
Vienna University of Technology SS2009
Faculty of Informatics
Institute of Software Technology and Interactive Systems
Favoritenstr. 9-11/188
1040 Vienna, Austria

Seminar-Thesis:

Lecture Series on Sustainable Development and

Information and Communication Technology

Hard- and Software Strategies for
Reducing Energy Consumption in

Embedded Systems

Johannes Inführ

Peter Jahrmann

June 29, 2009

Supervised by Alexander Schatten



Abstract

Due to the ongoing increase in earth’s population, adequate supply of resources is going
to be a major issue. One basic resource in rising demand is energy and in particular
electrical energy. In this paper we analyse the contributions of the scientific commu-
nity toward the goal of sustainability with regard to energy consumption of embedded
systems. We consider the energy requirements during operation of embedded systems
and the influence of the whole design process of embedded systems on this energy re-
quirements, starting with design methodologies for energy efficient embedded system
architectures, continuing with special hardware technologies and concluding with soft-
ware techniques covering both operating system level software used for example for
scheduling and user level software running on those embedded systems.



1 Introduction

At the time of writing, 6.7 billion people live on earth [16]. It is estimated that the world
population will reach 9 billion by 2040. This increase alone will result in a rapidly rising
energy consumption. This problem is amplified by rising living standards in developing
countries. The current world electricity production is about 20 trillion kilowatt-hours.
By 2030, it will reach 30 trillion kilowatt-hours, mostly through coal and natural gas
[38]. Coal is a very dirty form of energy, especially when its emissions are not prop-
erly filtered, which is mostly the case in developing countries. This will result in serious
repercussions for the environment. It stands to reason to try to limit those consequences.
One approach is sustainable development, which means to consume resources to meet
ones needs in such a way that future generations have the ability to meet their needs in
the available environment. Producing energy in ways that destroy the environment ob-
viously contradicts this goal. In theory, there is more than enough solar energy available
to supply the entire world. In practise, harvesting this energy in a cheap and efficient
way is not easy. Therefore it is important to put the created energy to good use in-
stead of wasting it. One surefire way to waste energy is using the standby mode on
electric appliances. It is estimated that between 5 and 10 percent of domestic power
is used solely to power devices in standby-mode. There are power controlling devices
which are specifically developed to disconnect devices on standby like the one reported
in [35]. The interesting thing to note is that the inventor of this device states that “this
unique power controller design analyses power consumption using an artificial intelli-
gence algorithm implemented on a high-end micro-controller”. The key point here is
the “high-end micro-controller”, which is a nice example for an embedded system and
how they can be present without being really noticed, often in surprising quantities.
This leads to the main topic of this term paper, the energy consumption of embedded
systems and the various strategies available to reduce it. Besides helping to save the
environment, reducing energy consumption of embedded systems can lead to immediate
monetary rewards for their producers, for example increased sales of the mobile phone
with the longest standby time, which we suspect is the main reason behind the efforts
to minimise power consumption. In this term paper, we consider three possible avenues
for reducing power consumption in embedded devices. In section 2 we discuss some
methods that can be used to design energy efficient embedded systems from scratch.
In section 3, implementation issues of energy intensive hardware components such as
caches are covered. Section 4 gives an overview of software methods available to reduce
energy consumption, like efficient scheduling of tasks in a variety of settings or using
specialised compiling techniques. It should be pointed out that this separation is not as
clear as one might believe, because of various interactions between topics. For exam-
ple, software methods are useless if the hardware does not support some sort of energy
saving mechanism like dynamic voltage scaling or hardware design methods that make
extensive use of simulation software. In section 5 we draw some conclusions about the
covered methods.

3



Figure 1: Hierarchical design approach as defined in [23]

2 Design Methods

Every embedded systems starts off as a design. During the design-phase, the impor-
tant characteristics of the system get fixed. Therefore it is very important to get the
design right in order achieve energy efficiency because every further action to reduce
energy consumption is futile if the design does not support it. Design can be interpreted
as a search in the space of possible system configurations. Various design possibilities
concerning efficiency, like using one or multiple computing cores, reconfiguration capa-
bilities of components, low power states, idle states, execution in hard- or software and
many more add to the design space which needs to be searched for the optimal design.
A hierarchical approach for designing energy efficient embedded systems is discussed
in [23], which focuses on heterogeneous embedded system. Heterogeneous embedded
systems consist of multiple processing components such as general purpose processors,
specifically designed microcontrollers for realtime-systems called digital signal proces-
sors (DSPs), field programmable gate arrays (FPGAs), which can be configured by the
designer after manufacturing and peripheral components like memory and sensors.

The hierarchical design space exploration works in two steps as seen in Fig. 1. First,
a set of designs is created that meet given constraints by using a suitable optimisation
heuristic. In the second step, the performance of those designs is evaluated by a high-level
performance estimator. Since this performance estimator only works on a preselected set
of candidate designs, it can include design parameters not covered by the optimisation
heuristic and therefore find more efficient solutions. The capabilities of this method
depend on its robustness against approximation errors introduced by the performance
estimator. In an experiment that considered a linear array of tasks and a configurable
device and varying performance estimation accuracy it was found that this method
delivered the same or better designs than dynamic programming at nearly every level
of accuracy and problem complexity. The hierarchical design method was demonstrated
on two problems, a beam-forming application and a personnel detection application.
The beam-forming application had a small search space of approximately 320 designs.
Nonetheless, only 8 of those needed to be evaluated by the performance estimator to
detect the most energy efficient design that meets latency constraints. For the second

4



problem, the task was to select energy efficient hardware and map tasks on to them
as to meet a hard real time constraint (finish the personnel detection in one image
before the camera delivers the next image) and minimise energy dissipation. From
the initial design space of 73000, only 16 were selected by the optimisation heuristic and
subsequently tested by the performance estimator. This process took less than a minute,
while evaluating all 73000 designs with the performance estimator took approximately
10 hours.

The run-times stated in [23] underscore the importance of fast energy and performance
evaluation of candidate designs. In [24] a method for automatic energy/performance
macro modelling of software is presented to speed up the evaluation of designs, which is
also very important if the overall system is to be energy efficient. The key observation
in [24] is that software consists mostly of reused libraries “glued” together by a bit of
custom code. So it is possible to develop a detailed energy consumption and performance
model for the libraries and use them together with some high level estimates of the glue-
code to get a accurate picture of energy needs of the whole software package. In this
paper, the developed model for some often used libraries is accurate to one percent both
for performance and energy consumption and using this model the authors could reduce
the runtime of sample code evaluation from a day to a minute.

