Chapter 1

Generic Functions

In this thesis, “generic function” refers specifically to one of the functions defined in
this chapter. Each of these functions is able to do its job on any data structure, in fact
on any input at all. They are also able to do this without being enumerated for each
type, or even each type constructor (i.e. they are not overloaded). The term “generic”
has a much wider meaning outside this thesis (which we discuss in section 1.7, in the
thesis its meaning is restricted to these six types of functions.

For each of these function we give a general description and then show an encod-
ing of it in our concrete language DGEN. In this way we can introduce both the generic
functions and our language.

The subject of this thesis is a compiler, not a programming language. The con-
crete langauge we present here (DGEN) is the simplest possible concrete language
corresponding to our abstract language SOURCE (see section ??). It exists only to al-
low one to experiment with the compiler (www.something.net.au) and to describe
algorithims/programs without resorting to abstract syntax.

1.1 dgen

DGEN is the name we have given to our compiler implementation and is also the
name of the concrete programming language corresponding to an abstract syntax,
SOURCE, that sits at the front of our compiler. Source would be the target of a
desugarring phase in, for example, a Haskell or ML compiler based on our technques,
s0 DGEN looks like a desugarred version of those laguages. Rather than describe DGeN
in detail, we will take as our starting point the intersection of ML and Haskell98
and describe where DGEN differs from that hypothetical programming langauge. We
will start with the abstract syntax of bGeN(which we call SOURCE), to make clearer
what we mean by “intersection of Haskell98 and ML” and to separate meaning from
syntax. Where appropriate, we will use commonly-understood functional programs
to demonstrate DGEN. Figure 1.1 gives our starting point, the abstract syntax of DGEN,
SOURCE.

Sourck has all the usual functional programming features. Data is described
as algebraic datatypes (adt). Top-level function definitions bind an expression to a
name. Anonymous funcitons are defined by lambda abstractions with normal func-
tion application for evaluating functions. There are let and letrec expressions for
local function naming. SOURCE also has the usual literal values and an error term ()
which halts execution. Case expressions pull apart data and operate similarly to those

s = sd (SOURCE program)
sd = adt K ¥ = sk (top-level definition)
| def x ot =se

| main meq se

sk ::= K (sk | x) (constructor definition)
se=x (expression)
K se
se se’
Ax — se

let x of = se in se’
letrec x of = se in sé’
case X of sp = se otherwise s¢’

Sp =X (pattern)

| Ksp

I ::= char (literal)
| number
| se (+ | = [=IAI<I>[<]Z) se

ot :=7T|e (optional type annotation)

Figure 1.1: SOURCE, the abstract syntax of DGEN

UuoA W N

Ti=« (type variable)

| T7T (paramaterised type)
| Char | Integer (literal types)
| Va.t

Figure 1.2: Types in SOURCE

in Haskell and ML with the exception that each case expression matches a number
of values against an equal number of patterns. A successful match only occurs if all
values match their corresponding pattern. A pattern is either a variable, literal value
(not a literal operation although the above grammar allows that), a constructor with
patterns as arguments (nested patterns) or application pattern matches of two variables
which is one of our extensions for generic functions. You will also notice a primitive
operation > which is our function extension operation, also used for generic functions
and not usually part of a functional langauge. We will discuss these mechanisms in
more detail in chapter ??2.

Named functions can be annotated with a type (ot) which is used to guide type
inference for features which can’t be inferred. Figure 1.2 describes the langauge of
types in SOURCE.

Types are either variables, named types (which can be parameterised by other
types), one of the literal types or a quantified type (which are used for rank-2 types
and internally in the type inference system).

The concrete syntax (DGEN) is the simplest realisation of this abstract syntax that
we could create. We will introduce the concrete syntax (and make clearer the seman-
tics) by way of some familiar programming tasks. Listing 1.1 shows DGEN code for
calculating the extracting the head of a list, including the definition of the list type.

Listing 1.1: head function on lists
adt list(a) = Nil() | Cons(a, list(a))

def head(lst)= case [lst] of
{ [Cons(x,xs)] — x
} otherwise — error "partial definition error in head"

The adt keyword defines a new datatype which is defined in the normal algebraic
datatype fasion, the def keyword defines a new function. There is a dinstinguisehd
function main which defines the function to run on program execution. Errors in
DGEN carry a string to emit on the console upon the program halting. Listing 1.2
shows a merge sort program which demonstrates more features.

