 + 3y + 6 1/4 = d+ 2(x+ y) + 5

Exercise 45. Why is there no need to consider bigger increments
of yp in the circle drawing algorithm? After all, a circle has curva-
ture so the slope increases.

The circle algorithm can be further improved by observing that the quantities 2x and 2y
can themselves easily by constructed by updating. This removes the need for any mul-
tiplication.

Victor Eijkhout

176 CHAPTER 4. FONTS

4.7.3 Cubics

Suppose we have a cubic function f(t) = at3 + bt2 + ct+d. Instead of evaluating this
polynomial directly, using Horner’s rule, we compute the value f(t+ δ) by updating:

f(t+ δ) = f(t) + ∆f(t).

We find
∆f(t) = f(t+ δ)− f(t)

= a(3t2δ + 3tδ2 + δ3) + b(2tδ + δ2) + cδ
= 3aδt2 + (3aδ2 + 2bδ)t+ aδ3 + bδ2 + cδ

This still leaves us with a quadratic function to evaluate, so we define

∆2f(t) = ∆f(t+ δ)−∆f(t)
= 3aδ(2tδ + δ2) + (3aδ2 + 3bδ)δ
= 6aδ2t+ 6aδ3 + 2bδ2

Finally, we derive ∆3f(t) = ∆2f(t+δ)−∆2f(t) = 6aδ2. Taken all together, we can
now compute fn+1 ≡ f((n+ 1)δ) by initializing

∆3f0 = 6aδ2, ∆2f0 = 6aδ3 + 2bδ2, ∆f0 = aδ3 + bδ2 + cδ

and computing by update

fn+1 = fn + ∆fn, ∆fn+1 = ∆fn + ∆2fn, ∆2fn+1 = ∆2fn + ∆3f0

The advantage of this algorithm is its low operation count, and the fact that it works
fully by integer operations.

4.8 Rasterizing type

Typefaces can be described by curves, but several aspects to them make it necessary to
do more than just rendering these curves, when rasterizing them. Part of the problem
is that characters in a font are relatively small, and satisfy all sorts of constraints that
both may be hard to satisfy (especially at low resolution), and are immediately noticed
when rendered incorrectly.

Such problems result from using too simple algorithms for converting the character
outlines to rasters. For instance, an obvious algorithm is

A pixel is turned on if its center is within the curve.

Now consider the case where a curve with large radius exceeds location y = n + 1/2
for only one x. This results in the ‘pimple’ on top of the ‘e’ in figure 4.20. On the other
hand, if such a curve stays just under such a halfpoint, we get a long plateau, as in the
left side curve of the ‘e’.

TEX – LATEX – CS 594

4.8. RASTERIZING TYPE 177

Figure 4.19: Problems in rasterizing type, and resulting illegible output

4.8.1 Scaled fonts

These rasterizing problems are largely due to the facts that

• Characters are scalable, so the relations between top/bottom or left/right are
not always mapped the same way to a pixel grid;
• Even if characters are used at the same size, they need to be displayed on

various kinds of rasters (printer, screen);
• Characters can be placed in any horizontal or vertical location, so relations to

pixel boundaries are also flexible.

The conversion process goes more or less as follows3:

• Character outlines are based on coordinates on some grid, often expressed as
fixed point, or other scheme with a finite mesh size.
• The character is scaled to the raster on which it will be rendered.
• The result is rounded to the raster, in figure 4.21 this puts the left and right

sides on pixel boundaries; note that other vertical parts of the character are
not necessarily pixel-aligned.
• The scaled and rounded outline is then rasterized by turning a set of pixels

on.

We see that in both final steps, rounding to the raster, and switching on pixels, we can
have unwanted effects.

4.8.2 Pixelation

Above we said that pixels are switched on if their center falls within the curve. There
are two problems with this:

3. Much of this discussion is based on the definition of TrueType fonts.

Victor Eijkhout

178 CHAPTER 4. FONTS

Figure 4.20: A bad and a good way of rendering a Times Roman ‘e’ at low resolution

• Sometimes not enough pixels are turned on to render the shape accurately,
and
• Deciding whether a pixel is within the shape is not trivial to begin with. For

instance, letters such as ‘o’ or ‘p’ have an inner region that should not be
filled. In another example, sometimes it is convenient to describe a shape as
non-disjoint union of other shapes; see figure 4.22

The second problem can be solved a number of ways. We could for instance look at
a scan line, and switch to on/off mode every time we cross a curve boundary. This
approach does not work for intersecting curves.

Better solutions are based on looking at the so-called ‘winding number’. This number
counts, for a given point in the plane, how often a curve winds around the point. If this
is zero, the point is outside the curve, otherwise it is inside it.

That implementing winding number rules is not trivial can be seen from two screen
shots of Acrobat Reader version 4; figure 4.24.

4.8.3 Font hinting / instructing

To prevent some of the problems indicated above, characters in a font file consist of
more than just the outline description. Additionally, each character can have a short
program in a language defined by the font file format. Such a program can enforce that
certain distances in the font as exact multiples of pixel distances.

For instance, the letter ‘O’ in figure 4.25 has the following constraints

TEX – LATEX – CS 594

4.9. ANTI-ALIASING 179

Figure 4.21: Scaled and rasterized character outline

1. A certain amount of white space buffering the character; distance 3 is the
‘transport’;

2. The width of the band
5,6 Visual under and overshoot.

7 The height of the band

Distances 5 and 6 are over and undershoot: a letter with curved top/bottom like ‘O’
would seem too small if it stayed between the baseline and the cap height. To compen-
sate for that, the letter is made slightly higher and deeper. However, for small sizes and
low resolutions, this compensation needs to be switched off, since it would look too
drastic.

4.8.4 Dropouts

In certain cases, pixels can not be switched on that are necessary for continuity of the
figure drawn. Figure 4.26 shows a case where a connecting bit is too thin to hit the
centers of any pixels. To cover such cases, the renderer usually has an algorithm that
detects when a scan line enters and leaves a contour without setting any pixels. It will
then set, for instance, the left pixel.

4.9 Anti-aliasing

In the algorithms so far, the decision was between switching a pixel on or off. There
are a few problems with this. For instance, for certain slopes the rendered curve can
have a very ‘jagged’ look. Also, a curve at slope 1 will have the same number of pixels
on as a curve at slope 0, but on a path that is longer by

√
2. Thus, it may look lighter

or thinner.

Victor Eijkhout

180 CHAPTER 4. FONTS

Figure 4.22: A shape consisting of overlapping contours

If the display supports a range of values (‘grayscale’), we can try to use this and find
a better visual rendering. First we will look at an example, then briefly consider the
general theory of this phenomenon.

4.9.1 Raster graphics with larger bitdepths

In the algorithms above, pixels close to a line or other curve were switched on. If the
display supports it, we can compute a measurement of proximity of the pixel to the
line, and set a brightness based on that. There are various ways to implement this. For
instance, one could consider the line to have an area, and to compute the intersection
area of the line and the pixel box. Here we will use a ‘filter function’. The support of
this function will be larger than the pixel box.

We will modify the midpoint method for line drawing so that in each column three pix-
els will be nonzero, with an intensity based on the Euclidean distance to the line. Let v
be the (signed) vertical distance from the midpoint to the line, and D the euclidean
distance, thenD = vdx/

√
dx2 + dy2. The denominator we can compute once and for

all at the start of the algorithm, but a simple way of computing vdx is needed.

Consider the case where d < 0, in which case we choose yp+1 = yp. Now we have
0 = F (xp + 1, yp + v) = F (xp + 1, yp) + 2bv ⇒ 2vdx = F (xp + 1, yp),

and
d = F (M) = F (xp + 1, yp + 1/2) = F (xp + 1, yp) + b

so 2vdx = d+dx. Likewise, if d ≥ 0, 2vdx = d−dx. Since we know how to update d
cheaply, we can now iteratively compute D.

TEX – LATEX – CS 594

4.9. ANTI-ALIASING 181

Figure 4.23: The effects of different winding number rules

For the top and bottom point, D = 2(1 − v)dx/
√
. . . and D = 2(1 + v)/

√
. . .,

respectively.

4.9.2 The general idea

Smoothing out a picture with grayscales is usually called ‘anti-aliasing’. To see why,
consider how the parts of a graphics system fit together. After we derive a curve or
other two-dimensional object (this could be a projected surface) to display, the exact

Figure 4.24: Acrobat 4 rendering of a complicated figure at different magnifications

Victor Eijkhout

182 CHAPTER 4. FONTS

Figure 4.25: Constraints on the letter ‘O’

values are sampled according to the pixel resolution. By computing a Fourier transform
of these samples, we get an impression of the visual ‘frequencies’ in the picture.

If, instead of simply switching on pixels based on the sampled curve, we compute pixel
values so that sampling them reproduces the frequency spectrum, we get a picture that
looks closer to the intended one.

TEX – LATEX – CS 594

4.9. ANTI-ALIASING 183

Figure 4.26: A case of ‘dropout’: missing pixels give a disconnected curve

Projects for this chapter.
Project 4.1. Bezier curves can also be used for graphics problems such as enlarg-

ing a bitmat or projecting text on a waving flag. Consult http://www.
tinaja.com/cubic01.asp and report on the techniques used.

Project 4.2. (very mathematical) Explain elliptical integrals and how they are used
to compute the length of a Bezier curve. Explain approximations. Same re-
source as the previous project.

Project 4.3. (very mathematical) Study the theory of NURBS (Non-Uniform Ratio-
nal B-Splines); what are their capabilities and limitations? Start at http://
devworld.apple.com/dev/techsupport/develop/issue25/
schneider.html for an introduction.

Project 4.4. Investigate perception issues in font design or display technology. Start
by browsing through Rubinstein’s book.

Victor Eijkhout

http://www.tinaja.com/cubic01.asp
http://www.tinaja.com/cubic01.asp
http://devworld.apple.com/dev/techsupport/develop/issue25/schneider.html
http://devworld.apple.com/dev/techsupport/develop/issue25/schneider.html
http://devworld.apple.com/dev/techsupport/develop/issue25/schneider.html

184 CHAPTER 4. FONTS

TEX – LATEX – CS 594

Chapter 5

TEX’s macro language – unfinished chapter

The programming language of TEX is rather idiosyncratic. One notable feature is the
difference between expanded and executed commands. The expansion mechanism is
very powerful: it is in fact possible to implement lambda calculus in it.

Handouts and further reading for this chapter

The inspiration for this chapter was the article about lists by Alan Jeffrey [8].

185

186 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

Lambda calculus in TEX.

5.1 Logic with TEX

5.1.1 Truth values, operators

We start by defining a couple of simple tools.