One important special case for designing embedded systems is the design of FPGAs,
because they have high computational power and are very flexible. One drawback of
FPGAs is, that it is not possible to optimise the embedded system design on the gate
level, e.g. the most basic level in digital circuits, because the gate-level is implemented
by the producer of the FPGAs. On the other hand, it is stated in [26] that optimisations
on the algorithmic level have about 20 times more impact on the total power dissipation
than optimisations on gate level. The flexibility of FPGAs is somewhat problematic in
the sense that there are a lot of choices on how implement the required functions and
again we see an enormous search space which needs to be traversed efficiently. In [25] a
design method is proposed to handle this problem, which is illustrated in Figure 2.

The design method consists of four steps. The first step is the selection of the domain.
A domain is a set of closely related architectures and algorithms suitable for those
architectures. Human intelligence is required to identify domains that will eventually
lead to superior designs, but tools are available to quickly obtain preliminary trade-
off results between power, size and speed to support the decision process. After the
domain is selected, a domain specific high level energy model is developed. At this stage,
power management techniques are considered and with the help of the energy model
parameters like operation frequency and number of computing components are chosen
after an energy consumption optimisation. In the third step of the design methodology,
the design space of each considered domain is traversed to find designs that meet certain
selection criteria like low energy dissipation. With the developed energy models it is
possible to perform trade-off analyses without resorting to low level simulations. This
results in a small set of designs that satisfy the selection criteria. In the fourth step
of this design method, those designs are subjected to low level simulations in order to

5



Figure 2: Design methodology as defined in [25]

validate the high level energy models and to distinguish between the candidate designs
with a higher degree of certainty. If the differences between the high level energy model
and the simulation results are intolerable, the high level model needs to be updated and
step three repeated. For more details, especially on domain specific energy modelling,
see [25]. With this design method, improvements of about 45 percent in energy efficiency
compared to state of the art implementations of an adaptive beam forming application
are reported. For other problem domains like matrix multiplication or fast Fourier
transform, 10 to 78 percent increased energy performance where achieved.

As could be seen up to this point, the design of energy efficient embedded systems is
a difficult task. One further complication is that an embedded system usually doesn’t
have only one function, which can be analysed and considered during system design, but
multiple functions that need to be performed, with different requirements on computing
capabilities and so on. Those systems are called multi-mode embedded systems, because
they operate in various modes. One possible approach to designing such a system could
be to design every function separately and then put the pieces together into one system.
This approach, though elegant in its simplicity has major drawbacks which make it
unacceptable in practise. For one, the different functions that need to be performed
often need the same components as other functions and including them once for each
function is a waste of resources. Therefore great opportunities for energy efficient designs
are missed. So the better way is to design the system as a whole. Because of this, one key
observation can be exploited while designing how the functions are mapped to hardware
or software: the execution probabilities of the different functions are different. How
this can be done is explained in [30], where a design methodology for energy-efficient
multi-mode embedded systems is introduced. This method starts by specifying the
embedded system as operational mode state machine. This describes the behaviour of
the embedded system at a very high level. Figure 3 gives an example for an operational

6



Figure 3: Operational mode state machine of a cell-phone application as defined in [30]

mode state machine. The description is augmented by the probabilities with which the
machine will be in some state and detailed descriptions of the necessary computation
steps in each state (the task graph, which is not shown in figure 3.

The problem now is to find a mapping between computational units (like a multi purpose
CPU or a FPGA) and the tasks in the operational mode state machine, a task schedule
for the computational units and a voltage schedule if dynamic voltage scaling (DVS) for
power saving is used, that satisfies all timing constraints and needs the least possible
energy. Ironically, it might be a good idea to implement the same function on multiple
computational units to allow power saving by turning off currently unused units. In [30]
a genetic algorithm with specialised mutation operators is used to solve this problem.
Computational results show a decrease of 67 percent of the average power on the cell-
phone example with dynamic voltage scaling and 30 percent without DVS.

We have seen that multiple computational elements in embedded systems are difficult to
handle, but this still misses an important aspect. The communication needed between
those computational elements is not negligible. The power needed for communication
can amount to 20 to 30 percent of the total chip power. One can now use a technique sim-
ilar to dynamic voltage scaling, namely adjusting the speed of the communication links
to save electrical energy. There are two ways to scale the communication speed. One is
an online technique, where the speed is adjusted dynamically depending on the current
traffic on the link. The other way is an offline technique, were each communication link
has a fixed speed based on the communication patterns of the target application. In [34]
a method for determining the link speeds in an offline setting for real time systems is
presented. In order to determine the optimal link speed assignment, this method first

7



needs to determine how the communication is actually routed between the computa-
tional elements (routing path allocation). To do that, the method also determines the
assignment of computing tasks to processing elements (task assignment) and schedules
their execution (task scheduling), because they are both needed to calculate the volume
of communication that has to be handled. The method works by nesting three genetic
algorithms inside of each other. The outer most genetic algorithm computes the op-
timal task assignment. Each task assignment in the population also holds the second
genetic algorithm which determines the task scheduling given the task assignment. Each
scheduling in this population also holds the third genetic algorithm which determines
the routing path allocation given the task assignment and task scheduling. Based on
the routing path allocation the link speed is assigned (for details see [34]) and the total
energy requirements are calculated. This nesting of genetic algorithms ensures that the
lower levels always correspond to the higher levels (e.g. every time a task assignment
is changed and then evaluated, the evaluation starts a new genetic algorithm based on
the current assignment). Additionally, special crossover and mutation operators have to
be used, especially for the routing path allocation. The experimental results show that
indeed every one of the three genetic algorithms is important for overall energy savings.
The energy consumption of the on-chip network could be decreased by 39 percent on
average. For communication between computational units from a more hardware-centric
point of view, see section 3.3.

