ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA
CAMPUS DI CESENA

J - Moog

ProJECT REPORT

OBJECT ORIENTED PROGRAMMING COURSE

student:
Renato Panebianco

March 1, 2016

Professor:
Mirko Viroli

Matteo Casadei

Assistant Professor:
Danilo Pianini

Angelo Croddai

Abstract

This report is related to the planned project for passing the object-oriented pro-
gramming exam.

The project described below aims at the construction of a simulacrum of Micromoog
synthesizer exploring the capabilities of java.sound.midi and java.sound.sampled
packages.

The main purpose of this study is to develop a software that has on one side the
bases for simple further developments, on the other, to provide cues to apply the
design techniques acquired during the course.

http://www.vintagesynth.com/moog/micromoog.php

Contents

1 Analisys

1.1 Requirements
1.1.1 MIDI requirements,
1.1.2 AUDIO requirements
1.2 Analysis and Model’s Domain

2 Design
2.1 Architecture
2.2 Detailed Design
221 Model
2.2.2 Controller
223 Viewo

3 Develop
3.1 Testing oL
3.2 Work Flow & Method
3.3 Development Notes

4 Final Remarks

4.1 Self-assessment and future developments
4.2 Difficulties Encountered and Suggestions for Teachers
References

A Quick User Guide

14
14
14
15

17
17
18

20

22

Chapter 1

Analisys

The project Micro J-Moog aims to make a music synthesizer, specifically a sim-
ulacrum of MicroMoog that allows to apply the design techniques learned during
the course, through the use of the main features offered by java.sound.midi and
java.sound.sample packages.

1.1 Requirements

The J-Moog synthesizer shall provide the following basic functionalities, which can
be classified mainly into two categories:

e MIDI(Music Instrument Digital Interface) where production of sounds using
the existing samples in the sound card of a system, also using external devices
(for example a keyboard) that interact with the software in question via the
exchange of messages according to above MIDI protocol.

e audio where the sound is obtained through the algorithmic generation of spe-
cific digital signals with specific characteristics (for example, a sine wave) that
are sent to the sound card of the host system.

Both of the above categories shall be available both through a proper visual interface
(such as for example a Piano keyboard module that responds to mouse clicks) and
either through external device (such as a USB MIDI keyboard).

1.1.1 MIDI requirements

e Open files in MIDI format and manage their listening, forward, stop.

e allow the selective listening for single (or multiple) track of these files in order
to analyze the part performed by each individual instrument.

e generate new MIDI files, with the possibility of registration of a predetermined
number of tracks, giving the possibility to choose, by means of an appropriate
interface between the sounds (eg. Piano, violin, etc. Etc.) obtained from the
set available on the sound card host system.

e ability to save files obtained.

1.1.2 AUDIO requirements

e generate "from scratch” waveforms among the most common in analogue
sound synthesis (for example, sine, square, etc. etc.).

e change the sounds acting through a suitable interface (for example an equal-
izer) on the individual components of the considered sound (harmonics), in
terms of phase of the signal or of its amplitude

e provide polyphony in the obtained sounds, or ability to generate multiple
sounds simultaneously on different sequences (notes).

e manage the sounds obtained in terms of I / O giving the possibility of being
able to save to disk and retrieve them when necessary.

1.2 Analysis and Model’s Domain

In order to implement the above functionality (MIDI and AUDIO) J-Moog will
consist of a core (Kernel) that will make use of some components.

About MIDI functionalities the J-Moog will need to use several of the host system’s
audio sound card resources.

According to this purpose, the main components are made of a synthesizer that
interacts with the core of the host system MIDI sound card, and a sequencer that
will be responsible for managing the operations on MIDI files (which are sequences
of sound events, such as the execution of a note at a given time).

As regards as the AUDIO function, attention will be mainly aimed at ensuring
that the produced sounds have a low latency, which consists in the potential delay
between the request for enforcement of a sound (immediate) and its availability due
to the computational cost that the algorithm that generates it might take. This
aspect must also be deal with the requirement of polyphony (playing multiple notes
simultaneously).

