
The trimclip Package

Part of the adjustbox bundle

Martin Scharrer
martin@scharrer-online.de

CTAN: http://www.ctan.org/pkg/adjustbox

Version v1.0 – 2012/05/16

Abstract
This package extends the standard graphicx package by providing the

missing \trimbox and \clipbox macros to trim and clip arbitrary TEX
material. The macros allow for verbatim content. Equivalent environments
are also provided. The package comes with own clipping drivers for all
common output formats as well as a pgf fall-back driver.

1 Introduction
The standard LATEX package graphicx.allows to scale, resize and rotate ei-
ther images or text (i.e. any TEX content). For text the macros \scalebox,
\resizebox and \rotatebox can be used, while equivalent keys exist for the
\includegraphics macro. However, while it is possible to trim and clip images
using the trim, viewport and clip keys, no equivalent macros are provided.
This package closes this gap by defining the macros \trimbox and \clipbox.
As an extra the macro \marginbox is also provided. It can be seen as an in-
verted \trimbox, expanding the official size of the content instead of reducing it.
Originally these macros were included in the adjustbox package together with
the general \adjustbox macro. However, the fundamental clip and trim macros
and their driver files are now packed into this minimalistic package, so that other
packages can reuse its functionality without the need to load the ever-growing
adjustbox package.

The macros provided by this package differ in three aspects from the macros
defined by graphicx. The content argument is actually read directly as a
horizontal box and not as a macro argument, even when the syntax looks the
same. This allows for arbitrary content including special things like verbatim
material. It is allowed to replace the ‘{ }’ around the content with \bgroup and
\egroup. Furthermore, for every macro there is an equivalent environment with
the same name. Special care is taken to allow the same name for both, which is
normally not allowed. Finally, the lengths arguments of the macros can contain
algebraic expressions to calculate the used length. This is only possible with the
graphicx macros if the calc package is loaded. However, the trimclip macros
use the adjcalc wrapper package which either uses ε-TEX primitives, calc or
pgfmath to provide this feature.

1

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/adjustbox

2 Dependencies
This package uses the author’s other packages collectbox (to collect the content
as a real box) and adjcalc (to allow for math expressions for lengths). The
latter is part of the same adjustbox bundle and should have be installed together
with trimclip.

3 Drivers
The clip operation can not be implemented using general TEX commands, but is
rather output format specific. The clipped material is actually included unclipped
and the output file (i.e. PDF or PS file) contains format specific instructions, so
that the document viewer will clip the content when the document is displayed.
Depending on the used compilation work-flow (like pdflatex, latex+dvips or
latex+dvipdfm, etc.) this clipping instructions must be passed in a different
way. In order to support all of these, dedicated driver files are provided which
hold the specific low-level instructions. This requirement should also be known
to most users from the graphics/x, (x)color or hyperref packages which also
require output format specific low-level instructions to implement their features.

A set of driver files for the most common used LATEX compilers is provided
with this package (see section 4 for a list). If no suitable driver file is found,
the pgf package is used instead to implement the clip operation. This (large)
package comes with its own set of driver files and should cover any other LATEX
compilers. The trimclip drivers were inspired by the graphic/x and pgf driver
code and were written by Joseph Wright of the LATEX3 project and Martin
Scharrer (the author of this package).

4 Package Options
Normally the package should be loaded without any options. A suitable driver
will then automatically be selected. However, the package accepts the following
options to select the used driver manually. Any other option is passed to the
graphicx package and the driver selected by it is used. However, this does
not work if graphicx or graphics was already loaded before. In this case any
unknown option is taken as driver and a file ‘tc-〈option〉.def ’ is loaded if it
exits. If not, the default PGF fall-back driver is used. PGF comes with a own
set of drivers but is large and can be considered a significant overhead if used
only for rectangular clipping.

pdftex Use the pdftex driver. This driver is automatically selected for pdflatex
and lualatex and should not be used for any other LATEX compilers.

dvips Use the dvips driver. This driver is automatically selected for latex.

xetex Use the xetex driver. This driver is automatically selected for xelatex.

dvipdfm Use the xetex driver which is also compatible with dvipdfm.

dvipdfmx Use the xetex driver which is also compatible with dvipdfmx.

2

pgf Use the fall-back PGF driver explicitly. This makes sense if issue with
another driver are encountered.