\def\Ignore#1{}
\def\Identity#1{#1}
\def\First#1#2{#1}
\def\Second#1#2{#2}

For example:
Taking first argument:
input : \First {first}{second}
output : first
Taking second argument:
input : \Second {first}{second}
output : second

We define truth values:

\let\True=\First
\let\False=\Second

and logical operators:

\def\And#1#2{#1{#2}\False}
\def\Or#1#2{#1\True{#2}}
\def\Twiddle#1#2#3{#1{#3}{#2}}
\let\Not=\Twiddle

Explanation: And x y is y if x is true, false is x is false. Since True and False are
defined as taking the first and second component, that gives the definition of And as
above. Likewise Or.

To test logical expressions, we attach TF to them before evaluting; that was \True TF
will print T, and \False TF will print F.

Let us test the truth values and operators:

TEX – LATEX – CS 594

5.1. LOGIC WITH TEX 187

True takes first of TF:
input : \True
output : T
False takes second of TF:
input : \False
output : F
Not true is false:
input : \Not \True
output : F
And truth table TrueTrue:
input : \And \True \True
output : T
And truth table TrueFalse:
input : \And \True \False
output : F
And truth table FalseTrue:
input : \And \False \True
output : F

And truth table FalseFalse:
input : \And \False \False
output : F
Or truth table TrueTrue:
input : \Or \True \True
output : T
Or truth table TrueFalse:
input : \Or \True \False
output : T
Or truth table FalseTrue:
input : \Or \False \True
output : T
Or truth table FalseFalse:
input : \Or \False \False
output : F

5.1.2 Conditionals

Some more setup. We introduce conditionals
\def\gobblefalse\else\gobbletrue\fi#1#2{\fi#1}
\def\gobbletrue\fi#1#2{\fi#2}
\def\TeXIf#1#2{#1#2 \gobblefalse\else\gobbletrue\fi}
\def\IfIsPositive{\TeXIf{\ifnum0<}}

with the syntax
\TeXIf <test> <arg>

We test this:
Numerical test:
input : \IfIsPositive {3}
output : T
Numerical test:
input : \IfIsPositive {-2}
output : F

5.1.3 Lists

A list is defined as a construct with a head, which is an element, and a tail, which is
another list. We will denote the empty list by Nil.

Victor Eijkhout

188 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

\let\Nil=\False

We implement a list as an operator with two arguments:

• If the list is not empty, the first argument is applied to the head, and the tail
is evaluated;
• If the list is empty, the second argument is evaluated.

In other words

La1 a2 =

{
a2 if L = ()

a1(x)Y if L = (x, Y)

In the explanation so far, we only know the empty list Nil. Other lists are formed by
taking an element as head, and another list as tail. This operator is called Cons, and
its result is a list. Since a list is a two argument operator, we have to make Cons itself
a four argument operator:

% \Cons <head> <tail> <arg1> <arg2>
\def\Cons#1#2#3#4{#3{#1}{#2}}

Since Cons#1#2 is a list, applied to #3#4 it should expand to the second clause of
the list definition, meaning it applies the first argument (#3) to the head (#1), and
evaluates the tail (#2).

The following definitions are typical for list operations: since a list is an operator,
applying an operation to a list means applying the list to some other objects.

\def\Error{{ERROR}}
\def\Head#1{#1\First\Error}
\def\Tail#1{#1\Second\Error}

Let us take some heads and tails of lists. As a convenient shorthand, a singleton is a
list with an empty tail:

\def\Singleton#1{\Cons{#1}\Nil}
Head of a singleton:
input : \Head {\Singleton \True }
output : T
Head of a tail of a 2-elt list:
input : \Head {\Tail {\Cons \True {\Singleton

\False }}}
output : F

We can also do arithmetic tests on list elements:
Test list content:
input : \IfIsPositive {\Head {\Singleton {3}}}
output : T

TEX – LATEX – CS 594

5.1. LOGIC WITH TEX 189

Test list content:
input : \IfIsPositive {\Head {\Tail {\Cons

{3}{\Singleton {-4}}}}}
output : F
Exercise 46.
Write a function \IsNil and test with
\test{Detect NIL}{\IsNil\Nil}
\test{Detect non-NIL}{\IsNil{\Singleton\Nil}}

5.1.3.1 A list visualization tool

If we are going to be working with lists, it will be a good idea to have a way to visualize
them. The following macros print a ‘1’ for each list element.
\def\Transcribe#1{#1\TranscribeHT\gobbletwo}
\def\TranscribeHT#1#2{1\Transcribe{#2}}

5.1.3.2 List operations

Here are some functions for manipulating lists. We want a mechanism that takes a
function f , an initial argument e, and a list X , so that

Apply f eX ⇒ f x1 (f x2 (. . . (f xn e) . . .))

% #1=function #2=initial arg #3=list
\def\ListApply#1#2#3{#3{\ListApplyp{#1}{#2}}{#2}}
\def\ListApplyp#1#2#3#4{#1{#3}{\ListApply{#1}{#2}{#4}}}

This can for instance be used to append two lists:
\def\Cat#1#2{\ListApply\Cons{#2}{#1}}

For example:
Cat two lists:
input : \Transcribe {\Cat {\Singleton \Nil }{\Cons

\Nil {\Singleton \Nil }}}
output : 111

From now on the \Transcribe macro will be implicitly assumed; it is no longer
displayed in the examples.

5.1.4 Numbers

We can define integers in terms of lists: zero is the empty list, and to add one to a
number is to Cons it with an empty list as head element. In other words,

n+ 1 ≡ (0, n).

Victor Eijkhout

190 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

This defines the ‘successor’ function on the integers.

\let\Zero\Nil
\def\AddOne#1{\Cons\Nil{#1}}

Examples:

Transcribe zero:
input : \Zero
output :
Transcribe one:
input : \AddOne \Zero
output : 1
Transcribe three:
input : \AddOne {\AddOne {\AddOne \Zero }}
output : 111

Writing this many \AddOnes get tiring after a while, so here is a useful macro:

\newtoks\dtoks\newcount\nn
\def\ndef#1#2{\nn=#2 \dtoks={\Zero}\nndef#1}
\def\nndef#1{

\ifnum\nn=0 \edef\tmp{\def\noexpand#1{\the\dtoks}}\tmp
\else \edef\tmp{\dtoks={\noexpand\AddOne{\the\dtoks}}}\tmp

\advance\nn by -1 \nndef#1
\fi}

which allows us to write

\ndef\One1 \ndef\Two2 \ndef\Three3 \ndef\Four4 \ndef\Five5
\ndef\Seven7\ndef\Six6

et cetera.

It is somewhat surprising that, even though the only thing we can do is compose lists,
the predecessor function is just as computable as the successor:

\def\SubOne#1{#1\Second\Error}
Predecessor of two:
input : \SubOne {\AddOne {\AddOne \Zero }}
output : 1

(If we had used \Ignore instead of \Second a subtle TEXnicality would come into
play: the list tail would be inserted as {#2}, rather than #2, and you would see an
Unexpected } error message.)

Some simple arithmetic: we test if a number is odd or even.

\def\IsEven#1{#1\IsOddp\True}

TEX – LATEX – CS 594

5.1. LOGIC WITH TEX 191

\def\IsOddp#1#2{\IsOdd{#2}}
\def\IsOdd#1{#1\IsEvenp\False}
\def\IsEvenp#1#2{\IsEven{#2}}

Zero even?:
input : \IsEven \Zero

output : T

Zero odd?:
input : \IsOdd \Zero

output : F

Test even:
input : \IsEven {\AddOne

{\AddOne {\AddOne \Zero
}}}

output : F

Test odd:
input : \IsOdd {\AddOne

{\AddOne {\AddOne \Zero
}}}

output : T
Test even:
input : \IsEven {\AddOne

{\AddOne {\AddOne
{\AddOne {\Zero }}}}}

output : T
Test odd:
input : \IsOdd {\AddOne

{\AddOne {\AddOne
{\AddOne {\Zero }}}}}

output : F

Exercise 47. Write a test \IsOne that tests if a number is one.
Zero:
input : \IsOne \Zero
output : F
One:
input : \IsOne \One
output : T
Two:
input : \IsOne \Two
output : F

5.1.4.1 Arithmetic: add, multiply

Above, we introduced list concatenation with \Cat. This is enough to do addition. To
save typing we will make macros \Three and such that stand for the usual string of
\AddOne compositions:

\let\Add=\Cat
Adding numbers:
input : \Add {\Three }{\Five }
output : 11111111

Victor Eijkhout

192 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

Instead of adding two numbers we can add a whole bunch

\def\AddTogether{\ListApply\Add\Zero}

For example:

Adding a list of numbers:
input : \AddTogether {\Cons \Two {\Singleton

\Three }}
output : 11111
Adding a list of numbers:
input : \AddTogether {\Cons \Two {\Cons \Three

{\Singleton \Three }}}
output : 11111111

This is one way to do multiplication: to evaluate 3 × 5 we make a list of 3 copies of
the number 5.

\def\Copies#1#2{#1{\ConsCopy{#2}}\Nil}
\def\ConsCopy#1#2#3{\Cons{#1}{\Copies{#3}{#1}}}
\def\Mult#1#2{\AddTogether{\Copies{#1}{#2}}}

Explanation:

• If #1 of \Copies is empty, then Nil.
• Else, \ConsCopy of #2 and the head and tail of #1.
• The tail is one less than the original number, so \ConsCopy makes that

many copies, and conses the list to it.

For example:

Multiplication:
input : \Mult {\Three }{\Five }
output : 111111111111111

However, it is more elegant to define multiplication recursively.

\def\MultiplyBy#1#2{%
\IsOne{#1}{#2}{\Add{#2}{\MultiplyBy{\SubOne{#1}}{#2}}}}

Multiply by one:
input : \MultiplyBy \One \Five
output : 11111
Multiply bigger:
input : \MultiplyBy \Three \Five
output : 111111111111111

TEX – LATEX – CS 594

5.1. LOGIC WITH TEX 193

5.1.4.2 More arithmetic: subtract, divide

The recursive definition of subtraction is

m− n =

{
m if n = 0
(m− 1)− (n− 1) otherwise

Exercise 48. Implement a function \Sub that can subtract two
numbers. Example:

Subtraction:
input : \Sub \Three \Five
output : 11

5.1.4.3 Continuing the recursion

The same mechanism we used for defining multiplication from addition can be used to
define taking powers:

\def\ToThePower#1#2{%
\IsOne{#1}{#2}{%

\MultiplyBy{#2}{\ToThePower{\SubOne{#1}}{#2}}}}
Power taking:
input : \ToThePower {\Two }{\Three }
output : 111111111

5.1.4.4 Testing

Some arithmetic tests. Greater than: if

X = (x,X ′), Y = (y, Y ′)

then Y > X is false if Y ≡ 0:

\def\GreaterThan#1#2{#2{\GreaterEqualp{#1}}\False}

Otherwise, compare X with Y ′ = Y − 1: Y > X ⇔ Y ′ ≥ X; this is true if X ≡ 0:

\def\GreaterEqualp#1#2#3{\GreaterEqual{#1}{#3}}
\def\GreaterEqual#1#2{#1{\LessThanp{#2}}\True}

Otherwise, compare X ′ = X − 1 with Y ′ = Y − 1:

\def\LessThanp#1#2#3{\GreaterThan{#3}{#1}}

Greater (true result):

input : \GreaterThan \Two
\Five

output : T

Greater (false result):

input : \GreaterThan \Three
\Two

output : F

Victor Eijkhout

194 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

Greater (equal case):
input : \GreaterThan \Two

\Two
output : F
Greater than zero:
input : \GreaterThan \Two

\Zero

output : F
Greater than zero:
input : \GreaterThan \Zero

\Two
output : T

Instead of just printing ‘true’ or ‘false’, we can use the test to select a number or action:
Use true result:
input : \GreaterThan \Two \Five \Three \One
output : 111
Use false result:
input : \GreaterThan \Three \Two \Three \One
output : 1

Let’s check if the predicate can be used with arithmetic.

