[image: image3.png]California Digital Liorary

 [image: image1.png]California Digital Liorary

UDFR – Data Model
Unified Digital Format Registry (UDFR)
Data Model

Version 0.8
Revision History

	Date
	Version
	Description
	Author

	2011-04-01
	0.8
	Original Document
	Lisa Dawn Colvin

Table of Contents
31
Introduction

31.1
UDFR Model Goals and Principles

31.2
Schema Sources

31.2.1
Schema Exclusions

41.3
Naming Conventions

41.3.1
Resource Names

41.3.2
Local Names

41.3.2.1
Class and Individual Names

41.3.2.2
Property Names

41.3.3
Labels

51.4
Namespace URIs

51.5
Identifiers

71.6
Names and Aliases

71.7
Localization

71.8
Controlled Vocabularies

71.8.1
External Controlled Vocabularies

81.8.2
Internal Controlled Vocabularies / Enumerations

81.9
Constraints

81.9.1
Type Constraints

81.9.2
Cardinality Constraints

91.9.3
Uniqueness Constraints

91.9.4
Required vs. Optional Fields

91.10
Provenance

101.11
Governance

112
Outstanding Issues

123
UDFR Model

123.1
Ontology Imports and Prefixes

123.2
Classes

123.3
Properties

124
UDFR Mappings

124.1
Mappings between PRONOM and GDFR

144.2
Mappings between PRONOM, GDFR and UDFR

175
Background Info

1 Introduction
The UDFR Model is semantic model of File Format Registry information that is relevant for international file preservation activities. This introduction explains our approach to various technical and content issues involved in integrating data models into an ontology model, based on Semantic Web standards.
1.1 UDFR Model Goals and Principles
The UDFR Model is based on Linked Data Principles
:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards (RDF*, SPARQL)
4. Include links to other URIs. so that they can discover more things.
While the sets of technologies and standards supporting semantic and linked data representations are continually developing, we have tried to keep the UDFR Model as simple and straight-forward as possible in order to support the requirements of a File Format Registry.
1.2 Schema Sources
UDFR model is based on the unification of PRONOM (v. 7.0)
 and GDFR data model
 specifications.
1.2.1 Schema Exclusions

While the UDFR Model contains the majority of schema information from both PRONOM and GDFR data models, there are some noted exclusions:

1. Primary and Foreign Keys

2. Properties – Inherent vs. Instance distinction

3. Tessela-specific properties
1.3 Naming Conventions
1.3.1 Resource Names

Each resource has a Uniform Resource Identifier reference (URIref) as its main identifier. The URIref consists of two pieces, the URI and a fragmentId separated by a ‘#’:
URIref ::= URI [‘#’ fragmentId]

A common way of shortening the full URIref as resource name is through an XML Qualified Name (a.k.a. “QName”).

QName ::= Prefix[‘:’ LocalName]

1.3.2 Local Names
Local Names should conform to XML Namespace recommendations.
 The main requirement is that all Local Names must begin with a Letter or ‘_’. The main limitation is that one can’t create resources that being with numbers.

1.3.2.1 Class and Individual Names

Class and Individual names use UpperCamelCase. All names attempt to maximize descriptiveness without being too lengthy.
In addition, all names are in the singular case. All acronyms, if part of the name, are separated from the rest of the name with a hyphen (‘-‘).
Enumerated Type Class names are appended by “Type” or “Code” to signify that they are enumerated lists of values. Enumerated values are treated as labels and named according to how they were expressed in the PRONOM and GDFR Specifications.
1.3.2.2 Property Names

Property names use LowerCamelCase. All names attempt to maximize descriptiveness without being too lengthy. Properties are often represented as nouns, but, in some cases, are represented by verbs with prepositional phrases which help indicate directionality.

All acronyms, if part of the name, are separated from the rest of the name with a hyphen (‘-‘).

1.3.3 Labels

Labels are in the model based on their Local Names using an algorithm of adding spaces between words compounded in the Local Name.

1.4 Namespace URIs
In this model, we use http://www.udfr.org/udfr as the main URI and “udfr:” as the prefix-abbreviation for the UDFR namespace. This, of course, can be changed to another URI that has mutual agreement within the community.

The second common URI in the UDFR Model is http://www.gdfr.org/gdfr (with “gdfr:” as the prefix-abbreviation) which is used to define the GDFR facets. Since GDFR Facet Classification classes and properties are commonly prefixed with GDFR, we have separated these facets into their own unique namespace.