Quite a lot of time has been spent in search of of existing documentation (and
then for studying it...) about the domain in question and in order to acquire the
needed minimum necessary preliminary knowledge to implement key parts of J-
moog. In this sense, indeed, the existing official documentation was found largely
insufficient and too general relatively to the specificity of much of the application
context (specially for MIDI sequencer functions).

==Java Class==
®Wavelmpl

model
T

=<Java Classs=
(® SequencerMidi

i 0.1
<=Java nterface=>
Gwave
rmodel
==Java Class»==
01 % 0.1 | GMidiSynth
ava O] e
1 ==Java AassE= ?i

<<ilava Class>> (®Kernel 01
(®WaveManager madel
- <=Java Class=>

model
(®MidilnputReceiver
model
0.t

=<lava Class»= MIDI Functions
(® NoteThread

model

model

Audio Functions

Figure 1.1: This picture shows main components of the system’s core.

Chapter 2

Design

2.1 Architecture

In order to implement the above mentioned functionality it has adopted architecture
Model - View - Controller’s architecture. This three parts have each the following
function:

e Model: is composed of a Kernel that use mainly three components: a synthe-
sizer , a sequencer and an audio core. the first gives access to the resources
provided by the sound card in the host system (sound, MIDI settings, MIDI
ports).

The second manages the various possible operations (run, stop, record) of a
MIDI file (which can be thought of as a sequence of sound events each with
their own execution moment in a time line)

the latter handles the features to produce a digital sound through a specific
algorithm (related to wave form) and send it to the audio line of the host
system sound card.

e View: is composed of several parts, the most important are: an equalizer
and a player. The equalizer allows to produce sound by mean of different
components (harmonics) , the player allows to manage some operations on a
MIDI file (start, stop, update a progress bar , mute tracks, ecc. ecc.)

e Controller: is the interface between the View and the Model, and in addiction
handle almost everything related with threads and I/O onto disk.

1_View

oop.j_moog.view

<<Java Interface=>

<<Java Interface==
¥ ViewObserver <]

oop.j_moog.controller

4

==Java Class»=
(B View

oop.j_moog.view

‘,'T’? M

<<Java Class>>

{3 Controller

/

<=Java Class»>=
(5 Observer

oop.j_moog.controller

o controller- Controller

<=Java Class=>

(& Kernel

oop.j_moog.controller

oop.j_moaog.model

]

Figure 2.1: This picture shows the adopted Model - View - Controller architecture

2.2 Detailed Design

Preliminary considerations

According to the adopted MVC paradigm, and appropriate attention has been paid
so that the part Model - Controller was always independent of the View, and in par-
ticular that the latter exchanged method calls with the Controller only. In addition
to the classes / interfaces that represent main entities of the system some Enums
(better explained in the next sections) have been adopted, in order to make easier
to implement functionality such as file I/O and View building. Nested classes and
patterns has been used wherever possible in the attempt to improve complex parts
(e.g. the Wave Manager in the Model or the equalizer in the View).!

2.2.1 Model

As said in previous sections, the Kernel of the Model uses three components (synthe-
size, sequencer and audio core). It manages them in order to provide functionality
of two types: MIDI and AUDIO.

Tn the next sections of this chapter involved classes names will be highlighted with italic font.

MIDI functionality

This part of the system is shown in the next figure, where has been focused how the
kernel interacts with the MidiSynth and SequencerMidi. 1t is worth to mention that
starting from version 1.4 of the JDK the java.sound.midi package brings together
into a single object the sequencer and synthesizer of the sound card. In other words,
the Sequencer, in order to access the sound card’s sounds (for example to execute a
MIDI file) also it implements Synthesizer’s Interface methods, in such a way that :
Sequencer instanceof (Synthesizer) == true

However, under this project, they have been considered and implemented as two
separate objects:

e first of all for architectural clarity in order to avoid to build a God Class, given
the already numerous methods of each of the two classes separately taken,
were many methods are required to handle the minimum functionality (MIDI
channel selection, track, instrument, single track muting and multiple etc.
etc.).

e secondarily to provide greater portability of the application.