3 < (5− 1):
input : \GreaterThan \Three {\Sub \One \Five }
output : T
3 < (5− 4):
input : \GreaterThan \Three {\Sub \Four \Five }
output : F

Equality:

\def\Equal#1#2{#2{\Equalp{#1}}{\IsZero{#1}}}
\def\Equalp#1#2#3{#1{\Equalx{#3}}{\IsOne{#2}}}
\def\Equalx#1#2#3{\Equal{#1}{#3}}

Equality, true:
input : \Equal \Five \Five
output : T
Equality, true:
input : \Equal \Four \Four
output : T
Equality, false:
input : \Equal \Five \Four
output : F
Equality, false:
input : \Equal \Four \Five
output : F

(1 + 3) ≡ 5: false:
input : \Equal {\Add \One

\Three }\Five
output : F
(2 + 3) ≡ (7− 2): true:
input : \Equal {\Add \Two

\Three }{\Sub \Two
\Seven }

output : T

TEX – LATEX – CS 594

5.1. LOGIC WITH TEX 195

Fun application:

\def\Mod#1#2{%
\Equal{#1}{#2}\Zero

{\GreaterThan{#1}{#2}%
{\Mod{#1}{\Sub{#1}{#2}}}%
{#2}%

}}

Mod(27, 4) = 3:
input : \Mod \Four \TwentySeven
output : 111
Mod(6, 3) = 0:
input : \Mod \Three \Six
output :

With the modulo operation we can compute greatest common divisors:

\def\GCD#1#2{%
\Equal{#1}{#2}%

{#1}%
{\GreaterThan{#1}{#2}% % #2>#1

{\IsOne{#1}\One
{\GCD{\Sub{#1}{#2}}{#1}}}% % then take GCD(#2-#1,#1)

{\IsOne{#2}\One
{\GCD{\Sub{#2}{#1}}{#2}}}}} % else GCD(#1-#2,#2)

GCD(27,4)=1:
input : \GCD \TwentySeven \Four
output : 1
GCD(27,3)=3:
input : \GCD \TwentySeven \Three
output : 111

and we can search for multiples:

\def\DividesBy#1#2{\IsZero{\Mod{#1}{#2}}}
\def\NotDividesBy#1#2{\GreaterThan\Zero{\Mod{#1}{#2}}}
\def\FirstDividesByStarting#1#2{%

\DividesBy{#1}{#2}{#2}{\FirstDividesByFrom{#1}{#2}}}
\def\FirstDividesByFrom#1#2{\FirstDividesByStarting{#1}{\AddOne{#2}}}

5|25:
input : \DividesBy \Five \TwentyFive
output : T

Victor Eijkhout

196 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

5 6 |27:
input : \DividesBy \Five \TwentySeven
output : F
5 6 |27:
input : \NotDividesBy \Five \TwentySeven
output : T
10 = min{i : i ≥ 7 ∧ 5|i}:
input : \FirstDividesByFrom \Five \Seven
output : 1111111111

5.1.5 Infinite lists

So far, we have dealt with lists that are finite, built up from an empty list. However, we
can use infinite lists too.

\def\Stream#1{\Cons{#1}{\Stream{#1}}}
Infinite objects:
input : \Head {\Tail {\Stream 3}}
output : 3
Infinite objects:
input : \Head {\Tail {\Tail {\Tail {\Tail {\Tail

{\Stream 3}}}}}}
output : 3

Even though the list is infinite, we can easily handle it in finite time, because it is never
constructed further than we ask for it. This is called ‘lazy evaluation’.

We can get more interesting infinite lists by applying successive powers of an operator
to the list elements. Here is the definition of the integers by applying the AddOne
operator a number of times to zero:

% \StreamOp <operator> <initial value>
\def\StreamOp#1#2{\Cons{#2}{\StreamOp{#1}{#1{#2}}}}
\def\Integers{\StreamOp\AddOne\Zero}
\def\PositiveIntegers{\Tail\Integers}
\def\TwoOrMore{\Tail\PositiveIntegers}

Again, the Integers object is only formed as far as we need it:
Integers:
input : \Head {\Tail {\Integers }}
output : 1
Integers:
input : \Head {\Tail {\Tail {\Tail {\Tail {\Tail

{\Integers }}}}}}

TEX – LATEX – CS 594

5.1. LOGIC WITH TEX 197

output : 11111

Let us see if we can do interesting things with lists. We want to make a list out of
everything that satisfies some condition.

\def\ConsIf#1#2#3{#1{#2}{\Cons{#2}{#3}}{#3}}
\def\Doubles{\ListApply{\ConsIf{\DividesBy\Two}}\Nil\PositiveIntegers}
\def\AllSatisfy#1{\ListApply{\ConsIf{#1}}\Nil\PositiveIntegers}
\def\FirstSatisfy#1{\Head{\AllSatisfy{#1}}}

third multiple of two:
input : \Head {\Tail {\Tail \Doubles }}
output : 111111
old enough to drink:
input : \FirstSatisfy {\GreaterThan \TwentyOne }
output : 1111111111111111111111

We add the list in which we test as a parameter:

\def\AllSatisfyIn#1#2{\ListApply{\ConsIf{#1}}\Nil{#2}}
\def\FirstSatisfyIn#1#2{\Head{\AllSatisfyIn{#1}{#2}}}

:
input : \FirstSatisfyIn {\NotDividesBy

{\FirstSatisfyIn {\NotDividesBy \Two
}\TwoOrMore }} {\AllSatisfyIn {\NotDividesBy
\Two }\TwoOrMore }

output : 11111

And now we can repeat this:

\def\FilteredList#1{\AllSatisfyIn{\NotDividesBy{\Head{#1}}}{\Tail{#1}}}
\def\NthPrime#1{\Head{\PrimesFromNth{#1}}}
\def\PrimesFromNth#1{\IsOne{#1}\TwoOrMore

{\FilteredList{\PrimesFromNth{\SubOne{#1}}}}}
Third prime; spelled out:
input : \Head {\FilteredList {\FilteredList

\TwoOrMore }}
output : 11111
Fifth prime:
input : \NthPrime \Four
output : 1111111

However, this code is horrendously inefficient. To get the 7th prime you can go make
a cup of coffee, one or two more and you can go pick the beans yourself.

%\def\FilteredList#1{\AllSatisfyIn{\NotDividesBy{\Head{#1}}}{\Tail{#1}}}
\def\xFilteredList#1#2{\AllSatisfyIn{\NotDividesBy{#1}}{#2}}
\def\FilteredList#1{\xFilteredList{\Head{#1}}{\Tail{#1}}}

Victor Eijkhout

198 CHAPTER 5. TEX’S MACRO LANGUAGE – UNFINISHED CHAPTER

Fifth prime:
input : \NthPrime \Five
output : 11111111111

TEX – LATEX – CS 594

Chapter 6

Character encoding

This chapter is about how to interpret the characters in an input file – no there ain’t
such a thing as a plain text file – and how the printed characters are encoded in a font.

Handouts and further reading for this chapter

There is very little printed material on this topic. A good introduction is http://
www.joelonsoftware.com/articles/Unicode.html; after that, http:
//www.cs.tut.fi/˜jkorpela/chars.html is a good tutorial for general is-
sues, and http://en.wikipedia.org/wiki/Unicode for Unicode.

For the technical details on Unicode consult http://www.unicode.org/. An in-
troduction to ISO 8859: http://www.wordiq.com/definition/ISO_8859.

199

http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.cs.tut.fi/~jkorpela/chars.html
http://www.cs.tut.fi/~jkorpela/chars.html
http://en.wikipedia.org/wiki/Unicode
http://www.unicode.org/
http://www.wordiq.com/definition/ISO_8859

200 CHAPTER 6. CHARACTER ENCODING

Input file encoding.

6.1 History and context

6.1.1 One-byte character sets; Ascii

Somewhere in the depths of prehistory, people got to agree on a standard for character
codes under 127, ASCII. Unlike another encoding scheme, EBCDIC, it has a few nice
properties.

• All letters are consecutive, making a test ‘is this a letter’ easy to perform.
• Uppercase and lowercase letters are at a distance of 32.
• The first 31 codes, everything below the space character, as well as posi-

tion 127, are ‘unprintable’, and can be used for such purposes as terminal
cursor control.
• Unprintable codes are accessible through the control modifier (for this reason

they are also called ‘control codes’), which zeros bits 2 and 3: hit Ctrl-[
to get Esc1.

The ISO 646 standard codified 7-bit ASCII, but it left certain character positions (or
‘code points’) open for national variation. For instance, British usage put a pound sign
(£) in the position of the dollar. The ASCII character set was originally accepted as
ANSI X3.4 in 1968.

6.1.2 Code pages

This left the codes with the high bit set (‘extended ASCII’) undefined, and different
manufacturers of computer equipment came up with their own way of filling them
in. These standards were called ‘code pages’, and IBM gave a standard numbering to

1. The way key presses generate characters is typically controlled in software. This mapping from
keyboard scan codes to 7 or 8-bit characters is called a ‘keyboard’, and can be changed dynamically in
most operating systems.

TEX – LATEX – CS 594

6.1. HISTORY AND CONTEXT 201

them. For instance, code page 437 is the MS-DOS code page with accented characters
for most European languages, 862 is DOS in Israel, 737 is DOS for Greeks.

Here is cp473:

MacRoman:

and Microsoft cp1252:

More code pages are displayed on http://aspell.net/charsets/codepages.

Victor Eijkhout

http://aspell.net/charsets/codepages.html
http://aspell.net/charsets/codepages.html

202 CHAPTER 6. CHARACTER ENCODING

html. These diagrams can be generated from Unicode mapping tables, which look like

=20 U+0020 SPACE
=21 U+0021 EXCLAMATION MARK
=22 U+0022 QUOTATION MARK
...
=A3 U+00A3 POUND SIGN
=A4 U+20AC EURO SIGN
=A5 U+00A5 YEN SIGN
...

The international variants were standardized as ISO 646-DE (German), 646-DK (Dan-
ish), et cetera. Originally, the dollar sign could still be replaced by the currency symbol,
but after a 1991 revision the dollar is now the only possibility.