This is a simplified approach to namespace URI. For security or other purposes, an institution running a registry instance may create additional local namespaces for resources that they don’t wish to share with other institutions.

We may also wish to modularize the ontology into separate graphs which can be imported depending on an institution’s requirements. Prior to this separation, we need community input as to what would make the best partitions.
1.5 Identifiers
There are multiple identifiers that are defined in the model:

· PRONOM ID (PUID)

· GDFR Identifier

· UDFR Identifier

· udfr:systemID (internal registry ID)

<need to add information on cardinality of each>

We need to create a robust Identifier scheme for certain entities in UDFR, namely Format and Node with the following properties:
· A globally unique identifier across registry instances
· A persistent identifier
To address persistence, we will create the identifier such that its URI Local Name can be ported to a persistent space at a later time – e.g. n2t.net/<UDFR number>/<Local Name>

We are also adopting a principle of non-opacity:
· It may be useful to have part of the identifier be identical (or easily mappable to) the URI Local Name
· It may also be useful to have non-opaque information in the identifier so that it is machine-actionable. That is, one can make decisions based on the name itself without having to query an additional source to get additional metadata.
The main entities to carry UDFR identifiers are:
· Node
· Potentially use NISO institution identifier (I2)
· Advantage: This is a way to establish “trust” and authority
· Disadvantage: Still in works. Perhaps overkill given our scope of users.
· Note that I2 applies organizational identifiers in an opaque fashion (just assigning numbers)
· We will probably only have a small number of nodes, so may not need to move to a standard organizational identifier. However, if we are interested, here are other suggestions [1].
· Recommendation: Create a zero-padded numeric sequence for organizational node ids (e.g. “001”) to be used within the identifier. How many digits?
· Format
· Most difficult issue with formats is variant version naming schemes.
· E.g. PDF 1.0 – 1.7; GIF 87a – 89a; HTML 3.0, 4.02
· We discussed potentially creating a new version numbering scheme based on software versioning ([<major #>.<minor #>. <build #>]), but decided it could be confusing to create
· Recommendation: Keep version information as it is defined idiosyncractically by the original format creator. Parse it to reveal family and other useful categorizations.
· Issue: How to parse? – on separators? Or query ontology to see if there is family/other categories that already exist
UDFR Identifier (UDUID) Grammar (using EBNF)
Note: I probably have to edit the “local-id” definition.

[image: image3.png]
UDUID = (addressable-prefix , “/” , identifier)| (addressable-prefix , “#” , identifier);

addressable-prefix = “http://udfr.org/udfr” | (“http://n2t.net/” , udfr-ezid) ;

udfr-ezid = 5 * digit ;

identifier = node-id , “/” , entity-code , “/” , local-id , “/” , version-id ;

node-id = 3 * digit ;

entity-code = “f” | “n”

local-id = alpha , {alphanumeric-with-slash} ;

version-id

digit = [0 – 9] ;

alpha = [a-zA-Z] ;

alphanumeric = [alpha | digit]

e.g.

http://udfr.org/udfr/001/f/pdf/a/1
http://udfr.org/udfr/001/f/pdf/1.7
1.6 Names and Aliases

We treat names and aliases like any other rdf:Property.

rdfs:label is the generic label given to every resource. As a default, the resource Local Name is used with spaces put in for word separators where there are none in the Local Name (as it is CamelCase).

Other special udfr: properties are created to signify alias. However, we may want to adopt a thesaurus scheme in order to have proper preferred and alternative terms and to introduce acronyms and multilingual names in the future. SKOS may be the appropriate vocabulary for this representation.
1.7 Localization

RDF supports literals to have associated language codes which indicate the language in which the literal is expressed according to RFC 3066 – Tags for the Identification of Languages
, a registry of language codes for RDF, based on ISO 639-1 standard.
1.8 Controlled Vocabularies

Controlled Vocabularies serve a couple of purposes. They attend to data quality control on input by offering a constrained set of values. Adaptive re-use of pre-defined Controlled Vocabularies allows for potential better semantic alignment for projects which share Controlled Vocabularies. Finally, Controlled Vocabularies are, by their nature, controlled by some source. When using a Controlled Vocabulary from a trustworthy external authoritative source, one has the dual benefit of leveraging other work while maintaining that the data will be kept up-to-date by those who are more expert in that domain.
1.8.1 External Controlled Vocabularies