Therefore, the Kernel, according to user choices manages the MidiSynth instance.
This class wraps the MidiSystem class of javax.sound.midi package which through
static methods allows access to available system audio and midi resources. Manage-
ment is similar to the SequencerMidi class, which is a wrapper for the host system
sound board sequencer (also provided by the above mentioned MidiSystem class).

<=Java Class==
(& MidiSynth

oop.j_rmoog.miodel

==Java Class»=
1 (& Kernel
i -model
0.1 oop.|_moog.mode r\j
<=Java Clazs>= \

(3 MidilnputReceiver o <wlava Classs>
oop._moog.model (2 SequencerMidi
oop.j_moog.model

Figure 2.2: Main MIDI functionalities classes.

The class MidiInputReceiver: an application of decorator pattern to use
an audio core other then MIDI through an external USB MIDI keyboard.

It deserves further explanation the class MidilnputReceiver nested in MidiSynth
class (see 2.2). By default the sound board’s synthesizer has its own MIDI message
receiver, that catches midi message coming for example from other devices such as
external USB keyboard.

Each of these messages is a midi event

(such as a change of used instrument, [=seces

pitchBand, keypress etc.), which can e e

be intercepted by means of listeners «J:SZ:';;?;”
the implement specific interfaces of the od:”de:img)md
java.sound.midi package. © close()voi

=<lava Class>>

However, as reported in the javadocs M
on the subject, these listeners are im- f:*“ﬁ';”;‘fw[fa::l”’
plemented only for program changes oSt g o
(sounds), control changes (eg. Volume)

but not for events such as Note On and
Note Off messages, so it is not possible
via standard listeners intercept pressed
Keys events with a different device that uses a protocol other then MIDI (for example

a third part audio core like the J-Moog when it produces its own sounds).[6]

Figure 2.3: the decorator pattern adopted.

After several attempts, the found workaround has been to implement a decorator
pattern which it is possible to wrap the synthesizer receiver with. Each time a note
is pressed, it triggers the send() method where you can nest a call to a method
related with your own audio core.

This trick has made possible to use with an external MIDI keyboard the sounds
related with the J-Moog’s AUDIO functionalities below described.

AUDIO functionality

It ’s the part that required more effort, first of all from a point of view of the
minimum preliminary study of digital signal processing (DSP) that were necessary
to implement even simple features like those of this software.

For this purpose has been implemented three main classes.

WaveManager: is the component that handles the production of sound samples
according to through an algorithm based on a specific choosen a specific wave form

(shape).

NoteThread: it represents each single autonomous process created by playing a note
on a musical instrument. In the specific case it is activated by the Model, and once
running use the sample provided by the WaveManager and send them to the audio
line of the system sound card.

Effect(I): modify the already produced samples according to an algorithm that give
the sound a specific feature (e.g. fade). Is used directly from NoteThread during its
execution, by calling its static method. Effects use parameters that are managed by
a specific handler (EffectParametersManager).

Thus, these elements contribute to provide the following functionalities:

e Generation of the waveform A first problem to be solved concerned the
mode to generate the different waveforms (sinusoid, square, etc. Etc.). The
solution adopted has been to implement a Wavelmpl object that taken as input
a value of the possible options (Enum WaveType), generates the parameters
needed to model a specific waveform (see source code Wave.java and produced
javadoc). The object thus obtained is passed with a strategy pattern to the
WaveManager that generates according to a specific frequency (received when
by a thread that is triggered when a key is pressed - see next item) the needed
samples to be sent to the audio line according to the waveform.

e Polyphony

The solution adopted is to implement an array of threads. Each is initialized
with an appropriate frequency related to the corresponding note on the key-
board. Their start() method calls methods (static) of WaveManager instance
(to get sound samples) and sound effects (to process samples by an specific
audio effect algorithm (eg. smooter)).