6.1.3 ISO 8859

The different code pages were ultimately standardized as ISO 8859, with such popular
code pages as 8859-1 (‘Latin 1’) for western European,

8859-2 for eastern, and 8859-5 for Cyrillic.

These ISO standards explicitly left the first 32 extended positions undefined. Microsoft
code page 1252 uses ISO 8859-1.

More useful information about ASCII: http://jimprice.com/jim-asc.htm.
History of ASCII out of telegraph codes: http://www.wps.com/projects/
codes/index.html. A history, paying attention to multilingual use: http://
tronweb.super-nova.co.jp/characcodehist.html History as written

TEX – LATEX – CS 594

http://aspell.net/charsets/codepages.html
http://aspell.net/charsets/codepages.html
http://jimprice.com/jim-asc.htm
http://www.wps.com/projects/codes/index.html
http://www.wps.com/projects/codes/index.html
http://tronweb.super-nova.co.jp/characcodehist.html
http://tronweb.super-nova.co.jp/characcodehist.html

6.2. UNICODE 203

by the father of ASCII: Bob Bemer http://www.bobbemer.com/HISTORY.
HTM.

A good inventory of ISO 8859, Latin-1: http://www.cs.tut.fi/˜jkorpela/
latin1/index.html, with a discussion by logical grouping: http://www.cs.
tut.fi/˜jkorpela/latin1/4.html.

6.1.4 DBCS

Since certain Asian alphabets do not fit in 256 positions, a system called the ‘Double
Byte Character Set’ was invented where some characters were stored in one, others in
two bytes. This is very messy, since you can not simply write s++ or s-- to traverse
a string. Instead you have to use functions from some library that understands these
encodings. This system is now only of historical interest.

6.2 Unicode

The systems above functioned quite well as long as you stuck to one language or writ-
ing system. Poor dictionary makers. More or less simultaneously two efforts started
that aimed to incorporate all the world’s character sets in one standard: Unicode stan-
dard (originally 2-byte), and ISO 10646 (oringally 4-byte). Unicode then was ex-
tended, so that it has all numbers up to 10FFFFF, which is slightly over a million.

6.2.1 ISO 10646 and Unicode

Two international standards organizations, the Unicode Consortium and ISO/IEC JTC1/SC2,
started designing a universal standard that was to be a superset of all existing charac-
ter sets. These standards are now synchronized. Unicode has elements that are not in
10646, but they are compatible where it concerns straight character encoding.

ISO 10646 defines UCS, the ‘Universal Character Set’. This is in essence a table of
official names and code numbers for characters. Unicode adds to this rules for hyphen-
ation, bi-directional writing, and more.

The full Unicode list of code points can be found, broken down by blocks, online
at http://www.fileformat.info/info/unicode/index.htm, or down-
loadable at http://www.unicode.org/charts/.

Victor Eijkhout

http://www.bobbemer.com/HISTORY.HTM
http://www.bobbemer.com/HISTORY.HTM
http://www.cs.tut.fi/~jkorpela/latin1/index.html
http://www.cs.tut.fi/~jkorpela/latin1/index.html
http://www.cs.tut.fi/~jkorpela/latin1/4.html
http://www.cs.tut.fi/~jkorpela/latin1/4.html
http://www.fileformat.info/info/unicode/index.htm
http://www.unicode.org/charts/

204 CHAPTER 6. CHARACTER ENCODING

6.2.2 BMP and earlier standards

Characters in Unicode are mostly denoted hexadecimally as U+wxyz, for instance
U+0041 is ‘Latin Capital Letter A’. The range U+0000–U+007F (0–127) is identical
to US-ASCII (ISO 646 IRV), and U+0000–U+00FF (0–255) is identical to Latin 1
(ISO 8859-1).

The original 2-byte subset is now called ‘BMP’ for Basic Multilingual Plane.

From http://www.hyperdictionary.com/:

BMP (Basic Multilingual Plane) The first plane defined in Unicode/ISO 10646, de-
signed to include all scripts in active modern use. The BMP currently in-
cludes the Latin, Greek, Cyrillic, Devangari, hiragana, katakana, and Chero-
kee scripts, among others, and a large body of mathematical, APL-related,
and other miscellaneous characters. Most of the Han ideographs in current
use are present in the BMP, but due to the large number of ideographs, many
were placed in the Supplementary Ideographic Plane.

SIP (Supplementary Ideographic Plane) The third plane (plane 2) defined in Uni-
code/ISO 10646, designed to hold all the ideographs descended from Chi-
nese writing (mainly found in Vietnamese, Korean, Japanese and Chinese)
that aren’t found in the Basic Multilingual Plane. The BMP was supposed
to hold all ideographs in modern use; unfortunately, many Chinese dialects
(like Cantonese and Hong Kong Chinese) were overlooked; to write these,
characters from the SIP are necessary. This is one reason even non-academic
software must support characters outside the BMP.

6.2.3 Unicode encodings

Unicode is basically a numbered list of characters. When they are used in a file, their
numbers can be encoded in a number of ways. To name the obvious example: if only
the first 128 positions are used, the long Unicode code point can be truncated to just
one byte. Here are a few encodings:

UCS-2 Obsolete: this was the original ‘native’ two-byte encoding before Unicode was
extended.

UTF-32 Little used: this is a four-byte encoding. (UTF stands for ‘UCS Transforma-
tion Format’.)

UTF-16 This is the BMP.
UTF-8 A one-byte scheme; details below.
UTF-7 Another one-byte scheme, but now the high bit is always off. Certain byte

values act as ‘escape’, so that higher values can be encoded. Like UTF-1 and
SCSU, this encoding is only of historical interest.

TEX – LATEX – CS 594

http://www.hyperdictionary.com/

6.2. UNICODE 205

There is an important practical reason for UTF-8. Encodings such as UCS-2 are waste-
ful of space, if only traditional ASCII is needed. Furthermore, they would break soft-
ware that is expecting to walk through a file with s++ and such. Also, they would
introduce many zero bytes in a file, which would play havoc with Unix software that
uses null-termination for strings. Then there would be the problem of whether two
bytes are stored in low-endian or high-endian order. For this reason it was suggested
to store FE FF or FF FE at the beginning of each file as the ‘Unicode Byte Order
Mark’. Of course this plays havoc with files such as shell scripts which expect to find
#! at the beginning of the file.

6.2.4 UTF-8

UTF-8 is an encoding where the positions up to 127 are encoded ‘as such’; higher
numbers are encoded in groups of 2 to 6 bytes. (UTF-8 is standardized as RFC 3629.)
In a multi-byte group, the first byte is in the range 0xC0–0xFD (192–252). The next
up to 5 bytes are in the range 0x80–0xBF (128–191, bit pattern starting with 10). Note
that 8 = 1000 and B = 1011, so the highest two bits are always 10, leaving six bits
for encoding).

U-00000000 - U-0000007F 7 bits 0xxxxxxx
U-00000080 - U-000007FF 11 = 5 + 6 110xxxxx 10xxxxxx
U-00000800 - U-0000FFFF 16 = 4 + 2× 6 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 - U-001FFFFF 21 = 3 + 3× 6 11110xxx 10xxxxxx (3 times)
U-00200000 - U-03FFFFFF 26 = 2 + 4× 6 111110xx 10xxxxxx (4 times)
U-04000000 - U-7FFFFFFF 31 = 1 + 5× 6 1111110x 10xxxxxx (5 times)

All bites in a multi-byte sequence have their high bit set.

Exercise 49. Show that a UTF-8 parser will not miss more than
two characters if a byte becomes damaged (any number of bits ar-
bitrarily changed).

IETF documents such as RFC 2277 require support for this encoding in internet soft-
ware. Here is a good introduction to UTF-8 use in Unix: http://www.cl.cam.
ac.uk/˜mgk25/unicode.html. The history of it: http://www.cl.cam.ac.
uk/˜mgk25/ucs/utf-8-history.txt.

6.2.5 Unicode tidbits

6.2.5.1 Line breaking

See http://www.cs.tut.fi/˜jkorpela/unicode/linebr.html and http:
//www.unicode.org/reports/tr14/

Victor Eijkhout

http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
http://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt
http://www.cs.tut.fi/~jkorpela/unicode/linebr.html
http://www.unicode.org/reports/tr14/
http://www.unicode.org/reports/tr14/

206 CHAPTER 6. CHARACTER ENCODING

6.2.5.2 Bi-directional writing

Most scripts are left-to-right, but Arabic and Hebrew run right-to-left. Characters in
a file are stored in ‘logical order’, and usually it is clear in which direction to render
them, even if they are used mixed. Letters have a ‘strong’ directionality: unless over-
ridden, they will be displayed in their natural direction. The first letter of a paragraph
with strong direction determines the main direction of that paragraph.

However, when differently directional texts are embedded, some explicit help is needed.
The problem arises with letters that have only weak directionality. The following is a
sketch of a problematic case.

Memory: he said ”I NEED WATER!”, and expired.
Display: he said ”RETAW DEEN I!”, and expired.

If the exclamation mark is to be part of the Arabic quotation, then the user can select
the text ‘I NEED WATER!’ and explicitly mark it as embedded Arabic (<RLE> is
Right-Left Embedding; <PDF> Pop Directional Format), which produces the follow-
ing result:

Memory: he said ”<RLE>I NEED WATER!<PDF>”, and expired.
Display: he said ”!RETAW DEEN I”, and expired.

A simpler method of doing this is to place a Right Directional Mark <RLM> after the
exclamation mark. Since the exclamation mark is now not on a directional boundary,
this produces the correct result.

Memory: he said ”I NEED WATER!<RLM>”, and expired.
Display: he said ”!RETAW DEEN I”, and expired.

For the full definition, see http://www.unicode.org/reports/tr9/.

6.2.6 Unicode and oriental languages

‘Han unification’ is the Unicode strategy of saving space in the oriental languages (tra-
ditional Chinese, simplified Chinese, Japanese, Korean: ‘CJK’) by recognizing com-
mon characters. This idea is not uncontroversial; see http://en.wikipedia.
org/wiki/Han_unification.

TEX – LATEX – CS 594

http://www.unicode.org/reports/tr9/
http://en.wikipedia.org/wiki/Han_unification
http://en.wikipedia.org/wiki/Han_unification

6.3. MORE ABOUT CHARACTER SETS AND ENCODINGS 207

6.3 More about character sets and encodings

6.3.1 Character sets

Informally, the term ‘character set’ (also ‘character code’ or ‘code’) used to mean
something like ‘a table of bytes, each with a character shape’. With only the English
alphabet to deal with that is a good enough definition. These days, much more general
cases are handled, mapping one octet into several characters, or several octets into one
character. The definition has changed accordingly:

A ‘charset is a method of converting a sequence of octets into a se-
quence of characters. This conversion may also optionally produce
additional control information such as directionality indicators.

(From RFC 2978) A conversion the other way may not exist, since different octet com-
binations may map to the same character. Another complicating factor is the possibility
of switching between character sets; for instance, ISO 2022-JP is the standard ASCII

character set, but the escape sequence ESC $ @ switches to JIS X 0208-1978.