Here is a list of controlled vocabularies that are addressable schemes on the web which are in place within the model or strongly considered to be in it:
1. RDF

a. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2. RDFS

a. @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#/>

3. OWL2 (not sure which profile)
a. @prefix owl: <http://www.w3.org/2002/07/owl#>

4. DC/ DC Terms
a. @prefix dc: http://purl.org/dc/elements/1.1/
b. @prefix dcterms: <http://purl.org/dc/terms/>

5. Organization / FOAF

a. @prefix foaf: <http://xmlns.com/foaf/o.1/>

6. OPV (discussed later)

7. SKOS

a. @prefix skos: <http:www.w3.org/2004/02/skos/core#>

8. SPIN

9. XSD

a. @prefix xsd: <http://www.w3.org/2001/XMLSchema#>

Here are additional controlled vocabularies for which we need to decide which to use. Country Codes are currently used to :
· Countries and Codes – options:
· Food and Agriculture Organization (FAO) Country Profiles

· http://www.fao.org/countryprofiles/geoinfo.asp?lang=en
· DAML County Codes (based on ISO 3166)

· http://www.daml.org/2001/09/countries/countries.daml#
· GeoNames Semantic Web (most recent version Oct. 2010)

· http://www.geonames.org/ontology/documentation.html
· Organization Names

· MIME Types
There may be others.
1.8.2 Internal Controlled Vocabularies / Enumerations

UDFR Model also contains many internal enumerated value sets (or “LOV” (List of Values)). Again, if there are better external, resolvable, authoritative sources for these values on the web, we will prefer those.

All enumerations are subclasses of udfr:EnumerationType. Each value is an instance (rdf:type) of its enumerated type class. The enumerations are specified by the owl:oneOf property which has the object as an rdf:list. This means the list can be closed so that the values must come from one in the list.
1.9 Constraints

The goal of the UDFR Model is to provide a robust semantic model while balancing the need for minimal complexity within the model that can be brought on by evolving knowledge representation language standards. However, as semantic platform implementations can differ wildly in the type of support for knowledge representation expressions, our UDFR model will likely evolve during implementation to reflect implementation choices and evolving semantic knowledge representation standards.
1.9.1 Type Constraints

Domain and Ranges will be defined for properties. Where appropriate, OWL restrictions will also be defined. We may also make adjustments and augmentations to ensure that certain expectations are met with regard to queries that may be based on closed world assumptions. This assumes we will be implementing a reasoned to check to model consistency. If we don’t, we can use SPARQL queries and SPIN language to create type constraints where needed.
1.9.2 Cardinality Constraints
Cardinality constraints will be defined using OWL cardinality restrictions or qualified cardinality restrictions (if necessary). These specifications can be interpreted at the presentation layer to constrain editing. However, to be useful for reasoners, additional assertions may need to be made.
1.9.3 Uniqueness Constraints

All database keys were ignored in creating the UDFR model. In OWL, you can define directional uniqueness with rdf:type Owl:fFunctionalProperty and owld:InverseFunctionalProperty assertions. However, these apply to resources and not datatypes. We may need to define owl keys in order to have unique identification within queries that depend on a literal values, rather than named resources, if we define identifiers as string values rather than resources. This method is defined in OWL 2 specification.
1.9.4 Required vs. Optional Fields

While this can be controlled at the UI level, we can use the OWL cardinality restrictions as specification, although it’s not a standard usage.
1.10 Provenance

There are several existing Provenance vocabularies, namely:

· Open Provenance Model

· Provenir ontology

· Provenance Vocabulary

· Proof Markup Language

· Dublin Core

· PREMIS

· WOT Schema

· SWAN Provenance Ontology

· Semantic Web Publishing Vocabulary

· Changeset Vocabulary
Our preference is to use the Open Provenance Model (OPM) as that is the model of choice for The National Archive.

The W3c Provenance incubator Group created a document mapping the core properties of these vocabularies.
 They documented limitations in the OPM vocabulary to include:
1. versioning,
2. a notion of artifact identity that persists across transformations,

3. containment relationships and collections, and

4. cryptographic hashes and digital signatures.
To address these concerns:

1. The existing PRONOM and GDFR model already have basic version attributes and relationships. These can be supplemented further by any application-level versioning on the Registry records themselves.

2. To track artifact identity across transformations, one must have specified object properties which properly denote the transformation steps that include unique identifiers as one of the arguments to the property so that one can make a successful query.