3 Hardware Methods

Designing energy efficient hardware for embedded systems is, after the design of the
system, the second important ingredient for overall energy efficiency. This section intro-
duces some hardware methods to decrease energy consumption of computational units.
First, we will discuss a complete processor architecture tuned to reduce energy dissipa-
tion [2]. In the subsequent subsections, methods of reducing the power requirements of
parts of computational units are discussed. This covers address translation in section
3.1, cache architectures in section 3.2, communication in section 3.3 and probabilistic
arithmetic in section 3.4. While those sections cover important parts of computing ele-
ments, there are a lot of pieces missing and subsequently only serve as an overview of the
possibilities of constructing energy efficient hardware. As already mentioned, the most
powerful form of constructing energy efficient computing elements is to design the whole
element from scratch. This is done for example in [2], where a complete energy-efficient
processor architecture for embedded systems is introduced. In this paper it is stated that
the energy requirements of memory and busses to transfer data and instructions to the
functional units can account for more than 70 percent of the total energy dissipation of
a processor. Therefore, the main focus lies in keeping the needed data and instructions
close to those functional units as to minimise the need to access and copy memory. For
the data supply, the proposed processor architecture features a small operand register
file which is located directly at the input of the functional units to reduce the cost of

8



transferring operands and results between registers and functional units. The second
level of the register hierarchy are indexed register files, used to capture data locality on
a higher level than is possible with the operand register files. It costs 10 times more
energy to read from an indexed register file than an operand register file. The third
level in the data hierarchy is the ensemble memory, which houses a memory bank for
each processor. Reading from the ensemble memory costs 30 times more energy than
reading from the operand register file. A data management unit inside each processor
manages the movement of data between the three levels in the data hierarchy. Besides
the operand register file, every functional unit also contains a shallow instruction register
file for local storage of instructions. Instructions are cached in the ensemble memory and
managed by the instruction memory unit in each processor. The routing of operands
and instructions is exposed to the compiler to allow finer control over the data and
instruction flow inside the processors. In a direct comparison with a RISC architec-
ture, the RISC processor consumed 23 times more energy than the proposed processor
architecture. The best improvement were the instruction registers, which reduced the
cost of supplying instructions by 49x. Compared to an ASIC, the proposed processor
architecture uses 1.5 times more energy, but then again it is a multi purpose processor
rather than a fixed digital circuit.

3.1 Address Translation

Memory management is an important characteristic of embedded processors, since it has
a lot of influence on the overall performance and power consumption. Virtual memory
has been introduced to hide the complications of instruction and data relocation, memory
sharing and protection. Every application has its own virtual memory. Parts of the
virtual memory are mapped onto the real memory. To access data in the virtual memory,
an address translation has to be performed. A translation look-aside buffer (TLB) caches
the most requested translations, but it consumes about 20 percent of the total cache
power. This energy consumption problem and the unpredictability of execution times
(which is important for real time applications) seriously impedes the implementation
of virtual memory in embedded systems. In [43] and [44] a method called arithmetic
address translation is introduced, that aims at greatly reducing the power consumption
of the translation look-aside buffer and making access times predictable for real-time
systems. In traditional TLBs, no connection between consecutive virtual addresses is
assumed and every memory translation request has to be handled either by the buffer
or explicitly calculated in the operating system kernel. The key change in arithmetic
address translation is, that it is assumed that consecutive data access in virtual memory
results in consecutive data accesses in physical memory. With this assumption it is
possible to simply add an offset constant to the virtual address to get a physical address.
This not only reduces the power consumption of the TLB unit because no lookup has
to be performed, but it also has beneficial influence on the overall performance, because
consecutive reads do not evict other, possibly useful translations from the look-aside
buffer. To take care that the central assumption of arithmetic address translation holds,

9



special care is needed by the compiler and operating system. The compiler has to work
together with a profiler to find hot spots in the code, since those are the locations where
code will be executed 90 percent of the time and where arithmetic address translation
has the most effect. Then the compiler has to add code to notify the operating system
that a hot spot is being entered (or left), so that the operating system can ensure
that arithmetic address translation will be valid. Additionally, the operating system
has to initialise the registers that save the offset between virtual and physical memory
addresses. Even more care has to be taken in the presence of multitasking. For an
in depth discussion of the requirements on compiler and operating system, see [44].
Validation with real world examples like jpeg, mpeg and mp3 encoding showed, that the
address translation energy consumption could be reduced consistently by more than 80
percent.

3.2 Cache

As already seen in the introduction to hardware methods and the efficient processor
architecture, up to 70 percent of the total energy requirements are due to the memory
and busses used to deliver data and instructions to the functional units. The data for
energy consumption of parts of the processor given in [2] shows that accessing cache data
needs an order of magnitude more energy than actual computations. So the first step
for energy efficiency is to make sure that if the cache is accessed, it delivers the needed
data and no further memory read is needed. One possibility is also to only access the
part of the cache which holds the needed data. This is possible for n-way set associative
cache, which consists of n cache partitions which are accessed at the same time. In [37],
a predictor is developed which allows to first check only one of those cache partitions for
the requested data. This works by saving the last accessed partition and trying it at the
next access. Validating this method showed an average hit rate of 90 percent and energy
savings of 64 percent compared to a traditional cache structure. Unfortunately, this kind
of prediction can not be used for L2 cache systems, which need different methods for
partition prediction. One possible method is presented in [22].

Dynamic Voltage Scaling has already been mentioned as method to reduce power con-
sumption of embedded processors. The full energy saving potential of this method can
not be fully realised, because of differences in voltage requirements between functional
units an caches. Caches generally need a larger supply voltage to reach speed and reli-
ability targets. So one possible avenue to save more energy is the design of caches that
operate at lower voltages, which is explored for example in [11]. This paper presents
an reconfigurable energy efficient near threshold cache architecture. The “near thresh-
old” corresponds to a reduced supply voltage in vicinity of the operating point with
minimal energy consumption. If one would reduce the supply voltage even further, the
energy consumption would rise again because the leakage current starts to increase.
The memory storage cells can be made to tolerate “near threshold” supply voltages
with acceptable reliability, but it requires a significant increase in cell size, which means

10



Figure 4: Near threshold filter cache architectures without (a) and with (b) bypass net-
works as presented in [11].

increased power consumption per cell at full supply voltage and less storage capacity if
the space occupied by the memory is to remain constant. In order to overcome those
problems, [11] develops two near threshold filter cache architectures as can be seen in
4.

The general idea is to use a filter cache. A filter cache is a small, energy efficient cache
between the cpu and the L1-cache. If the cpu issues a data request, the filter cache first
checks its contents before the request is sent to the L1-cache in case of a cache miss.
Near threshold memory cells are now an obvious choice for this filter cache. However,
this introduces additional latency, because a L1-cache lookup is only initiated after an
filter cache miss. So an bypass network can be introduced, which bypasses access to the
filter cache if the miss rate is to high. This introduces new problems (when to activate
the bypass, how to keep the bypassed filter cache current) and so the design is refined
further. The cache is redesigned to work in two modes, the conventional mode and the
filtered mode. In the conventional mode, the filter cache and L1-cache are accessed in
parallel, which does not introduce new latency, but also does not save any power. In the
filtered mode, the filter cache is accessed first and the L1 cache only if there is a cache
miss. From filtered to conventional mode is switched when the miss rate of the filter
cache get too high, and the switch from conventional to filtered mode occurs when the
filter cache would produce a sufficiently high hit count. This design produces 86 percent
lower energy requirements in low power mode and 2 percent increase in runtime in high
performance mode compared to a standard design.