<=Java Enumeration==
G_WﬂveType <<Java Interface=>
oop.j_moog.model wclaya Class>> 0 —
SOFS—N: WaveType e Kernel oop.j moog.effects
%Fsau waveType W oop.j_meog.model
- 0.1 @ setResonance{double):void
SOFS—AW' WaveType -waveManager 0 L
SF TR WaveType @ setCutOfi{ double):-void
4 type: String ==lava Class== © processing(byte])void
& patchText: Siring (9WaveManager } o1 &
oop.j_moog.model _ - :
- WaveType(String) - v keysThreads | 0.%
type |01 h-_ ==lava Classs=>
) (9 NoteThread
; oop.j_moog. model wclava Classs>
W A NoteThread{dauble,int) {9 Ladder
=<<Java Interface== = getlineSampleCount():int oop.|_moog.effects
zxlava Classss Gwave @ runy):vaoid
GW&VE'I'I'ID' ______ = oop.j_moog.model @ release()-void
oop.j_moog.model & gefTypa() WaveType @ |th.Jnn|ng(,f:t:-nﬂlaan
@ getFactors{):doublel]]) © rePay({)-vaid
@ queuel):void
@ Kill{)-void

Figure 2.4: This picture shows the architecture and main components of the AUDIO
functionalities

2.2.2 Controller

It acts as an interface in between the View and the above mentioned sound modules
on the model (Kernel).

It has been implemented through a singleton pattern, in order to be conveniently
accessed by multiple application parts (especially by various components of the view)
and limit its instances to one at the same time.

In addition to the coordination functions between the View and the Model, it man-
ages all the I/O operations?, as well as to check about any external USB device
connected to the system.

2using for these funcions a specific class for file extension filtering, in order to reduce wrong

format file errors, and a Enum to classify all possible open/save options

10

<=Java Class==
(®Controller

controller

=aava Class>>

(9 FleManeger

controller

& command: String

a5 FieMansger(String) \@
@ manage():void

<=Java Enumerations>
(@HALE_EXT

contraller

S MOt FLE BXT
S paTcH FLE BXT
& descr: String

4 ext: String

AFILE EXT(String String)

@' getController():Cantrolier
P gethodes () List=String>
& Controller()

<<lava Class>>
(D 0bserver

controller

@ clickOnNote(intint):void

@ closeAppication{JFrame) void

@ executeSequencerCommand(SegCommands) void
@ fileManager(String):void

@ gethidiChannels():List<String-

© getSoundBankins trumenis() List=String=

@ getSynthesizersNames():List<String>

@ getVolume():int

@ loadMidiFile(String) void

@ muteMidiTrackiint, boolean):void

@ sendMidiMess age(String, int)-void W
@ setAtiackSlope(int)-void

@ setMidSeting(MdSetings inf)void 0.1
@ setMidiVolume(int)-void
@ sethMode(MODE):void

@ seilodel(Kernel) vaid

& observer()

o getwindow Listensr() Window Listener

& gethlous ePress eda dapter(Rectangle, Controller int,int) MouseA dapter

@ gefTooBarRadioButtonListener(View int)-ActionListener

@ getWaveFormButtonL istener(int)-ActionListener

@ gefTooBarMenuListener(String)-ActionListener

@ getGlobalVolumeSiidersChangeListener(int,int):ChangeListener

@ getEqualizerPhas esShidersChangeListener(Entry <JShider.JLabet-):ChangeListener
@ getEgualizerAmplitudeShidersChangelistener(Eniry=JSider. JLabel>) ChangeListener
@ getMidiSetingsListener():ActionListener