6.3.2 From character to encoding in four easy steps

To disentangle the concepts behind encoding, we need to introduce a couple of levels:

ACR Abstract Character Repertoire: the set of characters to be encoded; for example,
some alphabet or symbol set. This is an unordered set of characters, which
can be fixed (the contents of ISO 8859-1), or open (the contents of Unicode).

CCS Coded Character Set: a mapping from an abstract character repertoire to a set
of nonnegative integers. This is what is meant by ‘encoding’, ‘character set
definition’, or ‘code page’; the integer assigned to a character is its ‘code
point’.
There used to be a drive towards unambiguous abstract character names
across repertoires and encodings, but Unicode ended this, as it provides (or
aims to provide) more or less a complete list of every character on earth.

CEF Character Encoding Form: a mapping from a set of nonnegative integers that are
elements of a CCS to a set of sequences of particular code units. A ‘code
unit’ is an integer of a specific binary width, for instance 8 or 16 bits. A CEF
then maps the code points of a coded character set into sequences of code
point, and these sequences can be of different lengths inside one code page.
For instance
• ASCII uses a single 7-bit unit
• UCS-2 uses a single 16-bit unit
• DBCS uses two 8-bit units
• UTF-8 uses one to four 8-bit units.

Victor Eijkhout

208 CHAPTER 6. CHARACTER ENCODING

• UTF-16 uses a mix of one and two 16-bit code units.
CES Character Encoding Scheme: a reversible transformation from a set of sequences

of code units (from one or more CEFs to a serialized sequence of bytes. In
cases such as ASCII and UTF-8 this mapping is trivial. With UCS-2 there is
a single ‘byte order mark’, after which the code units are trivially mapped to
bytes. On the other hand, ISO 2022, which uses escape sequences to switch
between different encodings, is a complicated CES.

Additionally, there are the concepts of

CM Character Map: a mapping from sequences of members of an abstract character
repertoire to serialized sequences of bytes bridging all four levels in a single
operation. These maps are what gets assigned MIBenum values by IANA;
see section 6.3.3.

TES Transfer Encoding Syntax: a reversible transform of encoded data. This data may
or may not contain textual data. Examples of a TES are base64, uuencode,
and quoted-printable, which all transform a byte stream to avoid certain val-
ues.

6.3.3 A bootstrapping problem

In order to know how to interpret a file, you need to know what character set it uses.
This problem also occurs in MIME mail encoding (section 6.3.5), which can use many
character sets. Names and numbers for character sets are standardized by IANA: the
Internet Assigned Names Authority (http://www.iana.org/). However, in what
character set do you write this name down?

Fortunately, everyone agrees on (7-bit) ASCII, so that is what is used. A name can be
up to 40 characters from us-ascii.

As an example, here is the iana definition of ASCII:

name ANSI_X3.4-1968
reference RFC1345,KXS2
MIBenum 3

source ECMA registry
aliases iso-ir-6, ANSI_X3.4-1986, ISO_646.irv:1991, ASCII, ISO646-US,

US-ASCII (preferred MIME name), us, IBM367, cp367, csASCII

The MIBenum (Management Information Base) is a number assigned by IANA2. The
full list of character sets is at http://www.iana.org/assignments/character-sets,
and RFC 3808 is a memo that describes the IANA Charset MIB.

2. Apparently these numbers derive from the Printer MIB, RFC 1759.

TEX – LATEX – CS 594

http://www.iana.org/
http://www.iana.org/assignments/character-sets

6.3. MORE ABOUT CHARACTER SETS AND ENCODINGS 209

6.3.4 Character codes in HTML

HTML can access unusual characters in several ways:
• With a decimal numerical code: is a space token. (HTML 4 supports

hexadecimal codes.)
• With a vaguely symbolic name: © is the copyright symbol. See http:
//www.cs.tut.fi/˜jkorpela/HTML3.2/latin1.html for a list
of symbolic names in Latin-1.
• The more interesting way is to use an encoding such as UTF-8 (section 6.2.3)

for the file. For this it would be nice if the server could state that the file is
Content-type: text/html;charset=utf-8
but it is also all right if the file starts with
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=utf-8">

It is requirement that user agents can at least parse the charset parameter, which
means they have to understand us-ascii.

Open this link in your browser, and additionally view the source: http://www.
unicode.org/unicode/iuc10/x-utf8.html. How well does your software
deal with it?

See also section 6.7.1.

6.3.5 Characters in email

6.3.6 FTP

FTP is a very old ARPA protocol. It knows ‘binary’ and ‘text’ mode, but the text mode
is not well defined. Some ftp programs adjust line ends; others, such as Fetch on the
Mac, actually do code page translation.

6.3.7 Character encodings in editors and programming languages

Software must be rewritten to use character encodings. Windows NT/2000/XP, in-
cluding Visual Basic, uses UCS-2 as native string type. Strings are declared of type
wchar_t instead of char, and the programmer uses wcslen instead of strlen,
et cetera. A literal string is created as L"Hello world".

Victor Eijkhout

http://www.cs.tut.fi/~jkorpela/HTML3.2/latin1.html
http://www.cs.tut.fi/~jkorpela/HTML3.2/latin1.html
http://www.unicode.org/unicode/iuc10/x-utf8.html
http://www.unicode.org/unicode/iuc10/x-utf8.html

210 CHAPTER 6. CHARACTER ENCODING

6.4 Character issues in TEX / LATEX

6.4.1 Diacritics

Original TEX is not very good at dealing with diacritics. They are implemented as
things to put on top of characters, even when, as with the cedilla, they are under the
letter. Furthermore, TEX can not hypenate a word with accents, since the accent intro-
duces a space in the word (technically: an explicit kern). Both problems were remedied
to a large extent with the ‘Cork font encoding’, which contains most accented letters
as single characters. This means that accents are correctly placed by design, and also
that the word can be hyphenated, since the kern has disappeared.

These fonts with accented characters became possible when TEX version 3 came out
around 1990. This introduced full 8-bit compatibility, both in the input side and in the
font addressing.

6.4.2 LATEX input file access to fonts

If an input file for LATEX is allowed to contain all 8-bit octets, we get all the problems of
compatibility that plagued regular text files. This is solved by the package inputenc:

\usepackage[code]{inputenc}

where codes is applemac, ansinew, or various other code pages.

This package makes all unprintable ASCII characters, plus the codes over 127, into
active characters. The definitions are then dynamically set depending on the code page
that is loaded.

6.4.3 LATEX output encoding

The inputenc package does not solve the whole problem of producing a certain
font character from certain keyboard input. It only mapped a byte value to the TEX
command for producing a character. To map such commands to actual code point in a
font file, the TEX and LATEX formats contain lines such as

\chardef\i="10

declaring that the dotless-i is at position 16. However, this position is a convention,
and other people – type manufacturers – may put it somewhere else.

This is handled by the ‘font encoding’ mechanism. The various people working on the
LATEX font schemes have devised a number of standard font encodings. For instance,
the OT1 encoding corresponds to the original 128-character set. The T1 encoding is
a 256-character extension thereof, which includes most accented characters for Latin
alphabet languages.

TEX – LATEX – CS 594

6.4. CHARACTER ISSUES IN TEX / LATEX 211

A font encoding is selected with

\usepackage[T1]{fontenc}

A font encoding definition contains lines such as

\DeclareTextSymbol{\AE}{OT1}{29}
\DeclareTextSymbol{\OE}{OT1}{30}
\DeclareTextSymbol{\O}{OT1}{31}
\DeclareTextSymbol{\ae}{OT1}{26}
\DeclareTextSymbol{\i}{OT1}{16}

6.4.4 Virtual fonts

Exercise 50. What does an ALT key do?

Exercise 51. What is EBCDIC? What is the basic idea?

Exercise 52. Find the Unicode definition. Can you find an exam-
ple of a character that has two functions, but is not defined as two
characters? Find two characters that are defined seperately for com-
patibility, but that are defined equivalent.

Exercise 53. ISO 8859 has the ‘non-breaking space’ at position A0.
How does TEX handle the nbsp? How do TEX, HTML, Latin-1, MS
Word, et cetera handle multiple spaces? Discuss the pros and cons.

Victor Eijkhout

212 CHAPTER 6. CHARACTER ENCODING

Figure 6.1: Different shapes of ‘lowercase roman a’

Font encoding.

6.5 Basic terminology

Terminology of fonts and typefaces is quite confused these days. Traditionally, a type-
face was a design, realized in number of fonts, that could be sorted in families, such
as roman, and italic. A font would then be a style (medium weight bold italic) in a
particular size.

Somewhat surprisingly, once you start throwing computers at this problem, even talk-
ing about characters becomes very subtle.

In Unicode, there are abstract characters and characters. They don’t differ by much:
an abstract character is a concept such as ‘Latin lowercase a with accent grave’, and
a character is that concept plus a position in the Unicode table. The actually visible
representation of a character is called a ‘glyph’. According to ISO 9541, a glyph is
‘A recognizable abstract graphic symbol which is independent of any specific design’.

6.5.1 The difference between glyphs and characters

Often, the mapping between character and glyph is clear: we all know what we mean
by ‘Uppercase Roman A’. However, there may be different glyph shapes that corre-
spond to the same character.

An abstract character is defined as

abstract character: a unit of information used for the organiza-
tion, control, or representation of textual data.

This definition has some interesting consequences. Sometimes one glyph can corre-
spond to more than one character, and the other way around.

For example, in Danish, the ligature ‘æ’ is an actual character. On the other hand, the
ligature ‘fl’, which appears in English texts, is merely a typographical device to make

TEX – LATEX – CS 594

6.5. BASIC TERMINOLOGY 213

Figure 6.2: The f-i ligature

Figure 6.3: A split character in Tamil

the combination ‘fl’ look better, so one glyph corresponds to two characters.

The opposite case is rarer. In Tamil, a certain character is split, because it is positioned
around other characters. It can then even happen that one of the split parts forms a
ligature with adjacent characters.

A tricker question is how to handle accented letters: is ‘é’ one character or a combina-
tion of two? In math, is the relation in a 6= b one symbol, or an overstrike of one over

Figure 6.4: Different interpretations of an accented character glyph

another?

Another problem with ligatures is that a single glyph needs to be displayed, but two
glyphs need to be stored to make searching for the string possible.

Victor Eijkhout

214 CHAPTER 6. CHARACTER ENCODING

6.5.2 The identity of a character

Another problem in defining a character is whether two glyphs that look the same, or
sometimes ever are the same, should be the same character. For example, uppercase
Latin a, uppercase Greek α, and uppercase Cyrillic a, are all rendered ‘A’. Still, in
Unicode they are three distinct characters.

Similarly, in ASCII, there are no separate glyphs for minus, hyphen, and dash. In Uni-
code, these are three characters. Is the character ‘superscript 2’ a separate glyph, or a
typographical variant of the character ‘digit 2’? The latter should be the logical solu-
tion, but for compatibility reasons with other standards it is defined as a separate glyph.
There are quite a few of these ‘compatibility characters.