11



Special operating environments for embedded systems can impose special challenges for
the caches. One example are mobile computing environments, where it it difficult but
very important to efficiently cache data, because the energy costs of requesting data over
a wireless connection are high. In [32] an energy efficient data caching and prefetching
mechanism for mobile devices is introduced. This is based on a analytically derived
utility function, which takes into account how recently the data was used, but also how
certain it is that the data is still current. This is very important in mobile settings,
because it makes no sense to cache a news webpage for two days in a mobile internet
device. If data is requested that is in the cache but not very certain, a validation request
is sent to the server. For details see [32]. With this method it is possible to achieve more
than 10 percent energy saving. A different way of dealing with stale data in caches of
mobile embedded systems is presented in [3]. It is based on servers which periodically
send invalidation reports, which specify which data was updated and should no longer
be considered valid in the caches of the mobile devices. This method is not very energy
efficient, because the mobile devices need to listen to the whole invalidation report to
get the information they are looking for. In this paper three different methods for cache
invalidation are considered, which result in decreased energy consumption for the mobile
embedded systems.

As we have seen, communication can be a very energy consuming process. This is not
only true for wireless communication, but also for on chip communication. In combi-
nation with multiple computational element with caches things get complicated. Then
every computational element has to listen on the communication bus for memory access
to memory that the processor has cached. If access occurs to such memory, the processor
has to request the updated data to keep his cache current. This produces a massive com-
munication and energy overhead. In [42] a method is described to reduce this overhead.
It depends on in-depth knowledge of consumer-producer relationships between compu-
tational elements to optimise the bus snooping. In the field of embedded systems the
requirement of in-depth knowledge is not very problematic, because those systems are
usually locked and the developer has full control over them. With the proposed method,
average power reductions of more than 80 percent were achieved. More information on
communication without connection to caches will be given in section 3.3.

3.3 Communication

Communication between computational components on System-on-Chip designs can ac-
count for up to 50 percent [20] of the energy dissipation of the whole system. Therefore
it is paramount that the communication hardware of the embedded system is designed
in an energy efficient way. An overview of techniques for energy efficient communication
in embedded systems is given in [27]. These techniques cover all levels of the design
hierarchy, from the circuit level to the architecture level as can be seen in in figure 5.
Advanced techniques are particularly important because the use of dynamic voltage scal-
ing reduces noise margins which makes communication more error prone. Circuit level

12



Figure 5: Design levels involved in optimising the communication architecture of SoCs
as presented in [27]

techniques are concerned with getting a voltage signal from the beginning of a wire to
the end of it. The classical configuration is a two inverter rail to rail signal swing where
a CMOS inverter connects the signal-wire either to ground or the supply voltage, which
in turn operates another inverter at the receiving end to restore the original signal. This
signalling mode wastes power, mostly because of the capacitance on the signalling wire.
Reducing the swing voltage, eg. the supply voltage, leads to quadratic improvements
of energy efficiency, but also reduces noise margins. Low voltage differential signalling
can be used as remedy for this problem. For the communication architecture selection,
multiple options are available to reduce energy efficiency. The first technique is bus
splitting. Bus splitting cuts the connecting bus into smaller pieces which can operate
separately but can be reconnected if needed. The cut can be “horizontal” or “vertical”,
meaning the bus can be split in multiple busses of the same length but with reduced
bandwidth or shorter busses with the normal bandwidth. This can yield energy sav-
ings between 16 and 50 percent over an unsplit bus. As alternative to busses a router
based communication architecture could be used. This has multiple advantages over a
bus architecture, also concerning the energy consumption. One advantage is that the
components are only connected to the router, and any communication will only need to
overcome the capacitance on the connections from sender and receiver to router and not
a bus that connects all components. This enables further energy saving techniques like
disabling or reducing supply voltage of unused communication links. Also, the router
need not be fully interconnected, because in most cases not all components communicate
with all other components, which again saves power. The third technique for on-chip
communication is the network on chip. This consists of tiles of computing elements,
surrounded by network paths. An example for optimising such structures was already
given in the discussion of [34] in section 2. System level techniques to reduce power
consumption are communication based power management and adaptive supply voltage
links. In communication based power management, the power management is done by
the communication hardware, since it is already connected to all components and can
collect information to regulate the power consumption of the whole system. This elim-
inates the need for an extra power controlling element. Using this technique one can

13



achieve a tradeoff between power consumption and performance, 3x longer battery life
with half of the performance. Adaptive supply voltage links are dynamic voltage scaling
applied to communication links, which can decrease power consumption by 3 times on
average. For further information on those techniques see [27] for an extensive list of
references.

3.4 Probabilistic Arithmetic

Correctness is considered a binary property of conventional digital circuits, the circuit
either produces correct results all the time or not. Probabilistic arithmetic in embedded
systems weakens this constraint by allowing computations to be correct only most of
the time. In [12], probabilistic arithmetic is used to achieve massive energy efficiency
gains. Conventional voltage scaling techniques can only be used to some extent, because
if the supply voltage is lowered too much, the signal noise makes correct computations
impossible, which adds a probabilistic effect to the computations. One other way to
achieve probabilistic behaviour is using a digital circuit beyond its specified frequency,
where the delay time between transistors causes nondeterminism. One could now ask
why it should be beneficial to reduce the power beyond the barrier set by correctness.
The answer is given in [6]. Trading 0.22 percent in probability of correctness results in
23 percent saving in power consumption per switching step. With a reduction of 1.4
percent of probability one can achieve energy savings of 39 percent. The problem lies
in utilising this relationship correctly, for example for designing a 32-bit adder. If one
operates every bit with the same reduced correctness probability, the adder will have
an average error magnitude of about 200 billion [12], which is too much for practical
applications. Therefore a technique called biased voltage scaling is developed in [12].
With biased voltage scaling, the entire adder is not operated on the same supply voltage
level. The least significant bits are operated with lower voltage, the most significant bits
with higher voltage, which produces a distribution of correctness of calculation from 0.8
to 1 from lsb to msb. Biasing the supply voltage has the effect that the average error
will be about 55 thousand, with exactly the same energy consumption as in the uniform
case. Extending this difference to a practical application, in this case satellite image
data reconstruction, one can see that dynamic voltage scaling produces a factor 2.5
reduction in energy consumption, while achieving a signal-to-noise ratio of 0 dB, which
means the reconstructed image is unusable noise. Reconstructing the same image with
biased voltage scaling results in a factor 5.6 reduction of used energy while achieving
a signal-to-noise ration of 28dB, which corresponds to a usable picture. This example
shows the usefulness of biased voltage scaling in inherently error tolerant application
domains, for example image or audio reconstruction or radar signal interpretation. For
a theoretical foundation of probabilistic arithmetic see [4].