3. Basic containment relationships are included in the UDFR Model from the PRONOM Model. However, they may need more fine-grained specification.
4. Internal and External signatures are represented within the UDFR Model.
One outstanding issue is deciding to what the Provenance metadata is to attach. While it is best to be as fine-grained as possible, to allow ultimate flexibility, current technology constraints may restrict us in our implementation of Provenance.
Currently there are two approaches to making statements about statements within semantic technologies. The first, RDF reification, is within the standard, yet has problems as it is creates a proliferation of triples. The more preferred approach is using named graphs for statements like Provenance metadata. However, there is currently not an existing standard for what the fourth quad resource in quad stores represent. Should it be used as a reification resource for a particular triple? Or should it be used to identify the named graph itself?
TriX (Triples in XML) is a serialization syntax for named graphs which can be used to designate provenance. TriG is the plain text serialization of named graphs.
1.11 Governance

As a community governance process, we may decide to have different instances of the UDFR Registry carry local URI prefixes for locally-defined resources which subsequently get promoted to the “UDFR” namespace once verified and vetted through an approved governance process.

2 Outstanding Issues
· To do

· Missing descriptions

· Labels need to be uniform

· Change statements using dc: to dcterms: (e.g. dc:description)

· What is relation between dcterms:creator and FOAF provenance/ dcterms:modified.

· Do we use foaf:name ?

· Move rdfslabel to skos:prefLabel
· Equivalence relationships/ subproperty relationships:

· Link to OPMV

· Link to SKOS

· Link to dcterms -> FileFormat

· Within GDFR (e.g. gdfr:affinity and udfr:hasAffinityFor)

· Create disjoint statements on restricted enumerations
· Create cardinality restrictions for exact and max cardinality

· Create examples in udfr-ex: namespace that are given for GDFR relationships (within their dcterms:description. See udfre:relatedFormat)

· Review all properties – do additional subproperties need to be created?

· Any inverse Properties need to be created?

· Any functional property assertions need to be created?

· Finish documentation

· Questions

· What defines SimpleBaseEntity? What defines a Core Entity?

· What are properties of File Format vs. Its superclass Format?

· Where does FormatFamily fit in? It seems like a type class. (may need to do class/instance mirror. OWL2 allows punning, but...)

· Are the “reified relationships” really necessary as class or kludge?

· Need to clarify semantics on extension and restriction. If they are truly inverses, then we will have formats that have been traditionally thought of extensions or restrictions to be inconsistent. We need to make a decision on whether or not we are using “folk” definitions of extension and restriction or technical definitions which can be machine actionable. One thought may be to create another namespace with more technical, semantically-rich definitions. So, one can have the assertion that something is thought of, as a folk concept, to be an extension, but this doesn’t have a direct relationship to the technical definition of extension.

· Versioning. We can have various versions of how we represent official format versions. Perhaps it is best to create a linked list (like next/previous) to show connection.
· Decisions

· Use SKOS? Other Vocabularies?

· Model key constraints?
· Identifiers – resources or strings?

· Do we need to introduce an “inherited ontology” later for those who don’t want to use a reasoner? For those who may want to use the vocabulary for other purposes?
· Points of Clarification

· Sometimes we don’t have representation of a resource to another resource name (e.g. agent affiliation). It’s linked resource1 to resource2 and resource2 to resource2name. (e.g. IndividualAgent to OrganizationAgent and label on OrganizationAgent)

3 UDFR Model

3.1 Ontology Imports and Prefixes
We currently have imported into the UDFR Model, the following vocabularies:

	Ontology Name
	Prefix
	URI

	Resource Description Framework
	rdf
	http://www.w3.org/1999/02/22-rdf-syntax-ns#

	Resource Description Framework Schema
	rdfs
	http://www.w3.org/2000/01/rdf-schema#

	Dublin Core
	dc
	http://purl.org/dc/elements/1.1/

	SKOS
	skos
	http://www.w3.org/2004/02/skos/core#

	Open Provenance Model Vocabulary
	opmv
	http://purl.org/net/opmv/ns#

	Open Provenance Model Vocabulary - Common
	opmvc
	http://purl.org/net/opmv/types/common#

	XML Schema
	xsd
	http://www.w3.org/2001/XMLSchema#

	Ontology Web Language
	owl
	http://www.w3.org/2002/07/owl#

3.2 Classes

See external pages.
3.3 Properties
See external pages.
4 UDFR Mappings

4.1 Mappings between PRONOM and GDFR

In GDFR encodings and compressions are formats. They are separate entities in PRONOM. This is because in GDFR “format” is defined more broadly:

· "Format" is defined expansively, and is intended to apply to format families (general classes of related file formats), file formats (formats most usefully considered as being instantiatable in independent files), encodings (formats most usefully considered as being instantiatable as bit stream components of an encompassing file), or serialization algorithms. The distinction between these various conceptual variants is indicated by the Classification property.