@ getvidiControls Siiders ChangeListener(String.int):ChangeListener

@ getSequencerPiayerButtonsListener(String)-ActionListener

@ getSequencerRecTrackRadioButtonListener(int):ActionListener

@ getSequencerMuteCheckBoxesListener(int):ActionListener

@ getSequencerhuteAlListener()-ActionListener

@ setRecordingTrack(int):void

@ setReleaseSlope(int):void

@ setSingleHarmonicAmpltude(int int) void

@ setSingleHarmonicPhas e(int int):void

@ setView (View Jvoid

@ setWave(WaveType)void

@ setWaveFormGlobalampltude(double)-void
@ show Dialog{String,int):void

@ updateView WaveGraph double[] double) v oid
@ updateView Combaboxinstrument(int) void
B checkForWaveSelected():boolean

&f chooseFileDialog{FILE_EXTint)-String

B gethppinfobessage() String

B loadPatch(String):boolean

B loadPatch{URL) boolean

B savePatch(Siring)-boolean

-SINGLETON
B updateModel():void _—
E?getﬁlechoaser(smng) JFileChooser 0.1

|

<wlava Classs=
(3 MenultemListener

controller

o command: String

o“Menute mListener(String)
@ actionPerformed({ActionEvent):void

==Java Class=»

(3 UsbChecker
controller

B UsbChecker()

@ exit():void

@ run{):void

Figure 2.5: Controller and its main components.

2.2.3 View

It has been a quite laborious part to develop. It is build in order to be totally inde-
pendent from the rest of the system. To achieve a better construction some Enum
classes has been adopted to properly acquire certain parameters (eg.the number of
buttons for specific functionality).

In addiction a specific class (GUIFactory) has been implemented in order to make
easier (through calls to factory static methods) building certain parts of the View
(such the equalizer, sequencer player and wave forms buttons) or to enable/disable
a panel and its components.

Some among these methods return maps jJslider, Jlabel; where each slider is coupled
with its label, or in other cases buttons Groups (where in a collection of abstract
buttons , is possible to select only one of them at a time). They have also allowed
sothat, to slim the code in some parts.

The main Jframe of the View is based on a borderlayout so used:

11

- North
contains a x-boxlayout panel that holds the spectroscope display, the MidiOption-
Panel and the SequencerMidi player.

- West
contains a y-boxlayout panel that holds the WaveGraph display, and the Fqualizer
(which is based on a y-boxlayout with nested x-boxlayout)

- Center
contains a gridlayout panel that holds the wave form buttons

- Fast
contains a y-boxlayout panel that holds a PatchOptionPanel

- South
contains a panel that holds the Piano keyboard (JPanel).

The piano keyboard code has been mostly taken from a demo of the official javadoc
about the midi package, but has been improved so that at each keypress event, the
keyboard is not completely redrawn every time, but only the concerned key and its
"neighbors” . It need to be improved according to the MVC paradigm adopted as
discussed better in chapter 3.

12

<<Java Interface=>
9 Equalizer

oop. jMoog.view

<<Java Class>>
{2 PatchOptionPanel

R T -patchOgptionPanel

e

0.

==uJava C_Jass,}} -equalizer ==Java Class=»
(& View (9 GraphicEqualizer

=< Java Class=>= Jﬂﬁm‘/ oop. jMoog. view 0.1 oop.jhoog.view

(®MidiOptionPanel | 0.1
-piano | 0_.1

oop.jMoog.view
==Java Class>>
(# LabelSlidersContainer

oop.jMoog. view

<<Java Classss
(= Piano

oop.jiMoog.view

-waveGraph

<=Java Class=>
(8 WaveGraph

oop.jMoog. view x

<<Java Class==

O Key

oop. jMoog. view

Figure 2.6: the View and its main components.

13

Chapter 3

Develop

3.1 Testing

Much of the application testing has been done manually, as the View has required a
laborious testing phase to ensure that the various parts interacted with the controller
(and in minimum part between them) in the proper way, trying at the same time to
encapsulate each part of the system.