14



4 Software Methods

Energy consumption is not only a design or hardware problem, it also depends on the
software running on the hardware, since it makes no sense to for example construct
an embedded system with dynamic voltage scaling if the software is so badly designed
that the system never enters states of reduced energy consumption. Scientific effort
in this area has focused primarily on two things: Energy aware scheduling algorithms
for the operating system and energy aware compilers for the code that runs on the
embedded system. The scheduling methods concentrate on assigning the right job at
the right time to the right processing element at the right speed to meet execution time
constraints while minimising energy consumption and switching to and from battery-
friendly sleep states. Compiling methods are concerned with transforming user specified
code into machine code for the embedded system in such a way as to minimise the power
requirements for executing this code. Of course, scheduling and compiling are not the
only topics of interest for energy efficient embedded systems. One example is [10], where
energy efficient data structures for a gaming application on an internet based embedded
system are studied. Nevertheless, the following subsections will cover scheduling and
compiling techniques aimed at reducing energy consumption.

4.1 Scheduling

Within the scope of scheduling, two main approaches can be distinguished for reducing
the power consumption of embedded systems [17]. They play a significant role in the
improvement of the system’s energy efficiency by utilising their special mechanisms. The
first approach is called dynamic power management. In this context the idle periods of
a system, where the device consumes less power, are managed in such a way that the
system really requires the minimum amount of energy during those periods. The key
observation is, that it does not suffice to simply switch into a low power state every
time the processing elements are idle. This is because the switching between normal
and low power states itself costs energy and rapidly switching between those states
costs more energy than staying in the normal operating state. The second approach
is dynamic voltage scaling or dynamic frequency scaling. If the time requirements of
a job are known when it is started (or can at least be accurately estimated) and the
timing constraints allow it, the job can be executed in a low power state to conserve
energy. So, in a way, one can not only schedule jobs but also idle time and power states.
Additionally, one can schedule with real time applications, non constant energy sources,
task rejection, distributed systems, multi-process or architectures or other parameters
in mind. These parameters define a vast array of possible combinations for scheduling
considerations, which is reflected by the extensive amount of literature on the subject
[39, 7, 41, 46, 14, 1, 29, 13, 40, 8, 5, 45, 9, 31, 33, 15]. All of this approaches can
not possibly be discussed in the scope of this term paper, instead we will focus on
the techniques introduced in [28] to give just one, but more detailed example of the

15



possibilities in scheduling. [28] focuses on scheduling techniques for battery powered
embedded systems. In this paper it is shown that scheduling in a battery powered
environment needs special care, because due to the discharge characteristics of batteries,
even scheduling the same jobs at the same speeds but in a different sequence can result
in a different battery lifetime. Switching from scheduling power hungry tasks first to
scheduling them last costs 1/6th of battery lifetime. Therefore scheduling at different
times has different costs, which needs to be reflected by a charge-based cost function.
This cost function is then optimised during the scheduling process. The optimisation of
the charge-based cost function for scheduling tasks sticks to three key aspects, these are
(1) dependency constraints, (2) delay constraints and (3) endurance constraints. The
starting point for the optimisation process contains the prediction of the battery lifetime,
given a varying load profile. The solution presented in [28] is an adapted battery model,
which combines physical justification and analytical simplicity so that a cost function
for analytical use can be constructed easily. This approach treats battery-specific load
profiles in a formal form, which makes it possible to fine tune the arrangement of tasks
and insertion of idle periods to maximise charge recovery or select the best candidate task
for voltage reduction. The concrete optimisation strategies are (1) charge minimisation,
(2) voltage down-scaling based on highest-power initial solution and (3) voltage up-
scaling based on lowest-power initial solution.

Charge minimisation approach: The goal of this strategy is to minimise energy
consumption, which corresponds in the regarded cases to the total charge consummation
during task execution. The first step is to assign the highest possible voltage to every
task . Under this condition the delay constraint is satisfied for sure. Next step is the
generation of a corresponding knapsack problem and calculation of an exact solution
by performing the MultipleChoiceKnapsack(.). As a result the task for execution are
weighted with voltages still meeting the overall delay constraint. Now in the next step
the tasks are queued in such a way that the heaviest-weight task and his successor tasks
are scheduled first, next the second heaviest-weight task and his successor tasks and
so on. Unfortunately energy minimisation is not the guarantee for a maximisation of
battery lifetime, since battery lifetime depends not only on task charges, but also on task
ordering in time. So it might be possible that the battery doesn’t survive the completion
of all tasks. If this is foreseeable, a task repair is performed. Task repair checks if there
is a failing task and fixes it by voltage down-scaling in correspondence with the insertion
of idle periods. After that the procedure LatencyReduction(.) is called to perform
voltage-upscaling and assure that the delay constraint is satisfied again.

Voltage down-scaling based on highest-power initial solution: This strategy
uses voltage-downscaling to generate a low-cost load profile. First step is the assign-
ment of the maximum voltage to each task, in order to minimise the profile duration.
The procedure TaskSequence(.) is called to generate an initial ordering of the tasks.
Afterwards TaskRepair(.) in combination with SlackUtilizationMinCharge(.) and Al-
terSlackUtilization(.) is executed to reduce the voltage costs and improve the solution
costs.

16



Voltage up-scaling based on lowest-power initial solution: This method oper-
ates just the other way round as the voltage down-scaling based on highest-power initial
solution. First all tasks are assigned the lowest voltage in order to minimise the energy
consumption as much as possible. In the next step the battery lifetime is calculated for
the corresponding load profile and an initial sequence of tasks is computed via TaskSe-
quence(.). Now there are two possible scenarios. First one is that the scheduled profile
meets the delay constraint, but exceeds the battery lifetime. In this case additional
idle periods are added to increase battery lifetime within the delay constraint. Second
scenario is that the battery survives the task execution, but unfortunately the delay
constraint is violated. In this case some tasks must be assigned to a higher voltage by
calling LatencyReduction(.).