There are no modules, but a c-like preprocessor supports importing definitions
from other files. Recusive let bindings are introduced with the let rec keyword
while let introduces non-recursive bindings. Such bindings are separated with the
keyword and. All functions and constructors take their arguments in parentheses,

© O N O U A W N R

NONONNN NN R B R R R B R e e e
o U & W N B ©@ © ©® N O 0 & W N B ©

Listing 1.2: merge sort

#include "dgen_lib/std.dgen"

def cmp_less() = -1
def cmp_greater() =1
def cmp_equal() = 0

def merge_cmp(cmp,y,z) = case [y,z] of
{ INil(O), yI — y
; [Cons(a,x),Nil()] — Cons(a,x)

; [Cons(a,x),Cons(aa,xx)] — if (cmp(a,aa) < cmp_equal | cmp(a,aa) i== cmp_equal)

then Cons(a,merge_cmp(cmp,x,Cons(aa,xx)))
else Cons(aa,merge_cmp(cmp,Cons(a,x),xx))
} otherwise — error "partial definition error in merge_cmp"

def merge_sort(cmp,x) = letrec n() = length(x)
and nn() =n /2
in if (n <1 | n i==1)
then x
else merge_cmp(cmp
, merge_sort(cmp
, take(nn,x)
)
, merge_sort(cmp
, drop(nn,x)

)

separated by commas and empty agrument lists must be given with empty parenthe-
ses. Functions and constructors can be “curried” by giving only some of the argu-
ments. Function application to arguments is done with this parameter list syntax but
DGEN also allows constructor appliction to arguments when the (partially applied)
constructor is the result of some function. In this case the application uses function
application syntax except that the @ operator is added to the front of the application.
Anonymous functions (lambdas) are introduced with the fun keyword. case expres-
sions branch on a list of expressions (which we call the scruitinees), rather than a
single expression. There is thus a corresponding list of patterns in each branch of the
case expression. This allows desugaring of the equational style of function definition
and smooths the definition of pattern compilation (section ??). Each case expression
has a distinguished default branch, identified by the keyword otherwise which is
the result if none of the branches match. case branches are listed in curley braces
separated by semi-colons. DGEN has list syntax using square braces and commas,
which is the only desuggaring done in the parser (it converts it to a list type de-
fined in the DGEN standard libarary). DGENis passes parameters by value and has no
side-effect-causing built-in operations, thus no side-effects at all.

1.2 Generic Update

A generic update function is one that can traverse any data structure and perform a
type-preserving transformation at specific nodes in the structure. It can be considered
a type-preserving map capable of operating on any structure. Both the structure and
the operation are parameters to the generic update function. Throughout this thesis

© N O U A W N R

W W W W W w NN NNNNNNNNRB R B B B B B B B
O A W N B ©®© © ® N 0 U & W N B © © 0 N 0 U A W N H ©

we use the salary update snippet to demonstrate this type of function.

The salary update snippet (shown in listing 1.3, which is a translation of an ex-
ample from [?]) defines an algebraic datatype for company structures, and code for
updating the salary of all employees of the company. Both the particular company
structure to work over, and the updating function are arguments to the generic up-
date function, generic_update.

Listing 1.3: The salary update snippet

adt company() = C(list(dept()))
adt dept() = D(string, manager(), list(sub_unit()))
adt sub_unit() = PU(employee())
| DU(dept())
adt employee() = E(person(), salary())
adt person() = P(string, string)
adt manager() = M(employee)
adt salary() S(int)
// setup
def gen_com() = let ralf() = E(P("Ralf", "Amsterdam"), S(8000))
and joost() = E(P("Joost", "Amsterdam"), S(1000))
and marlow() = E(P("Marlow", "Cambridge"), S(2000))
and blair() = E(P("Blair", "London"), S(100000))
in C([D("Research", M(ralf), [PU(joost), PU(marlow)])
, D("Strategy", M(blair), [1])
1
)
// logic

def incS(amt, s) = case [s] of
{ [S(s)] — S(s + amt)
} otherwise — error "partial definition error in incS"
def id(x) = x
def increment(amt) = incS(amt) > id
def generic_update(func, dat) = apply_to_all(func,dat)

//do it
def main_func() = generic_update(increment(237),gen_com)

// > output is:

// > Company[Department: Research, Ralf<Amsterdam, 8237>,

// > [Joost<Amsterdam, 1237>
// , Marlow<Cambridge, 2237>
// 1

vV Vv

generic_update actually defers its job to one of our traversal functions, apply_to_all,

which is discussed when we show our generic traversal functions (in section 1.4).
Given that apply_to_all takes a function and applies to each part of the in-
put data, our job is to construct a function to work at each part of the input data.
apply_to_all has the type (Va . a —a) —b —b meaning this function must
have type Va . a —a. Usually there is only one function with that type, the iden-
tity function (x—x). We use an extension operator () to add specific behaviour to
the identify function. the resulting function will give the specific behaviour on in-
put of the specific type, while still deferring to the identity behaviour for all other
types. Thus, increment is a function which will increment a salary if applied to

one and do nothing to its input otherwise. It is this function that we set to be ap-
plied to all nodes in the data structure in question. Upon running generic_update
with increment(237) and the example company structure, the result in the same
company structure with every salary increase by 237.