A part of testing has involved the generation of the waveforms, with test classes that
bail on consoles the generated coefficients, in order to verify that under the strategy
pattern every time passed to the WaveManager, this would generate the coefficients
of the equations of the individual harmonics correctly.

3.2 Work Flow & Method

First of all, proper attention, in the context of the still few skills acquired, has been
payed so that the various parts of the system were clearly distinct between them,
and in particular, that the View (although a bit complex in some parts) was totally
decoupled from the rest of the system.

Besides, it has been useful to prepare this report, parallel to the develop of some
parts of the project.

DVCS systems as mercurial, has been used during the whole development, both for
managing backups along the process, and also to try side develop tests on imple-
menting some features, although it has not (unfortunately) been possible to work in

14

team within this project.

In addiction, the final code has been tested with suggested static source code anal-
ysis'tools (findbugs , checkstyle, and PMD).

3.3 Development Notes

First, wherever possible it is always privileged the use of Collections. With regard to
the AUDIO functionality of the project, and taking into account the characteristics
of the methods that allow access to the system audio line and its buffer features, after
several tests it has for convenience opted for the use of arrays in buffer management
(see class NoteThread) .

For I / O to disk as mentioned above, a filter class in the file management regarding

patchs and midi file have been implemented in order to reduce wrong file’s format
1

eITors.

In this section, It is worth spending a few words about the logic adopted as regards
as some of more interesting part of the system.

e Key pressed/released Thread: it has been the more challenging part of the
whole system. Inside the thread’s run() method are managed the audio buffer
to send to the audio line, and a couple of boolean field used to manage in a
thread-safe mode either the key release and an immediate re-play of the same
key.?

e Sequencer sliders: here raised the need to combine on one hand a thread
that would had to update the bar, on the other hand the displacement of
the slider as consequence of an user action. The solution adopted is that
the Controller starts a proper thread (nested Controller.ProgressBarUpdater
class) after receiving a call from the MidiSynth that the file has properly run.
The user action is attached to the mouse event.?

e Fqualizer sliders: when a slider’s change occurs, proper Controller > WaveM-
anager methods are called. After the new wave shape computation is com-
pleted a call back method (WaveManager > Controller > View > Graph) update
the graph.

! In addiction, not having found a way to show files without their extension in the open/save
dialog window, specific method has been implemented to prevent undesired string concatenations
in the file path.

2As it wasn’t possible to call run() metod twice on the same thread [7]

3Notably a Mouse Adapter listener has been used, as just the release event had to be catched.

15

o Wave Manager: may be useful here to add few words about something that has
been difficult to explain (and render) properly through the produced javadoc.
The Wave Manager models the audio wave form selected, according to pa-
rameters provided by a WatyType object passed as argument with a strategy

pattern.?

In addiction to all above, has been done an effort in order to make the application as
user friendly as possible, also trying to reduce user interactions in terms of manual

inputs insertion.

4 For example a square ware equation is given by:
sin(2m ft) + sin(6m ft) + Lsin(10m ft) - - - L sin(187 ft).
In the WaveImpl class using three parameters i = 1,k = 2, e = 1 (and 8 default control sliders)

the above equation has been obtained as: Zle(step:k) L (2im f1).
Combining this three parameters assuming ¢ = 1 and k,e € [0, 1,2] has been possible to obtain

each of the four wave forms used.

16

Chapter 4

Final Remarks

4.1 Self-assessment and future developments

In conclusion, it remains primarily the satisfaction of having substantially imple-
mented the original idea: namely, on one hand a midi file manager, on the other a
digital synthesizer with all major components: a Voltage Control Oscillator (VCO),
a Voltage Control Frequency (VCF) and an Envelop Generator (EG) starting from
scratch.

However, in reviewing the work done, there is (much) room for improvement. Espe-
cially in terms of re-factoring the code in order to pursue a higher level of abstraction
and increase code re-use.