For an in-depth discussion of the described method see [28].

4.2 Compiling

The compiler is an important component in determining the types, order and num-
ber of instructions executed for an application which enables him to have a significant
influence on the power consumed by the system. Early studies [36] in the field of compi-
lation based energy reduction have observed some basic mechanisms, which were a first
signpost to a deliberate energy policy. One improvement strategy is the reordering of
instructions to reduce switching. Central mechanism is the different energy consumption
of an instruction depending on the previously executed instruction. A reordering of sev-
eral sequences of instructions showed an improvement of the overall energy expenditure.
Another strategy is the reduction of memory operands. An inspection of the energy
cost of memory operands showed that memory instructions cost nearly twice as much
as instructions with register operands. Reduction of the number of memory operands
can be achieved by suitable compiler policies. The most effective way to do so is to use
a better utilisation of registers by obtaining optimal register allocation.

Present works on this field deal with the development of new frameworks support-
ing the compiler regarding energy efficiency [18] [19] or with intelligent compilation
techniques called architecture-aware compilation [21]. The Energy-Aware Compilation
Framework (EAC) can estimate and optimise energy consumption of a certain code in
combination with the architectural and technological parameters, energy models and
energy/performance constraints. A short overview of the EAC-Framework is given in
figure 6.

The framework supports the programmers from single energy cost calculations downward
to performance optimisation of the whole program on compilation level. At the begin-
ning an analysis of the code is performed to figure out constructs like loops, nested loops,
assignment statements, array references and scalar variable references. In a next step
the different constructs are weighted and grouped by their energy consumption and sim-
ilar functionality. These correlations between high-level code and low-level instructions

17



Figure 6: Energy-aware compilation framework as presented in [18]

give a first impression of the energy efforts for a single analysis. Energy optimisation
within the EAC-Framework is treated in two different ways. On the one hand there
is loop level optimisation and on the other hand also procedure-level energy optimi-
sation. Presented loop-level optimisation can be used in terms of thermal-constrained
optimisation, battery capacity-constraint optimisation and multi-constraint optimisa-
tion. Picking multi-constraint optimisation, using EAC-Framework makes it possible
to generate a table of different tiling strategies with their energy costs for given code
constructs. Now individual constraints e.g. limitation of off-chip memory energy or
restriction of execution cycles flow in the calculation and lead to an energy-aware code
compilation by picking the best instructions under given constraints. Applying such
a table strategy, EAC-Framework can also compile a code under a given energy-delay
product value.

The other optimisation field of EAC-Framework concentrating on procedure-level en-
ergy optimisation is accomplished by employment of integer-linear programming-based
procedure-level optimisation. The specific version of ILP implemented by the framework
is zero-one ILP, where each integer variable is restricted to be either zero or one during
the optimisation process.

The benefits of the EAC-Framework are the extensible problem-specification, by taking
description and technology parameters and various constraint into account and the ac-
curate results in connection with an error margin of 6%. The framework can be applied
on a wide spectrum of computing environments from high-end servers down to resource-
constraint embedded and mobile systems. It provides a rapid evaluation of source-level
algorithmic optimisation or it enables software architects to experiment with architec-
tural alternatives to investigate the full capabilities of energy-aware compilation.

18



5 Conclusion

In the previous sections we have given an overview of the possibilities in designing energy
efficient embedded systems. It was shown that in special cases reductions of over 90
percent in energy consumption are possible with the right choices is design methodology,
hardware and software. This is an impressive feat, but there is still bad aftertaste,
because this whole technological survey misses something: the energy requirements in
producing and recycling embedded systems. This is not an accident, there is virtually
no literature available on these topics. One possible explanation might be, that it is
either difficult to investigate (for optimising the energy requirements of the production of
embedded systems some kind of production facility is needed) or not very “interesting”
(there is no immediate value in low energy recycling, one can always just throw the
system away, though it is bad for the environment, but then again who cares). Reducing
the power consumption of embedded systems while they are operating produces an
immediate increase in value, because long runtime is an important feature for mobile
embedded systems, which translates into increased sales figures. For stationary devices
in industrial environments, power consumption equals cost, which reduces profit and,
as we all know, companies don’t like that. One other facet is, that researchers are
not concerned about sustainability when they develop energy efficient algorithms or
design methods. This is best illustrated in [42], where the only mentioned downside of
high energy consumption is bulky and costly heat dissipation. Energy costs and effect
on the environment are not important enough to be mentioned. Then again, this is
not necessarily bad, reducing energy consumption is a good thing from a sustainability
perspective and the motivation for the research on this topic is only secondary. A
problem only arises when the original motivation is gone, for example if power is too
cheap to care. Then other sources of motivation for energy efficiency research need to
be found, if sustainability is not a concern. Some sorts of regulation by a government
might be necessary to generate the necessary incentives, like forbidding energy wasting
electrical devices or sensitising the public and corporate management for sustainability
issues. Of course, channelling scientific effort toward development of energy efficient
embedded systems will always miss one point: the embedded system might not even be
needed in the first place. One can argue that an embedded system inside a refrigerator
that notifies the user when the milk is running out is a waste, no matter how energy
efficient it is. The human mind is quite capable of deducing the need for new milk when
it notices the empty milk cartons, no artificial system is needed. All in all, embedded
systems need special attention regarding their energy efficiency because of their low
profile nature. End users can buy it, plug it in somewhere and forget about it, while it
will waste power for years to come. Concerning own ideas for constructing energy efficient
embedded systems, we, the authors, cannot contribute much, because we are no experts
in the field of hardware design. But there is one thought that should be in the back of the
head of every engineer and scientist who just achieved an increase in energy efficiency:
Performing calculations is not inherently a process that requires energy like heating or
electrolysis. Field-effect transistors, which are the main components of digital circuits,

19



just require voltage for their operation, not current. Energy is only needed because of the
increasing effect of parasite capacities at high switching frequencies. Scientists should
always have that in mind and never be satisfied by any increase in energy efficiency.

To sum it all up, more effort is still needed to bring sustainability into the field of
embedded systems.

References

[1] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time
minimization. ACM Trans. Algorithms, 3(4):49, 2007.