Yet another example is the Greek letter Ω, which can be that letter, or the sign for
electrical resistance in physics texts. Unicode defines them as two characters, but with
identical glyphs.

A capital ‘A’ in Times Roman and in Helvetica are the same character, but what about
italic?

All these matters are hard to settle objectively: everything is a matter of definition,
or a judgement call. The official Unicode white paper on characters versus glyphs is
http://www.unicode.org/reports/tr17/.

Here are some of the guidelines of the Unicode project:

• The Unicode Standard encodes characters, not glyphs.
• Characters have well-defined semantics.
• The Unicode Standard encodes plain text.
• And:

The Unicode Standard avoids duplicate encoding of characters
by unifying them within scripts across languages; characters that
are equivalent in form are given a single code. Common letters,
punctuation marks, symbols, and diacritics are given one code
each, regardless of language, [. . .]

6.5.3 Diacritics

Unicode, a bit like TEX, has two ways of dealing with diacritics. It has precomposed ac-
cented characters, but it can also compose accented characters by listing accents (yes,
plural: transliterated Vietnamese regularly has two accents over a letter one relating to
vowel quality, and one to tone) after the base symbol. This mechanism can also deal
with languages such as Hangul (Korean) which have composite characters.

TEX – LATEX – CS 594

http://www.unicode.org/reports/tr17/

6.6. ÆSTHETICS 215

6.6 Æsthetics

6.6.1 Scaling versus Design sizes

Lots of attention is devoted to font scaling, with the implicit assumption that that is the
way to get a font to display at different sizes. This is only true to an extent: a small
version of a typeface was traditionally of a different design than the same typeface
at larger sizes. With metal type, independent designs for the different sizes were of
course the only way one could proceed at all, but with photo typesetters and computers
the need went away, and with it the realization that independent designs are visually
actually a Good Thing. Figure 6.5 shows the difference between a typeface set at its

Figure 6.5: A typeface and a smaller version scaled up

‘design size’, and a scaled up smaller version of it.

Figure 6.6: Adobe’s optical masters for a typeface

Adobe incorporated this idea in their Multiple Masters typefaces, which could inter-
polate between different designs. This technology seems to have been abandoned, but
Adobe’s Originals now have so-called ‘Optical masters: four different designs of the
same typeface, to be set at different sizes. Adobe labels their purposes as ‘display’,
‘subhead’, ‘text’, and ‘caption’ in decreasing design size; see figure 6.6.

Apple developed their own version of multiple design sizes in TrueType GX, released
in 1994. The ideas in TrueType GX are incorporated in Apple Advanced Typography
(AAT) in OS X, but there few AAT typefaces, and certainly very few non-Apple ones.

Victor Eijkhout

216 CHAPTER 6. CHARACTER ENCODING

6.7 Font technologies
6.7.1 Unicode in fonts

It is unrealistic to expect any single font to support even a decent fraction of the Uni-
code character repertoire. However, TrueType and OpenType do support Unicode.

The few fonts that support (almost) the whole of Unicode are called ‘pan-Unicode’.
There are only a few of those. However, software these days is pretty sophisticated in
gathering together symbols from disparate fonts. Some browsers do this, prompting
the user for ‘install on demand’ of fonts if necessary.

6.7.2 Type 1 and TrueType

Type 1 (‘Postscript fonts’) was the outline font format developed by Adobe that was
adopted by Apple in the mid 1980s. Since it was proprietary (Adobe had release the
specifications for Type 3 fonts, but not Type 1), Apple and Microsoft later developed
TrueType.

With Type 1 fonts, information is stored in two files, one for shape data and one for
hinting and such. With TrueType, all information is in the one font file.

6.7.2.1 Type1

Adobe Type 1 fonts are stored in two common formats, .pfa (PostScript Font ASCII)
and .pfb (PostScript Font Binary). These contain descriptions of the character shapes,
with each character being generated by a small program that calls on other small pro-
grams to compute common parts of the characters in the font. In both cases, the char-
acter descriptions are encrypted.

Before such a font can be used, it must be rendered into dots in a bitmap, either by
the PostScript interpreter, or by a specialized rendering engine, such as Adobe Type
Manager, which is used to generate low-resolution screen fonts on Apple Macintosh
and on Microsoft Windows systems.

The Type 1 outline files do not contain sufficient information for typesetting with the
font, because they have only limited metric data, and nothing about kerning (position
adjustments of particular adjacent characters) or ligatures (replacement of adjacent
characters by a single character glyph, those for fi, ffi, fl, and ffl being most common
in English typography).

This missing information is supplied in additional files, called .afm (Adobe Font Met-
ric) files. These are ASCII files with a well-defined easy-to-parse structure. Some font
vendors, such as Adobe, allow them to be freely distributed; others, such as Bitstream,
consider them to be restricted by a font license which must be purchased.

TEX – LATEX – CS 594

6.7. FONT TECHNOLOGIES 217

6.7.2.2 TrueType⇔ Type1 conversion

Beware! There is no such thing as a one-to-one reversible conversion. There are several
problems:

The outlines are stored in different ways in both formats. In truetype, second-order
Bezier curves are used, and in type 1, third-order Bezier curves are employed. One sec-
ond order Bezier can be transformed into a third-order Bezier, but a third-order Bezier
cannot be transformed into one, two or seventeen second-order Beziers–approximations
are in order for that conversion. So, type 1 to truetype is problematic, right from the
start. For truetype to type 1, there is a snake in the grass, in the form of integer grid
rounding (see below).

Both formats require all control points to be integers (whole numbers), falling in a grid.
Truetype uses a 2048x2048 grid, type 1 typically a 1000x1000 grid. For the truetype to
type 1 direction, one could divide all grid values by two, but then what? Should 183.5
become 183 or 184? The type 1 to truetype direction is easier, at least from this point of
view, as we could multiply each grid coordinate by two, so no rounding loss would be
involved. However, in the truetype to type 1 direction, the rounding causes additional
problems for the new control points needed for the perfect third-order Bezier outlines
mentioned above.

Placing ink on paper: the formats have different rules for placing ink on paper in case
of outlines that are nested or intersecting. These differences are not caught by many
conversion programs. In most cases, the user should not worry about this—only rarely
do we have overlapping outlines (I was forced once to have them, for other reasons).

Complexity of the outlines: truetype permits more complex outlines, with more control
points. For example, I am sure you have all seen fonts made from scans of pictures of
faces of people. Typically, these outlines are beyond the type 1 limit, so this restriction
makes the truetype to type 1 conversion impossible for ultra complex fonts.

Encoding: truetype can work with a huge number of glyphs. There are truetype fonts
for Chinese and Japanese, for example. In type 1, the number of active glyphs is limited
to 256. Again, for most Latin fonts, this is a non-issue.

The remarks about grid rounding also apply to all metrics, the bounding boxes, the
character widths, the character spacing, the kerning, and so forth.

Finally, there is the hinting. This is handled very differently in both formats, with
truetype being more sophisticated this time. So, in truetype to type 1 conversions of
professionally (hand-hinted) fonts, a loss will occur. Luckily, 99% of the truetype fonts
do not make use of the fancy hinting possibilities of truetype, and so, one is often safe.

All this to tell people to steer away like the plague from format conversions. And a

Victor Eijkhout

218 CHAPTER 6. CHARACTER ENCODING

plea to the font software community to develop one final format. My recommendation:
get rid of truetype, tinker with the type 1 format (well, tinker a lot). More about that
ideal format elsewhere.

6.7.2.3 Downsampling bitmaps

In principle, given adequate resolution, the screen preview quality of documents set in
bitmap fonts, and set in outline fonts, should be comparable, since the outline fonts
have to be rasterized dynamically anyway for use on a printer or a display screen.

Sadly, this is not the case with versions of Adobe Acrobat Reader, acroread, and Ex-
change, acroexch (version 5.x or earlier); they do a poor job of downsampling high-
resolution bitmap fonts to low-resolution screen fonts. This is particularly inexcusable,
inasmuch as the co-founder, and CEO, of Adobe Systems, is the author of one of the
earliest publications on the use of gray levels for font display: [John E. Warnock,
The display of characters using gray level sample arrays, Computer Graphics, 14 (3),
302–307, July, 1980.]

6.7.3 FreeType

FreeType is an Open Source implementation of TrueType. Unfortunately this runs into
patent problems, since Apple has patented some of the hinting mechanism. Recently
FreeType has acquired an automatic hinting engine.

6.7.4 OpenType

OpenType is a standard developed by Adobe and Microsoft. It com-
bines bitmap, outline, and metric information in a single cross-platform file. It has
Unicode support, and can use ‘Optical Masters’ (section 6.6.1) multiple designs. It
knows about the distinction between code points and glyphs, so applications can ren-
der a character differently based on context.

6.8 Font handling in TEX and LATEX

TEX has fairly sophisticated font handling, in the sense that it knows a lot about the
characters in a font. However, its handling of typefaces and relations between fonts is
primitive. LATEX has a good mechanism for that.

TEX – LATEX – CS 594

6.8. FONT HANDLING IN TEX AND LATEX 219

6.8.1 TEX font handling

Font outlines can be stored in any number of ways; TEX is only concerned with the
‘font metrics’, which are stored in a ‘tfm file’. These files contain

• Global information about the font: the \fontdimen parameters, which de-
scribe the spacing of the font, but also the x-height, and the slant-per-point,
which describes the angle of italic and slanted fonts.
• Dimensions and italic corrections of the characters.
• Ligature and kerning programs.

We will look at these in slightly more detail.

6.8.1.1 Font dimensions

The tfm file specifies the natural amount of space, with stretch and shrink for a font,
but also a few properties related to the size and shape of letters. For instance, it contains
the x-height, which is the height of characters without ascenders and descenders. This
is, for instance, used for accents: TEX assumes that accents are at the right height for
characters as high as an ‘x’: for any others the accent is raised or lowered.

The ‘slant per point’ parameters is also for use in accents: it determines the horizontal
offset of a character.

6.8.1.2 Character dimensions

The height, width, and depth of a character is used to determine the size of the enclos-
ing boxes of words. A non-trivial character dimension is the ‘italic correction’. A tall
italic character will protrude from its bounding box (which apparently does not always
bound). The italic correction can be added to a subsequent space.

‘TEX has’ versus ‘TEX has’

6.8.1.3 Ligatures and kerning

The tfm file contains information that certain sequences of characters can be replaced
by another character. The intended use of this is to replace sequences such as fi or fl
by ‘fi’ or ‘fl’.

Kerning is the horizontal spacing that can bring characters closer in certain combina-
tions. Compare

‘Von’ versus ‘Von’

Kerning programs are in the tfm file, not accessible to the user.

Victor Eijkhout

220 CHAPTER 6. CHARACTER ENCODING

6.8.2 Font selection in LATEX

Font selection in LATEX (and TEX) was rather crude in the early versions. Commands
such as \bf and \it switched to boldface and italic respectively, but could not be
combined to give bold italic. The New Font Selection Scheme improved that situation
considerably.