In this sense further in-depth analysis will be made ! in order to increased modularity
of some features. According to this, it will deserve further studies the possibility
of combining audio effects between them in difference sequences and also the of
more advanced effects based (having higher computational cost), as well as the
implementation of a spectrum analyzer via the Fast Fourier Transformation (FFT),
which at the time of preparation of this document where not compatible with the
total hours scheduled, already slightly exceeded.

Certainly, starting from the mistakes that will be covered during the discussion
of this project, remains the intention of continuing its development, starting from

!E.g. try to divide the controller into two parts - one for audio and one for MIDI, or to slim
somehow the Kernel.
Another topic in this sense will be the improvement of the Piano keyboard where further devel-
opment will cover the mouse listener spin-off from the Rectangle class, which was not possible to
add to a listener from the outside according to the M-V-C architecture.

17

exploring new features provided by Java 8, to explore then possibilities to realize a
simple application which allows, for example, to use a mobile phone as a synthesizer
connected directly to an external USB MIDI keyboard.

4.2 Difficulties Encountered and Suggestions for
Teachers

The difficulties encountered can mainly grouped into two types:
- inherent lack of documentation
- arising from the characteristics of the chosen project

In the first group are mainly those related to the official documentation or other
found from various sources, and notably too general and devoid of concrete examples
that concern the majority of the sample applications.

As regards as this project, for example, the initial goal related to the implementation
of real-time recording by a sequencer with capabilities to save the work on a midi file
was in fact unfeasible within the available number of hours for the lack of sufficient
documentation. In particular was low availability of examples (also on line) that
would illustrate concretely how to combine the timing management.

In the second group can be identified difficulties

e derived from the need to use arrays with regards to certain audio features.

e to make algorithms work

e to use audio effects in real time and let them be used in thread-safe way by mul-
tiple threads simultaneously

e arising from the implementation of the interface, where the peculiarities of some
features has led to inevitable difficulties

e in managing a USB device, testing all possible use cases: for example, an acciden-
tal disconnection resulting in an Fxception.

18

Ed infine qualche riflessione ...

La prima: e stata una faticaccia...

Per il personale docente il presente progetto, con tutti i suoi errori e limiti, puo
ritenersi un obiettivo didattico raggiunto, tenendo conto di come sia stato realizzato
da uno studente che prima di iniziare la frequentazione del corso non aveva mai
adottato il linguaggio in questione, e tanto meno avvicinato la programmazione ad
oggetti.

Quanto ad un feedback come studente, la principale considerazione riguarda le sca-
denze imposte da un corso di durata trimestrale, con un programma a dir poco vasto,
nell’ambito del quale vengono trattati argomenti complessi (Reflections, Lambda,
DVCS, ecc. ecc. ma l'elenco potrebbe continuare...) che non si ha il tempo di as-
similare da una settimana all’altra. Questo fa si pertanto (ma ¢ una considerazione
necessariamente limitata a chi scrive) che I'impegno richiesto ¢ stato tale da ritenere
che, a fronte dell'impegno profuso dal personale docente in ogni contesto (lezioni,
laboratorio, forum, materiale didattico, disponibilita), I'esame OOP sottostante il
presente progetto (volendo usare un eufemismo) ben vale i 12 crediti relativi. . .

19

Bibliography

[1]

[9]

Java Sound API

http://docs.oracle.com/javase/tutorial/sound/index.html

Java Sound MIDI API

https://docs.oracle.com/javase/tutorial/sound/overview-MIDI.html

Craig A. Lindley, Digital Audio with Java

D. Flanagan, Java Examples in a Nutshell, 3rd Edition
http://wuw.onjava.com/excerpt/jenut3_chi7/

P. Daly, MSc in Acoustics and Music Technology
http://wuw.acoustics.ed.ac.uk/wp-content/uploads/AMT_MSc_FinalProjects/
2012__Daly__AMT_MSc_FinalProject_MoogVCF.pdf