1.3 Generic Query

A generic query function is able to traverse any data structure, accumulating a single
value which is its result. It can be considered a fold that can operate on any data
structure. Both the structure and the accumulation operation are parameters to the
function, but the same mechanism can be used to define functions with a set accu-
mulator. Throughout this thesis we use the name analysis snippet to demonstrate this
type of function.

The name analysis snippet includes the definition of an abstract syntax tree datatype
(adapted from a simple imperative language by Reynolds [?]), and code to check
that every use of a name is preceded by the definition of that name in values of
that datatype. The function of most interest is the generic_query function that
does the hard work. The check_it function is the accumulating operation, and the
a_correct_command gives some data to test the function on.

We assume the presence of a generic_query function, which we describe in sec-
tion 1.4. It is like a fold over any data structure. Its type signatureis (Va. r —a —r) —r —b —r
and operates thus.

This function takes an accumulating (or folding) operation and a starting
value as its first two parameters. The third parameter is the data to work
over and the result is the final result of applying to accumulating function
at every node in the input value.

With this function present, we can then define an actual generic update example
by defining the accumulating function only. As in generic traversal, this function
needs a very polymorphic type since it is applied at every node, and again we build
it up with the extension mechanism. We define separate functions for each interesting
data type (i.e for comm and int_exp, but not for bool_exp since it plays no part in the
computation) and combine them with a generic failover! case (fun(a) = strbool on
line 37). The resulting function, check_it will use check_comm when it encounters
a command node, check_intexp when it encounters an integer expression and the
failover case for all other nodes.

1.4 Generic Traversal

A generic traversal function is either a generic query or a generic update where
the traversal strategy is defined. For example, if we have only one generic update
function, we can only traverse a tree in one way. If we are able to define different
generic update functions, such as generic_top_down and generic_bottom_up, we
can customise our traversal to suit our purposes. To demonstrate generic traversal
we will encode three traversal strategies for both queries and updates; top-down,

1T like the term “failover” for this function since it is a function that protects us from unsafe generic
traversal by stepping in when all other options fail.

bottom-up and once. The same techniques used to define them can be used to define
other traversal strategies.

It is possible to define a set of generic traversal operations up-front and to re-
quire your programmer to use one of these for all generic updates and generic
queries. This can work quite well in practice, but is not what we mean when we
say “generic traversal”. When we use this term we are referring to programmer-
generated generic traversals, and the ability for the programmer to create custom
traversals that suit their purpose. For example, our name analysis snippet can only
work if the generic_query operation goes top-down, applying the accumulating
function to nodes higher in the value before passing the result to those lower in the
value. This is not a universal requirement and it may be necessary at some time to
have a similar function that works from the bottom up. With generic traversal, the
programmer is free to create whatever traversal they need.

1.4.1 Bottom-Up Update

apply_to_all, as used in the salary update snippet, is actually a bottom-up traversal,
its full definition is shows in listing 1.5

apply_to_all has two arguments, a function to apply at every node (f), and a
value to traverse (g). It works by inspecting its argument (case [g]) and branching
based on whether it is a compound (c(a)) or a atom (0). This relies on the ability to
see all values in the language as binary tree, compounds are the internal nodes and
atoms are the leaves. We describe how to do this in section ??, but for now we must
take as an assumption that it works.

With this in place, we can apply f to all nodes by applying it to the current
node and recursively applying apply_to_all to each child (c is the left child and
a is the right). We then stitch the two transformed halves back together with the @
annotation, which tell us that the following expression is a data reconstruction, not a
function application.

apply_to_all is bottom-up, which is encoded by applying the function f to the
result of stitching together the transformed children. We show how to encode a
top-down traversal in section 1.4.2.

1.4.2 Top-Down Update

It is quite straightforward to write a version of generic_update which processes
its second argument from the top-down instead of from the bottom up. Listing 1.6
shows just such a function.

The general mechanism is the same but we first call the transformation function
() on the current node and then recursively call apply_to_all_td on the result of
that function call. We must be careful not to re-apply f when the result of calling it
on the current node is an atom.