· Some of the entities that exist in GDFR but not in PRONOM are media, grammar and assessment. There is a reference to media from the PRONOM software entity but the meaning is different.

· An entity that exists in PRONOM but not in GDFR is migration pathways.

· In the GDFR many of the records have verification metadata that was going to be used to support an editorial process.

· The verification metadata is in place for: formats, software, processes, hardware, media, agents, documents, files, IPR, grammar, and assessments

· The verification metadata includes record status, the agent that verified the record, and the date it was verified.

4.2 Mappings between PRONOM, GDFR and UDFR

See external spreadsheet. Still in progress. For a sample,
	implementation
	implementation
	implementation
	domain
	range
	rdf:type
	rdfs:subPropertyOf
	cardinality
	note

	actors: Actor_id
	Base: SystemID
	udfr:systemID
	udfr:SimpleBaseEntity
	xsd:long
	owl:DatatypeProperty
	none
	exactly 1
	restriction on udfr:SimpleBaseEntity;

	actors: Name_text
	Agent: PersonalName
	udfr:agentPersonalName
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	udfr:agentContactInfo
	max 1
	Potentially break into components: surname, given name, generation identifier;Currently typed as "string", may need to subtype into nvarchar(50)

	actors: job_title_text
	Agent: Title
	udfr:agentJobTitle
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	udfr:agentContactInformation
	max 1
	Perhaps have a controlled vocabulary for job-related titles - using some standard.Currently typed as "String". May need to subtype as nvarchar(100)

	actors: organisation_name_text
	Agent: CorporateName
	udfr:agentOrganizationName
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	udfr:agentContactInformation
	max 1
	Potentially break into components. Possibly replace with FOAF. Technically, not ContactInformation.(100)

	actor_types: actor_type_text
	Agent: AgentType
	udfr:agentType
	udfr:Agent
	udfr:AgentValueType
	owl:ObjectProperty
	rdfs:agentType
	
	

	actors: Telephone_text
	Agent: Telephone
	rdfs:agentTelephone
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	rdfs:agentContactInformation
	
	

	
	Agent: Fax
	rdfs:agentFax
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	rdfs:agentContactInformation
	
	

	actors: contact_email_text
	Agent: EmailAddress
	rdfs:agentEmail
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	rdfs:agentContactInformation
	
	

	actors: Website_text
	Agent: WebSite
	udfr:agentWebsite
	udfr:Agent
	xsd:anyURI
	owl:DatatypeProperty
	rdfs:agentContactInformation
	
	

	actors: Address_Text
	Agent: PostalAddress
	udfr:agentPostalAddress
	udfr:Agent
	xsd:string
	owl:DatatypeProperty
	rdfs:agentContactInformation
	max 1
	Potentially break into components. May need to reference range as VarChar(750)

	actors: country_code_text
	Agent: Country
	rdfs:agentCountryCode
	udfr:Agent
	udfr:CountryCode
	owl:ObjectProperty
	rdfs:agentContactInformation
	max 1
	

	Countries: country_name_text
	
	rdfs:label on udfr:Country
	rdfs:Resource
	rdfs:Literal
	none
	none
	
	

	actors: support_website_text
	
	udfr:agentProductWebsite
	udfr:Agent
	xsd:anyURI
	owl:DatatypeProperty
	rdfs:agentContactInformation
	
	potentially done through query: person has role (support) and linke with website

	actors:source_id
	
	udfr:agentID
	udfr:Agent
	xsd:long
	owl:DatatypeProperty
	udfr:identifier
	
	may not be necessary (superceded by other identifiers)

	actors:source_date
	Base: CreationDate
	udfr:CreationDate
	udfr:SimpleBaseEntity
	xsd:dateTime
	owl:DatatypeProperty
	dc:date
	
	 Are these agents who are referencfed in the model as controlling/creating formats themselves or agents who interact with the registry system?

	actors:last_updated_date
	Base: ModificationDate
	udfr:modificationDate
	udfr:SimpleBaseEntity
	xsd:dateTime
	owl:DatatypeProperty
	dc:date
	