With NFSS, it becomes possible to make orthogonal combinations of the font fam-
ily (roman, sans serif), series (medium, bold), and shape (upright, italic, small caps).
A quick switch back to the main document font is \textnormal or \normalfont.

6.8.2.1 Font families

It is not necessary for a typeface to have both serifed and serifless (sans serif) shapes.
Often, therefore, these shapes are taken from different, but visually compatible type-
faces, for instance combining Times New Roman with Helvetica. This is the combina-
tion that results from
\usepackage{times}

Loading the package lucidabr instead, gives Lucida Bright and Lucida Sans.

The available font families are
roman using the command \textrm and the declaration \rmfamily.
sans serif using the command \textsf and the declaration \sffamily.
typewriter type using the command \texttt and the declaration \ttfamily.

Typewriter type is usually a monospaced font – all characters of the same
width – and is useful for writing about LATEX or for giving code samples.

6.8.2.2 Font series: width and weight

The difference between normal and medium width, or normal and bold weight, can be
indicated with font series commands:
medium width/weight using the command \textmd and the declaration \mdseries.
bold using the command \textbf and the declaration \bfseries.

6.8.2.3 Font shape

The final parameter with which to classify fonts is their shape.
upright This is the default shape, explicitly available through \textup or \upshape.
italic and slanted These are often the same; they are available through \textit,

\textsl, and \itshape, \slshape.
small caps Here text is set through large and small capital letters; this shape is avail-

able through \textsc and \scshape.

TEX – LATEX – CS 594

6.9. THE FONTENC PACKAGE 221

Input and output encoding in LATEX.

6.9 The fontenc package

Traditionally, in TEX accented characters were handled with control characters, such as
in \’e. However, many keyboards – and this should be understood in a software sense
– are able to generate accented characters, and other non-latin characters, directly.
Typically, this uses octets with the high bit set.

As we have seen, the interpretation of these octets is not clear. In the absense of some
Unicode encoding, the best we can say is that it depends on the code page that was
used. This dependency could be solved by having the TEX software know, on installa-
tion, what code page the system is using. While this may be feasible for one system, if
the input files are moved to a different system, they are no longer interpreted correctly.
For this purpose the inputenc package was developed.

An input encoding can be stated at the load of the package:

\usepackage[cp1252]{inputenc}

or input encodings can be set and switched later:

\inputencoding{latin1}

With this, a (part of a) file can be written on one machine, using some code page, and
still be formatted correctly on another machine, which natively has a different code
page.

These code pages are all conventions for the interpretation of singly octets. The inputenc
package also has limited support for UTF-8, which is a variable length (up to four
octets) encoding of Unicode.

Victor Eijkhout

222 CHAPTER 6. CHARACTER ENCODING

Projects for this chapter.
Project 6.1. What is the problem with ‘Han unification’? (section 6.2.6) Discuss his-

tory, philology, politics, and whatever may be appropriate.
Project 6.2. How do characters get into a file in the first place? Discuss keyboard scan

codes and such. How do modifier keys work? How can an OS switch between
different keyboard layouts? What do APIs for different input methods look
like?

Project 6.3. Dig into history (find the archives of alt.folklore.computers!)
and write a history of character encoding, focusing on the pre-ascii years. De-
scribe design decisions made in various prehistoric computer architectures.
Discuss.

TEX – LATEX – CS 594

Chapter 7

Software engineering

In the course of writing TEX and Metafont, Knuth developed some interesting ideas
about software engineering. We will put those in the context of other writings on the
subject. One of the by-products of TEX is the Web system for ‘literate programming’.
We will take a look at that, as well as at the general idea of markup.

Handouts and further reading for this chapter

Knuth wrote a history of the TEX project in [10], reprinted in ‘Literate Programming’,
which is on reserve in the library, QA76.6.K644 1992 .

One of the classics of software engineering is Frederick Brooks’ ‘The Mythical Man-
Month’ [6].

For software engineering research, consult the following journals:

• Software practice and experience
• Journal of systems and software
• ACM Transactions on Software Engineering and Methodology
• IEEE Transactions on Reliability

Some of these the library has available online.

223

224 CHAPTER 7. SOFTWARE ENGINEERING

Literate programming.

7.1 The Web system

7.2 Knuth’s philosophy of program development

7.2.1 The Trip and Trap tests

TEX – LATEX – CS 594

7.3. EXTREMELY BRIEF HISTORY OF TEX 225

Software engineering. (Quotes by Knuth in this chapter taken from [10].)

7.3 Extremely brief history of TEX

Knuth wrote a first report on TEX in early 1977, and left it to graduate students Frank
Liang and Michael Plass to implement it over the summer. Starting from their proto-
type, he then spent the rest of 1977 and early 1978 implementing TEX and producing
fonts with the first version of METAFONT.

TEX was used by Knuth himself in mid 1978 to typeset volume 2 of The Art of Com-
puter Programming; it was in general use by August of 1978. By early 1979, Knuth
had written a system called Doc that was the precursor of WEB, and that produced
both documentation and a portable Pascal version of the source; the original program
was written in Sail.

In 1980 Knuth decided to rewrite TEX and METAFONT. He started on this in 1981, and
finished, including producing the five volumes of Computer and Typesetting, in 1985.

7.4 TEX’s development

7.4.1 Knuth’s ideas

Inspecting the work of his students, Knuth found that they had had to make many de-
sign decisions, despite his earlier conviction to have produced ‘a reasonably complete
specification of a language for typesetting’.

The designer of a new kind of system must participate fully in the
implementation.

Debugging happened in about 18 days in March 1978. Knuth contrasts that with 41
days for writing the program, making debugging about 30% of the total time, as op-
posed to 70% in his earlier experience. The whole code at that time was under 5000
statements. The rewritten TEX82 runs to about 14 000 statements, in 1400 modules of
WEB.

He considered this his first non-trivial program written using the structured program-
ming methodology of Dijkstra, Hoare, Dahl, and others. Because of the confidence this
gave him in the correctness of the program, he did not test TEX until both the whole
program and the fonts were in place. ‘I did not have to prepare dummy versions of
non-existent modules while testing modules that were already written’.

By mid 1979, Knuth was using TEX, and was improving TEX ‘at a regular rate of about
one enhancement for every six pages typed’.

Victor Eijkhout

226 CHAPTER 7. SOFTWARE ENGINEERING

Thus, the initial testing of a program should be done by the de-
signer/implementor.

Triggered by a challenge of John McCarthy, Knuth wrote a manual, which forced him
to think about TEX as a whole, and which led to further improvements in the system.

The designer should also write the first user manual.

‘If I had not participated fully in all these activities, literally hundreds of improvements
would never have been made, because I would never have thought of them or perceived
why they were important.’

Knuth remarks that testing a compiler by using it on a large, real, input typically leaves
many statements and cases unexecuted. He therefore proposes the ‘torture test’ ap-
proach. This consists of writing input that is as far-fetched as possible, so that it will
explore many subtle interactions between parts of the compiler. He claims to have
spent 200 hours writing and maintaining the ‘trip test’; there is a similar ‘trap test’ for
METAFONT.

7.4.2 Context

Software engineering is not an exact science. Therefore, some of Knuth’s ideas can
be fit in accepted practices, others are counter. In this section we will mention some
schools of thought in software engineering, and see how Knuth’s development of TEX
fits in it.

7.4.2.1 Team work

The upshot of the development of TEX seems to be that software development is a one-
man affair. However, in industry, programming teams exist. Is the distinction between
TEX and commercial products then that between academic and real-world?

Knuth’s ideas are actually not that unusual. Programming productivity is not simply
expressible as the product of people and time, witness the book ‘The Mythical man-
Month’. However, some software projects are too big, even for one really clever de-
signer / programmer / tester / manual writer.

Dividing programming work is tricky, because of the interdependence of the parts.
The further you divide, the harder coordination becomes, and the greater the danger of
conflicts.

Harlan Mills proposed that software should be written by groups, where each group
works like a surgical team: one chief surgeon who does all the real work, with a team
to assist in the more mundane tasks. Specifically:

TEX – LATEX – CS 594

7.4. TEX’S DEVELOPMENT 227

• The Chief Programmer designs the software, codes it, tests, it, and writes the
documentation.
• The Co-Pilot is the Chief Programmer’s alter ego. He knows all the code but

writes none of it. He thinks about the design and discusses it with the Chief
Programmer, and is therefore insurance against disaster.
• The Administrator takes care of the mundane aspects of a programming

project. This can be a part-time position, shared between teams.
• The Editor oversees production of documentation.
• Two Secretaries, one each for the Administrator and Editor.
• The Program Clerk is responsible for keeping records of all code and the

test runs with their inputs. This post is also necessary because all coding and
testing will be matter of public record.
• The Toolsmith maintains the utilities used by the other team members.
• The Tester writes the test cases.
• The Language Lawyer investigates different constructs that can realize the

Chief Programmer’s algorithms.

With such teams of 10 people, coordination problems are divided by 10. For the overall
design there will be a system architect, or a small number of such people.

Recently, a development methodology name ‘Extreme Programming’ has become pop-
ular. One aspect of this is pair programming: two programmers share one screen, one
keyboard. The advantage of this is that all code is immediately reviewed and discussed.

7.4.2.2 Top-down and bottom-up

Knuth clearly favours the top-down approach that was proposed by Nicklaus Wirth
in ‘Program Development by Stepwise Refinement’ [20], and by Harlan Mills, who
pioneered it at IBM. The advantage of top-down programming is that the design of
the system is set from the beginning. The disadvantage is that it is hard to change
the design, and testing that shows inadequacies can only start relatively late in the
development process.

Bottom-up programming starts from implementing the basic blocks of a code. The
advantage is that they can immediately be tested; the disadvantage is that the design is
in danger of becoming more ad hoc.

An interesting form of bottom-up programming is ‘test-driven development’. Here,
first a test is written for a unit (a ‘unit test’), then the code. At all times, all tests need
to be passed. Rewriting code, usually to simplify it, with preservation of functionality
as defined by the tests, is known as ‘refactoring’.

Victor Eijkhout

228 CHAPTER 7. SOFTWARE ENGINEERING

7.4.2.3 Program correctness

The Trip test is an example of ‘regression testing’: after every change to the code, a
batch of tests is run to make sure that previous bugs do not reappear. This idea dates
back to Brooks; it is an essential part of Extreme Programming.

However, the Trip test only does regression testing of the whole code. TDD uses both
Unit tests and Integration tests. A unit is a specific piece of code that can easily be
tested since it has a clear interface. In testing a unit, the code structure can be used
to design the tests. Integration testing is usually done as Black Box testing: only the
functionality of an assemblage of units is known and tested, rather than the internal
structure. One way of doing integration testing is by ‘equivalence partitioning’: the
input space is divided into classes such that within each classes the input are equivalent
in their behaviour. Generating these classes, however, is heuristic, and it is possible to
overlook cases.