1.4.3 Top Down Query

generic_query is actually a top-down generic query function. The accumulation
function will first be applied to the node being inspected, then the result is threaded

to the right-hand argument, finally to the left-hand argument. So in fact, it is top-
down, right-to-left. In section ?? we show a bottom-up, left-to-right version.

As with apply_to_all, we rely on the ability to see any value as a tree, meaning
our job is to apply the accumulator at the right places and to thread the output
of the accumulator to the right recursive calls in the right order. We first apply to
accumulator to the whole value at the current node, then use the result of this as the
start value for a recursive call on the right sub-tree, finally passing that result to the
start parameter of a recursive call for the left sub-tree.

1.4.4 Bottom Up Query

We can easily create a bottom-up version of generic_query by changing the places
at which we call the accumulator function. Listing 1.8 shows just such a function.
Instead of first calling the accumulator on the current node, we defer that job until
the left and right subtrees are processed, passing the final result of the right subtree
as the start value for the current node.

1.5 Generic Equality

Generic equality is a single function which can determine the equality of two values
of any type. It must be restricted to take arguments of the same type and it must
return a boolean indicating if they are equal or not. The geq function in listing 1.9 is
a generic equality function.

Unfortunately, this snippet suffers from noise caused by our unsophisticated
parser, but the verbose encoding does not infringe on clarity. First, we must de-
fine a sequence of generic versions of the built-in equality functions, each able to
deal with one more of the built-in types. The first of these, g_str_equals, can deal
with either two strings (by the left argument to extension, or two constructors (by the
right argument). This constructor equality (===) is the secret to writing this function.
The pulling apart of data which we did in generic traversal means that constructors
can be exposed without their arguments. If we add some basic built-in functions
that work on these “lonely” constructors, we can write functions like equality (and
the next two, show and bitstring). In this process, the constructor equality function
is used as the right hand argument to an extension operator, which means it must
have type (a,a) —bool. It will give a run-time error for non-constructor input. We
then build this up through the next three definitions until we have a function with
extensions for all built-in types plus constructors. This function (bi_eq) is used to
check the equality of atoms, and all other equalilty checks are done by the main geq
function. geq inspects its two arguments and, if they are the same strucure, either
recurses on the branches for compound inputs, calls the atomic equality for atom
inputs. It gives fail for inputs of different structure.

This one function is capable of testing the equality of any two values (of the same
type, notice the type signature is (a,a) —bool) in the langauge.

1.6 Generic Show

Generic show is a single function which can encode, as a string, any value of any
type. Listing 1.10 is a code snippet demonstrating this function.

We use exactly the same mechanism in gshow as we did in geq. The main dif-
ference is that we need a different built-in function working on constructors. In this
case we use show_const which will convert any “lonely” constructor to a string rep-
resentation, and will give a run-time error otherwise. Thus it, as with ===, has a very
polymorphic type ((a) —String), which means it can be used in the right hand side
of the extension operator (>).

1.7 Other “Generic” Functions

“Generic” is a heavily overloaded term in computing, in this section we further clarify
how we use it in this thesis by explaining what it is not in this context.

1.7.1 Object Oriented Generics

The generic functions of Object Oriented (OO) languages like Java and C# bear no
relation to the generic functions we have listed above. This thesis starts from the
assumption that the parametric polymorphism that these mechanisms implement is
already available as a starting point. The functions above are all from a higher-level
form of generics.

1.7.2 Term-Rewriting

Term-rewriting libraries for functional programming languages are sometimes re-
ferred to as generics. Generic update and generic query with generic traversal gives
up term-rewriting ability. So our use of generics is compatible with that used in these
libraries.

1.7.3 Datatype Generics

Datatype generics is a more specifically defined term, characterised by a set of canon-
ical examples. All our six of our functions are included in this definition. There are
also other functions in this set, such as generic map and generic read, which we do
not include. We discuss these functions in section ??.

© © N o U A W N =

W W W W WwWw NN NNNNNNRNNR R B B B B B B B B
O A W N B © © ® N 0 U A W N R © © 0 N 0 U A W N = ©

36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51

Listing 1.4: The name analysis snippet

adt comm() = CAssign(string, int_exp())

| CDecl(string, int_exp(), comm())
| CSkip()

| CSeq(comm(), comm())

| CWhile(bool_exp(), comm())