	

	actors:provenance_text
	Base: Provenance
	udfr:provenanceNote
	udfr:SimpleBaseEntity
	xsd:String
	owl:DatatypeProperty
	udfr:note
	
	

	actor_history: event_text
	
	
	
	
	
	
	
	

	actor_history: event_date
	
	
	
	
	
	
	
	

	
	Agent: HasAffiliation
	udfr:agentOrganization
	udfr:IndividualAgent
	udfr:OrganizationAgent
	owl:ObjectProperty
	 none
	
	

	
	Base: VerificationDate
	udfr:verificationDate
	udfr:SimpleBaseEntity
	xsd:dateTime
	owl:DatatypeProperty
	dc:date
	max 1
	

	
	Base: VerificationStatus
	udfr:verificationStatus
	udfr:SimpleBaseEntity
	udfr:VerificationStatusType
	owl:ObjectProperty
	none
	max 1
	

	
	Base: VerifiedBy
	udfr:verifiedBy
	udfr:SimpleBaseEntity
	udfr:Agent
	owl:ObjectProperty
	none
	max 1
	

	
	Base: AdminStatus
	udfr:administrativeStatus
	udfr:SimpleBaseEntity
	udfr:AdministrativeStatusType
	owl:ObjectProperty
	none
	max 1
	

	
	Base:Note
	udfr:note
	udfr:SimpleBaseEntity
	
	owl:AnnotationProperty
	none
	max 1
	

5 Background Info

Various representations of the semantic web “layer cake” exist. To keep it simple, let’s look at the original version:

[image: image2.png]Self- E
desc.

doc.

e
E]
2
]
c
.20
w
=
x
2
a

Unicode URI

Figure 1: The Original Semantic Web Layer Cake, circa 2001

The goal of the UDFR model is to accurately represent the File Format Registry schema and data within existing standards and controlled vocabularies. This represents the orange [RDF + rdfschema] and yellow [Ontology vocabulary] layers of the cake.

The red layer [Xml + NS + xmlschema] represents the serialization layer of the model, while the brown layers [Unicode, URI] represent the character-level encoding (Unicode) and addressing scheme (URI) for resources which are defined within the model.

As we will want any implementation of the UDFR model within a Registry application to be able to validate constraints, we will need to supplement the model with the green [Logic] and Blue [Proof] layers. OWL, as a representation language, makes two assumptions, the open world assumption and the non-unique name assumption, that may make representing somewhat simple constraints seem complex or, perhaps, non-intuitive. For the purposes of this first draft version of the UDFR model, we will not be representing any logic for closing the world assumption. However, we do plan on writing necessary SPARQL rules (or use inference engines which do this automatically) for the implementation of the Registry application, if necessary.

UDUID = (addressable-prefix , “/” , identifier)| (addressable-prefix , “#” , identifier);

addressable-prefix = “http://udfr.org/udfr” | (“http://n2t.net/” , udfr-ezid) ;

udfr-ezid = 5 * digit ;

identifier = node-id , “/” , entity-code , “/” , local-id , “/” , version-id ;

node-id = 3 * digit ;

entity-code = “f” | “n”

local-id = alpha , {alphanumeric-with-slash} ;

version-id

digit = [0 – 9] ;

alpha = [a-zA-Z] ;

alphanumeric = [alpha | digit]

alphanumeric-with-slash = [alphanumeric | “/”] .

For example:

�HYPERLINK "http://udfr.org/udfr/001/f/pdf/a/1"�http://udfr.org/udfr/001/f/pdf/a/1�

�HYPERLINK "http://udfr.org/udfr/001/f/pdf/1.7"�http://udfr.org/udfr/001/f/pdf/1.7�

� http://www.w3.org/DesignIssues/LinkedData

� Osuwu, L., Sharpe, R., Trickey, R. (2009): PRONOM Data Model (PRONOM_7_Data_Model_V1R2MO.doc)

� Abrams, S., Goethals, A. (2008). Harvard University Library; v5.0.14. http://gdfr.info/docs/GDFR-data-model-5_0_14.pdf

� We may need to add uniqueness constraints in another way.

� http://www.w3.org/TR/xml-names/#NT-NCNameStartChar

� RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001, http://www.ietf.org/rfc/rfc3066.txt

� http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings

� http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

Unified Digital Format Registry (UDFR) Data Model / March 2011

16