[2] James Balfour, William Dally, David Black-Schaffer, Vishal Parikh, and JongSoo
Park. An energy-efficient processor architecture for embedded systems. IEEE Com-
put. Archit. Lett., 7(1):29–32, 2008.

[3] Jun Cai and Kian-Lee Tan. Energy-efficient selective cache invalidation. Wirel.
Netw., 5(6):489–502, 1999.

[4] Lakshmi N.B. Chakrapani, Kirthi Krishna Muntimadugu, Avinash Lingamneni,
Jason George, and Krishna V. Palem. Highly energy and performance efficient
embedded computing through approximately correct arithmetic: a mathematical
foundation and preliminary experimental validation. In CASES ’08: Proceedings
of the 2008 international conference on Compilers, architectures and synthesis for
embedded systems, pages 187–196, New York, NY, USA, 2008. ACM.

[5] Ho-Leung Chan, Wun-Tat Chan, Tak-Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and
Prudence W. H. Wong. Energy efficient online deadline scheduling. In SODA
’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 795–804, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

[6] Suresh Cheemalavagu, Pinar Korkmaz, Krishna V. Palem, Bilge E. S. Akgul, and
Lakshmi N. Chakrapani. A probabilistic cmos switch and its realization by exploit-
ing noise. Proc. of IFIP international Conference on VLSI SoC, 2005.

[7] Jian-Jia Chen, Kazuo Iwama, Tei-Wei Kuo, and Hseuh-I Lu. Flow time minimiza-
tion under energy constraints. In ASP-DAC ’07: Proceedings of the 2007 conference
on Asia South Pacific design automation, pages 866–871, Washington, DC, USA,
2007. IEEE Computer Society.

[8] Jian-Jia Chen and Tei-Wei Kuo. Procrastination for leakage-aware rate-monotonic
scheduling on a dynamic voltage scaling processor. In LCTES ’06: Proceedings of
the 2006 ACM SIGPLAN/SIGBED conference on Language, compilers, and tool
support for embedded systems, pages 153–162, New York, NY, USA, 2006. ACM.

20



[9] Jian-Jia Chen, Tei-Wei Kuo, Chia-Lin Yang, and Ku-Jei King. Energy-efficient
real-time task scheduling with task rejection. In DATE ’07: Proceedings of the
conference on Design, automation and test in Europe, pages 1629–1634, San Jose,
CA, USA, 2007. EDA Consortium.

[10] E. G. Daylight, T. Fermentel, C. Ykman-Couvreur, and F. Catthoor. Incorpo-
rating energy efficient data structures into modular software implementations for
internet-based embedded systems. In WOSP ’02: Proceedings of the 3rd interna-
tional workshop on Software and performance, pages 134–141, New York, NY, USA,
2002. ACM.

[11] Ronald G. Dreslinski, Gregory K. Chen, Trevor Mudge, David Blaauw, Dennis
Sylvester, and Krisztian Flautner. Reconfigurable energy efficient near threshold
cache architectures. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pages 459–470, Washington, DC,
USA, 2008. IEEE Computer Society.

[12] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic arithmetic
and energy efficient embedded signal processing. In CASES ’06: Proceedings of the
2006 international conference on Compilers, architecture and synthesis for embedded
systems, pages 158–168, New York, NY, USA, 2006. ACM.

[13] Lee Kee Goh, Bharadwaj Veeravalli, and Sivakumar Viswanathan. Design of fast
and efficient energy-aware gradient-based scheduling algorithms heterogeneous em-
bedded multiprocessor systems. IEEE Trans. Parallel Distrib. Syst., 20(1):1–12,
2009.

[14] Bita Gorjiara, Nader Bagherzadeh, and Pai H. Chou. Ultra-fast and efficient algo-
rithm for energy optimization by gradient-based stochastic voltage and task schedul-
ing. ACM Trans. Des. Autom. Electron. Syst., 12(4):39, 2007.

[15] Shaoxiong Hua, Gang Qu, and Shuvra S. Bhattacharyya. Energy-efficient embedded
software implementation on multiprocessor system-on-chip with multiple voltages.
ACM Trans. Embed. Comput. Syst., 5(2):321–341, 2006.

[16] International database - world population. http://www.census.gov/ipc/www/

idb/worldpopinfo.html, June 2009.

[17] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings.
ACM Trans. Algorithms, 3(4):41, 2007.

[18] I. Kadayif, M. Kandemir, G. Chen, N. Vijaykrishnan, M. J. Irwin, and A. Sivasub-
ramaniam. Compiler-directed high-level energy estimation and optimization. ACM
Trans. Embed. Comput. Syst., 4(4):819–850, 2005.

[19] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M. Irwin, and A. Sivasubramaniam.
Eac: A compiler framework for high-level energy estimation and optimization. In
DATE ’02: Proceedings of the conference on Design, automation and test in Europe,
page 436, Washington, DC, USA, 2002. IEEE Computer Society.

21

http://www.census.gov/ipc/www/idb/worldpopinfo.html
http://www.census.gov/ipc/www/idb/worldpopinfo.html


[20] Dake Liu and C. Svensson. Power consumption estimation in cmos vlsi chips. Solid-
State Circuits, IEEE Journal of, 29(6):663–670, Jun 1994.

[21] Peter Marwedel, Lars Wehmeyer, Manish Verma, Stefan Steinke, and Urs Helmig.
Fast, predictable and low energy memory references through architecture-aware
compilation. In ASP-DAC ’04: Proceedings of the 2004 conference on Asia South
Pacific design automation, pages 4–11, Piscataway, NJ, USA, 2004. IEEE Press.

[22] Rui Min, Wen-Ben Jone, and Yiming Hu. Location cache: a low-power l2 cache
system. In ISLPED ’04: Proceedings of the 2004 international symposium on Low
power electronics and design, pages 120–125, New York, NY, USA, 2004. ACM.

[23] Sumit Mohanty and Viktor K. Prasanna. A hierarchical approach for energy ef-
ficient application design using heterogeneous embedded systems. In CASES ’03:
Proceedings of the 2003 international conference on Compilers, architecture and
synthesis for embedded systems, pages 243–254, New York, NY, USA, 2003. ACM.

[24] Anish Muttreja, Anand Raghunathan, Srivaths Ravi, and Niraj K. Jha. Automated
energy/performance macromodeling of embedded software. In DAC ’04: Proceed-
ings of the 41st annual Design Automation Conference, pages 99–102, New York,
NY, USA, 2004. ACM.