I

CPut(int_exp())

adt int_exp() = IUse(string)
| ILit(int)
| IPlus(int_exp(), int_exp())

adt bool_exp() = BTrue()

| BFalse()

| BEq(int_exp(), int_exp())

| BNEq(int_exp(), int_exp())

| BAnd(bool_exp(), bool_exp())
I

BOr(bool_exp(), bool_exp())

def check_comm(strbool, comm)
11 (pair(list(string),bool),comm()) — pair(list(string),bool)
= case [strbool,comm] of
{ [Pair(lst,b), CAssign(s, ie)] — Pair(lst,elem(fun(p,q) = p s==q, s,lst) & b)
; [Pair(lst,b), CDecl(s,ie,c)] — Pair(Cons(s,1lst), b)
; [Pair(lst,b), z] — strbool
} otherwise — error "partial definition error in check_comm"

def check_intexp(strbool, comm)
11 (pair(list(string),bool),int_exp()) — pair(list(string),bool)
= case [strbool,comm] of
{ [Pair(lst,b), IUse(s)] — Pair(lst,elem(fun(p,q) = p s==q, s,lst) & b)

; [Pair(lst,b), z] — strbool
} otherwise — error "partial definition error in idbu"
def check_it(strbool) :: (pair(list(string),bool), a) — pair(list(string),bool)

= check_comm(strbool) > check_intexp(strbool) >
fun(a) = strbool

def decl_before_use(comm) = snd(generic_query(check_it,Pair([],true),comm))

def a_correct_command() = CDecl("v"
, ILit(1)
, CWhile(BNEq(IUse("v"), ILit(3))
, CSeq(CAssign("v",
IPlus(IUse("v"),ILit(1)))
, CPut(IUse("v"))
)

)
def main_func() = (show_bool(decl_before_use(a_correct_command)))

// > output is:
// > true

10

o U A W N R (O I N O N N U A W N R

o U A W N =

Listing 1.5: A bottom-up generic traversal

{[c(a)] — false
} otherwise — true

/**
* Type preserving at every node

Listing 1.6: Top-down update

def apply_to_all(f,g) :: (Va . (a) — a, b) = b =
case [g] of
{ [c(a)]l — f(@apply_to_all(f,c) (apply_to_all(f,a)))
; [o] — f(o)
} otherwise — error "partial definition error in apply_to_all"

Listing 1.7: A top-down (right-to-left) generic query
{ [c(a)] — generic_all(f,c) & f(a)

; [ol] — true
} otherwise — error "partial definition error in generic_all"

def generic_some_argsonly(f,g) :: (V a . (a) — bool, b) — bool =
case [g] of

Listing 1.8: A bottom-up (left-to-right) generic query

i [o] — false
} otherwise — error "partial definition error in generic_all"

/**
* Generic queries (topdown and bottom up)
*% /

11

© ©® N o U A W N =

NONONONNNN B R R R e E s e
o U A W N H O VW 0N U W N R O

© N O U A W N R

P e =
w N R o

Listing 1.9: Generic Equality

def g_str_equals(b) :: (a,a) — Bool
= let str_equals(a,b) = a s==
in str_equals(b) > fun(g) = b ===

def g_int_equals(b) :: (a,a) — Bool
= let int_equals(a,b) = a i==
in 1int_equals(b) > g_str_equals(b)

def g_char_equals(b) :: (a,a) — Bool
= let char_equals(a,b) = a c==
in char_equals(b) > g_int_equals(b)

def g_bool_equals(b) :: (a,a) — Bool
= let bool_equals(a,b) = a b==
in bool_equals(b) > g_char_equals(b)

def bi_eq(x,y) :: (a,a) — Bool
= let fst_part() = g_bool_equals(x)
in fst_part(y)

def geq(a,b) :: (a,a) — bool = case [a,b] of
{ [cl(al),c2(a2)] — geq(cl,c2) & geq(al,a2)

; [cl(a2),z2] — false

; [z1,c2(a2)] — false

; [z1,22] — bi_eq(zl, z2)
} otherwise —

error "partial definition error in geq"

def main_func() = geq([One(),Zero()],[0One(),0ne()])

Listing 1.10: Generic Show

def gshow(a) :: (a) — String
= case [a] of
{ [c(p)] — gshow(c) ++ "(" ++ gshow(p) ++ ")"
i [z] — bishow(z)
} otherwise — error "partial definition error in gshow"

def bishow() :: (a) — String
= let si(x) = show_int(x)
and sc(x) = show_char(x)
and sb(x) = show_bool(x)
and ss(x) = x
and ds(x) = show_constr(x)
in si > sc > sb > ss > ds

12

	Generic Functions
	dgen
	Generic Update
	Generic Query
	Generic Traversal
	Bottom-Up Update
	Top-Down Update
	Top Down Query
	Bottom Up Query

	Generic Equality
	Generic Show
	Other ``Generic'' Functions
	Object Oriented Generics
	Term-Rewriting
	Datatype Generics