On the opposite side of the testing spectrum is program proving. However, as Knuth
wrote in a memo to Peter van Emde Boas: ‘Beware of bugs in the above code; I have
only proved it correct, not tried it.’

TEX – LATEX – CS 594

7.5. HISTORY 229

Markup.

7.5 History
The idea of markup has been invented several times. The ideas can be traced by to
William Tunnicliffe, chairman of the Graphic Communications Association (GCA)
Composition Committee, who presented a talk on the separation of information con-
tent of documents from their format in 1967. He called this ‘generic coding’. Simulta-
neously, a New York book designer named Stanley Rice was publishing articles about
”Standardized Editorial Structures”, parameterized style macros based on the struc-
tural elements of publications.

7.5.1 Development of markup systems

Probably the first software incorporating these ideas comes out of IBM. Charles Gold-
farb recounts (http://www.sgmlsource.com/history/roots.htm) how
in 1969 he invented GML with Ed Mosher and Ray Lorie. They were tackling the
problem of having a document storage system, an editor, and a document printing sys-
tem talk to each other, and found that each was using different ‘procedural markup’ for
its own purposes. Gradually the idea grew to use markup for a logical description of the
document. The project was called ‘Integrated Text Processing’, and the first prototype
‘Integrated Textual Information Management Experiment’: InTIME.

GML was officially published in 1973, and by 1980 an extension, SGML, was under
development. This was published in 1986 as ISO 8879. Actually, SGML is a standard
for defining markup languages, rather than a language itself. Markup languages are
defined in SGML through ‘Document Type Definitions’ (DTDs).

The most famous application of SGML is HTML. However, HTML quickly began
violating the separation of function and presentation that was the core idea of markup
languages. A renewed attempt was made to introduce a system for markup languages
that truly defined content, not form, and this led to the ‘eXtensible Markup Language’.
XHTML is a realization of HTML as an XML ‘schema’. While SGML made some
attempts at readability (and saving keystrokes for poor overworked typists), XML is
aimed primarily at being generated and understood by software, not by humans.

Another well-known application of SGML is ‘DocBook’. However, this has also been
defined as an XML DTD1, and this seems to be the current definition. DocBook is

1. XML has both DTDs, which are SGML-like, and Schemas, which themselves XML. Schemas are
the more powerful mechanism, but also newer, so there are established DTDs that may not be redefined
as Schemas. Furthermore, Schemas are more complicated to transmit and parse.

Victor Eijkhout

http://www.sgmlsource.com/history/roots.htm

230 CHAPTER 7. SOFTWARE ENGINEERING

a good illustration of the separation of content and presentation: there are XSL style
sheets that render DocBook files as Pdf, Rtf, HTML, or man pages.

7.5.2 Typesetting with markup

In the early 1970s, nroff/troff was written at Bell Labs, at first in PDP assembler and
targetting a specific photo typesetter for producing Unix documentation. Later it was
recoded in C, with device independent output. Various tasks such as tables and equa-
tions were hard in nroff/troff, so preprocessors existed: eqn for formulas, tbl for tables,
and refer for bibliographies.

Brian Reid’s thesis of 1980 descibed a markup system called Scribe. Scribe source
files can be compiled to several target languages. For instance, recent versions Scribe
can compile to LATEX, HTML, or man pages.

TEX – LATEX – CS 594

7.5. HISTORY 231

Projects for this chapter.
Project 7.1. Do a literature study of code/documentation development. Here are some

places to start:
POD Plain Old Documentation; used for Perl. http://www.perl.com/

pub/a/tchrist/litprog.html
JavaDoc http://java.sun.com/j2se/javadoc/
Doxygen http://www.stack.nl/˜dimitri/doxygen/
Fitnesse http://fitnesse.org/
Leo http://webpages.charter.net/edreamleo/front.html
What schools of thought are there about developing medium size codes such
as TEX? How does Knuth’s philosophy relate to the others?

Project 7.2. Compare the TeX ”way” to MS Word, PageMaker, FrameMaker, Lout,
Griff, previewLaTeX.

Project 7.3. TEX has been criticized for its arcane programming language. Would a
more traditional programming language work for the purpose of producing
text output? Compare TEX to other systems, in particular lout, http://
www.pytex.org/, ant http://www-mgi.informatik.rwth-aachen.
de/˜blume/Download.html and write an essay on the possible ap-
proaches. Design a system of your own.

Project 7.4. TEX and HTML were designed primarily with output in mind. Later sys-
tems (XML, DocBook) were designed so that output would be possible, but
to formalize the structure of a document better. However, XML is impossi-
ble to write by hand. What would be a way out? Give your thoughts about a
better markup system, conversion between one tool and another, et cetera.

Project 7.5. Several improvements on TEX and LATEX have been developed or are un-
der development. Investigate NTS, LaTeX3, Context, Lollipop TEX describe
their methodologies, and evaluate relative merits.

Project 7.6. Knuth has pretty liberal ideas about publishing software; somewhat against
the spirit of the times. Report on software patents, the difference between
patents and copyright, the state of affairs in the world. Read http://swpat.
ffii.org/gasnu/knuth/index.en.html

Project 7.7. Knuth devised the ‘torture test’ approach to program correctness. Report
on various schools of thought on this topic. Where does Knuth’s approach
stand?

Victor Eijkhout

http://www.perl.com/pub/a/tchrist/litprog.html
http://www.perl.com/pub/a/tchrist/litprog.html
http://java.sun.com/j2se/javadoc/
http://www.stack.nl/~dimitri/doxygen/
http://fitnesse.org/
http://webpages.charter.net/edreamleo/front.html
http://www.pytex.org/
http://www.pytex.org/
http://www-mgi.informatik.rwth-aachen.de/~blume/Download.html
http://www-mgi.informatik.rwth-aachen.de/~blume/Download.html
http://swpat.ffii.org/gasnu/knuth/index.en.html
http://swpat.ffii.org/gasnu/knuth/index.en.html

232 CHAPTER 7. SOFTWARE ENGINEERING

TEX – LATEX – CS 594

Bibliography

[1] Richard E. Bellman and Stuart E. Dreyfus. Applied Dynamic Programming.
Princeton University Press, 1962.

[2] Carl de Boor. A Practical Guide to Splines, Revised Edition. Springer-Verlag,
New York, Berlin, Heidelberg, 2001.

[3] V. Eijkhout. An indentation scheme. TUGboat, 11:613–616.
[4] V. Eijkhout. A paragraph skip scheme. TUGboat, 11:616–619.
[5] V. Eijkhout and A. Lenstra. The document style designer as a separate entity.

TUGboat, 12:31–34, 1991.
[6] jr Frederick P. Brooks. The Mythical Man-Month, essays on software engineer-

ing. Addison-Wesley, 1995. Aniversary edition; originally published in 1975.
[7] Michael R. Garey and David S. Johnson. Computers and Intractibility, a guide

to the theory of NP-completeness. W.H. Freeman and company, San Francisco,
1979.

[8] A. Jeffrey. Lists in TEX’s mouth. TUGboat, 11:237–245, 1990.
[9] D.E. Knuth. Digital Typography.

[10] D.E. Knuth. The errors of TEX. Software Practice and Experience, 19:607–681.
[11] D.E. Knuth. TEX: the Program. Addison-Wesley, 1986.
[12] D.E. Knuth. The TEX book. Addison-Wesley, reprinted with corrections 1989.
[13] D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software practice

and experience, 11:1119–1184, 1981.
[14] Donald E. Knuth. The Art of Computer Programming, Volume 3, Sorting and

Searching. Addison Wesley Longman, 1998. Second edition.
[15] Helmut Kopka and Patrick W. Daly. A Guide to LATEX. Addison-Wesley, first

published 1992.
[16] L. Lamport. LATEX, a Document Preparation System. Addison-Wesley, 1986.
[17] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris

Rowley. The LATEX Companion, 2nd edition. Addison-Wesley, 2004.
[18] Michael F. Plass. Optimal Pagination Techniques for Automatic Typesetting Sys-

tems. PhD thesis, 1981. also Xerox technical report ISL-81-1.
[19] Richard Rubinstein. Digital Typography. Addison-Wesley, 1988.

233

234 BIBLIOGRAPHY

[20] Niklaus Wirth. Program development by stepwise refinement. Comm. ACM,
14:221–227, 1971.

TEX – LATEX – CS 594

	About this book
	 TeX and LaTeX
	LaTeX
	 Document markup
	 The absolute basics of LaTeX
	 The TeX conceptual model of typesetting
	 Text elements
	 Tables and figures
	 Math
	 References
	 Some TeXnical issues
	 Customizing LaTeX
	 Extensions to LaTeX
	TeX programming
	TeX visuals
	Projects for this chapter

	 Parsing
	Parsing theory
	 Levels of parsing
	 Very short introduction
	Lexical analysis
	 Finite state automata and regular languages
	 Lexical analysis with FSAs
	Syntax parsing
	 Context-free languages
	 Parsing context-free languages
	Lex
	 Introduction
	 Structure of a lex file
	 Definitions section
	 Rules section
	 Regular expressions
	 Remarks
	 Examples
	Yacc
	 Introduction
	 Structure of a yacc file
	 Motivating example
	 Definitions section
	 Lex Yacc interaction
	 Rules section
	 Operators; precedence and associativity
	 Further remarks
	 Examples
	Hashing
	 Introduction
	 Hash functions
	 Collisions
	 Other applications of hashing
	 Discussion
	Projects for this chapter

	 Breaking things into pieces
	Dynamic Programming
	 Some examples
	 Discussion
	TeX paragraph breaking
	 The elements of a paragraph
	 TeX's line breaking algorithm
	NP completeness
	 Introduction
	 Basics
	 Complexity classes
	 NP-completeness
	Page breaking
	 Introduction
	 TeX's page breaking algorithm
	 Theory of page breaking
	Projects for this chapter

	 Fonts
	Bezier curves
	 Introduction to curve approximation
	 Parametric curves
	 Practical use
	Curve plotting with `#=12 `_=12 `=12 `&=12 =gnuplot
	 Introduction
	 Plotting
	Raster graphics
	 Vector graphics and raster graphics
	 Basic raster graphics
	 Rasterizing type
	 Anti-aliasing
	Projects for this chapter

	 TeX's macro language – unfinished chapter
	Lambda calculus in TeX
	 Logic with TeX

	 Character encoding
	Input file encoding
	 History and context
	 Unicode
	 More about character sets and encodings
	 Character issues in TeX / LaTeX
	Font encoding
	 Basic terminology
	 Æsthetics
	 Font technologies
	 Font handling in TeX and LaTeX
	Input and output encoding in LaTeX
	 The `#=12 `_=12 `=12 `&=12 =fontenc package
	Projects for this chapter

	 Software engineering
	Literate programming
	 The Web system
	 Knuth's philosophy of program development
	Software engineering
	 Extremely brief history of TeX
	 TeX's development
	Markup
	 History
	Projects for this chapter