[25] Viktor K. Prasanna. Energy-efficient computations on fpgas. J. Supercomput.,
32(2):139–162, 2005.

[26] Anand Raghunathan, Niraj K. Jha, and Sujit Dey. High-Level Power Analysis and
Optimization. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[27] Vijay Raghunathan, Mani B. Srivastava, and Rajesh K. Gupta. A survey of tech-
niques for energy efficient on-chip communication. In DAC ’03: Proceedings of the
40th annual Design Automation Conference, pages 900–905, New York, NY, USA,
2003. ACM.

[28] Daler Rakhmatov and Sarma Vrudhula. Energy management for battery-powered
embedded systems. ACM Trans. Embed. Comput. Syst., 2(3):277–324, 2003.

[29] Youlin Ruan, Gan Liu, Jianjun Han, and Qinghua Li. An energy-efficient scheduling
algorithm for real-time tasks. In ICCS ’07: Proceedings of the 7th international
conference on Computational Science, Part IV, pages 965–968, Berlin, Heidelberg,
2007. Springer-Verlag.

[30] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. A co-design methodol-
ogy for energy-efficient multi-mode embedded systems with consideration of mode
execution probabilities. In DATE ’03: Proceedings of the conference on Design,
Automation and Test in Europe, page 10960, Washington, DC, USA, 2003. IEEE
Computer Society.

22



[31] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. Iterative schedule op-
timization for voltage scalable distributed embedded systems. ACM Trans. Embed.
Comput. Syst., 3(1):182–217, 2004.

[32] Huaping Shen, Mohan Kumar, Sajal K. Das, and Zhijun Wang. Energy-efficient
data caching and prefetching for mobile devices based on utility. Mob. Netw. Appl.,
10(4):475–486, 2005.

[33] Dongkun Shin and Jihong Kim. A profile-based energy-efficient intra-task voltage
scheduling algorithm for hard real-time applications. In In Proceedings of the Inter-
national Symposium on Low-Power Electronics and Design, pages 271–274, 2001.

[34] Dongkun Shin and Jihong Kim. Power-aware communication optimization for
networks-on-chips with voltage scalable links. In CODES+ISSS ’04: Proceedings of
the 2nd IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 170–175, New York, NY, USA, 2004. ACM.

[35] Intelligent energy standby saver. http://www.reuters.com/article/

pressRelease/idUS191572+02-Apr-2009+PRN20090402, June 2009.

[36] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low
energy: An overview. pages 38–39, 1994.

[37] Chia-Ying Tseng and Hsin-Chu Chen. The design of way-prediction scheme in
set-associative cache for energy efficient embedded system. In CMC ’09: Proceed-
ings of the 2009 WRI International Conference on Communications and Mobile
Computing, pages 3–7, Washington, DC, USA, 2009. IEEE Computer Society.

[38] World energy outlook 2009. http://www.eia.doe.gov/oiaf/ieo/index.html,
June 2009.

[39] Haisang Wu, Binoy Ravindran, E. Douglas Jensen, and Peng Li. Cpu scheduling
for statistically-assured real-time performance and improved energy efficiency. In
CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis, pages 110–115, New
York, NY, USA, 2004. ACM.

[40] Haisang Wu, Binoy Ravindran, E. Douglas Jensen, and Peng Li. Energy-efficient,
utility accrual scheduling under resource constraints for mobile embedded systems.
ACM Trans. Embed. Comput. Syst., 5(3):513–542, 2006.

[41] Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. An approximation algorithm
for energy-efficient scheduling on a chip multiprocessor. In DATE ’05: Proceed-
ings of the conference on Design, Automation and Test in Europe, pages 468–473,
Washington, DC, USA, 2005. IEEE Computer Society.

[42] Chenjie Yu and Peter Peter Petrov. Aggressive snoop reduction for synchronized
producer-consumer communication in energy-efficient embedded multi-processors.
In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM international conference

23

http://www.reuters.com/article/pressRelease/idUS191572+02-Apr-2009+PRN20090402
http://www.reuters.com/article/pressRelease/idUS191572+02-Apr-2009+PRN20090402
http://www.eia.doe.gov/oiaf/ieo/index.html


on Hardware/software codesign and system synthesis, pages 245–250, New York,
NY, USA, 2007. ACM.

[43] Xiangrong Zhou and Peter Petrov. Arithmetic-based address translation for energy-
efficient virtual memory support in low-power, real-time embedded systems. In
SBCCI ’05: Proceedings of the 18th annual symposium on Integrated circuits and
system design, pages 86–91, New York, NY, USA, 2005. ACM.

[44] Xiangrong Zhou and Peter Petrov. Direct address translation for virtual memory in
energy-efficient embedded systems. ACM Trans. Embed. Comput. Syst., 8(1):1–31,
2008.

[45] Jianli Zhuo and Chaitali Chakrabarti. An efficient dynamic task scheduling algo-
rithm for battery powered dvs systems. In ASP-DAC ’05: Proceedings of the 2005
conference on Asia South Pacific design automation, pages 846–849, New York, NY,
USA, 2005. ACM.

[46] Jianli Zhuo and Chaitali Chakrabarti. Energy-efficient dynamic task scheduling
algorithms for dvs systems. ACM Trans. Embed. Comput. Syst., 7(2):1–25, 2008.

24



About this Document

This thesis is part of the lecture series on Sustainable Development and ICT 1 held at
Vienna University of Technology2, Faculty for Informatics3. This thesis is part of a
selection of submitted student-papers. This paper as well as all other papers4 are pub-
lished under the Attribution-Noncommercial-Share Alike Creative Commons License5 to
provide a summary/impression from the students-perspective of the seminar for all that
are interested in the topic, but could not participate.

1http://www.informatik.tuwien.ac.at/events/studium/archiv/161
2http://www.tuwien.ac.at
3http://www.informatik.tuwien.ac.at
4http://bitbucket.org/sdit/sd-ict
5http://creativecommons.org/licenses/by-nc-sa/3.0/

25

http://www.informatik.tuwien.ac.at/events/studium/archiv/161
http://www.tuwien.ac.at
http://www.informatik.tuwien.ac.at
http://bitbucket.org/sdit/sd-ict
http://creativecommons.org/licenses/by-nc-sa/3.0/

	1 Introduction
	2 Design Methods
	3 Hardware Methods
	3.1 Address Translation
	3.2 Cache
	3.3 Communication
	3.4 Probabilistic Arithmetic

	4 Software Methods
	4.1 Scheduling
	4.2 Compiling

	5 Conclusion