Javadoc, Specifying Special FEvent Listeners, Chapter 11: Playing, Recording
and Editing MIDI Sequences
https://docs.oracle.com/javase/8/docs/technotes/guides/sound/
programmer_guide/chapterll.html

Javadoc, Javadoc coding standards
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

S. Colebourne, Javadoc coding standards
http://blog.joda.org/2012/11/javadoc-coding-standards.html

R. L. DuBois and W. Thoben, Sound
https://processing.org/tutorials/sound/

[10] J. Burg PI, J. Romney, Creating Sound Waves , National Science Foundation

CCLI Grant
http://csweb.cs.wfu.edu/~burg/CCLI/Tutorials/C/Chapter2/Creating_Sound_
Waves.pdf

20

http://docs.oracle.com/javase/tutorial/sound/index.html
https://docs.oracle.com/javase/tutorial/sound/overview-MIDI.html
http://www.onjava.com/excerpt/jenut3_ch17/
http://www.acoustics.ed.ac.uk/wp-content/uploads/AMT_MSc_FinalProjects/2012__Daly__AMT_MSc_FinalProject_MoogVCF.pdf
http://www.acoustics.ed.ac.uk/wp-content/uploads/AMT_MSc_FinalProjects/2012__Daly__AMT_MSc_FinalProject_MoogVCF.pdf
https://docs.oracle.com/javase/8/docs/technotes/guides/sound/programmer_guide/chapter11.html
https://docs.oracle.com/javase/8/docs/technotes/guides/sound/programmer_guide/chapter11.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
http://blog.joda.org/2012/11/javadoc-coding-standards.html
https://processing.org/tutorials/sound/
http://csweb.cs.wfu.edu/~burg/CCLI/Tutorials/C/Chapter2/Creating_Sound_Waves.pdf
http://csweb.cs.wfu.edu/~burg/CCLI/Tutorials/C/Chapter2/Creating_Sound_Waves.pdf

[11] P. Seifried, Realtime audio processing, part 4: Comb filters, Flangers and
Chorus effects — a bit of theory
http://philippseifried.com/blog/2011/11/01\\/
dynamic-audio-4-comb-filters-flangers-and-chorus-effects/

[12] J.O. Smith, Elimination of Limit Cycles and Overflow Oscillations in Time-
Varying Lattive and Ladder Digital Filters, IEEE Conference on Circuits and
Systems, no. STAN-M-35
https://ccrma.stanford.edu/files/papers/stanm35. pdf

21

http://philippseifried.com/blog/2011/11/01 \\ /dynamic-audio-4-comb-filters-flangers-and-chorus-effects/
http://philippseifried.com/blog/2011/11/01 \\ /dynamic-audio-4-comb-filters-flangers-and-chorus-effects/
https://ccrma.stanford.edu/files/papers/stanm35.pdf

Appendix A

Quick User Guide

From the main toolbar — mode menu is possible to select the mode of use of the
software.

e MIDI mode
Selecting this mode will activate the MIDI player buttons. It is possible to
launch the included demo in the software (load demo midi option) or open
a midi file from disk. The radio buttons are used to select the recording
track (functionalities Record/save under construction not completed) While
the checkboxes allow to selectively listen (mute/on) to each track of the played
Midi file.

e ANALOG mode
By selecting this mode, you have access to the synth functionalities of the
software.

This option automatically activates the buttons to select the desired waveform
and the equalizer to act on the components of the additive synthesis and the
sliders to control the audio effects.

All menu options are implemented.

It is possible to load the patch demo (load demo patch option) and save/open
sounds obtained onto disc (patch).

22

	Analisys
	Requirements
	MIDI requirements
	AUDIO requirements

	 Analysis and Model's Domain

	Design
	Architecture
	Detailed Design
	 Model
	Controller
	View

	Develop
	Testing
	Work Flow & Method
	Development Notes

	Final Remarks
	Self-assessment and future developments
	Difficulties Encountered and Suggestions for Teachers

	References
	Quick User Guide