It should be noted that choosing an incorrect driver will lead to clip operation
not being applied (they act like trim operations) and may lead to a broken
output file.

5 Argument Values
All macros of this package and their matching environments require four length
values which are used to change the left, bottom, right and top side of the content.
Because of the used adjcalc package complicated algebraic expressions can be
used to calculate these amounts. The used math engine can be changed by
loading adjcalc with the appropriate option before loading trimclip. Please
see the adjcalc manual for more details on this. Like with the trim or viewport
keys of \includegraphics the length values must be separated by spaces. Note
that if a previous length expression ends in a macro any trailing spaces will be
removed by TEX. Therefore it is required to wrap this complete length expression
in braces. Several examples of this are shown in the Usage section. It is also
possible to only provide a single length which is used for all four sides or only
two lengths which are taken for the left/right as well as bottom/top side. This
simplifies symmetric operations and got inspired by Cascading Style Sheets (CSS)
used to style websites.

If a length value is a simple number without a unit, a default unit is substituted
(usually ‘bp’, big points, the standard PostScript and PDF unit). This default unit
can be changed using \adjcalc{defaultunit=〈unit〉} or completely disabled
(defaultunit=none). See the adjcalc manual for more details.

The length values can contain the following macros to refer to the original
size of the content:

\width \height \depth \totalheight

These LATEX lengths hold the original dimensions of the content and can be used
to make relative changes. Like any other length registers they can be used with
a factor, e.g. .5\width to refer to half the natural width of the content.

6 Usage

6.1 Trimming

\trimbox{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}{〈content〉}
\trimbox{〈all sites〉}{〈content〉}
\trimbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\trimbox*{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}{〈content〉}

The macro \trimbox trims the given amount from the lower left (ll) and the
upper right (ur) corner of the box. This means that the amount 〈llx 〉 is trimmed
from the left side, 〈lly〉 from the bottom and 〈urx 〉 and 〈ury〉 from the right and
top of the box, respectively. If only one value is given it will be used for all four

3

sites. If only two values are given the first one will be used for the left and right
side (llx, urx) and the second for the bottom and top side (lly, ury).

If the starred version is used the four coordinates are taken as the viewport
instead, i.e. the box is trimmed to the rectangle described by the coordinates.
In this case all four values must be specified explicitly.

Examples:

\examplecontent
A B
C D

\trimbox{2pt 3pt 2pt 3pt}{\examplecontent}
A B
C D

\trimbox{2pt 3pt}{\examplecontent}
A B
C D

\trimbox{2pt}{\examplecontent}
A B
C D

\trimbox{{.5\width} {.5\totalheight} 2pt 2pt}
{\examplecontent}

A B
C D

\trimbox*{5pt 0pt 3em 2em}{\examplecontent}
A B
C D

\trimbox*{5pt -2pt 3em 2em}{\examplecontent}
A B
C D

\trimbox*{5pt 10pt 3em 2em}{\examplecontent} A B
C D

\trimbox*{5pt -3pt 3em -1pt}{\examplecontent}

A B
C D

\begin{trimbox}{〈1, 2 or 4 trim values〉}
〈content〉

\end{trimbox}

\begin{trimbox*}{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}
〈content〉

\end{trimbox*}

The trimbox and trimbox* environments do the same as the corresponding
macros.

4

6.2 Clipping

\clipbox{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}{〈content〉}
\clipbox{〈all sites〉}{〈content〉}
\clipbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\clipbox*{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}{〈content〉}

The \clipbox macro works like the \trimbox and trims the given amounts from
the 〈text〉. However, in addition the trimmed material is also clipped, i.e. it is
not shown in the final document. Note that the material will still be part of the
output file but is simply not shown. The full content can still be exported using
special tools, so using \clipbox (or \includegraphics[clip,trim=...]) to
censor classified information would be a bad idea. The starred version will again
use the given coordinates as viewport.

\begin{clipbox}{〈1, 2 or 4 trim values〉}
〈content〉

\end{clipbox}

\begin{clipbox*}{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}
〈content〉

\end{clipbox*}

The environment versions of \clipbox and \clipbox*. The same rules as for
the trimming environments apply.

Examples:

\examplecontent
A B
C D

\clipbox{2pt 3pt 2pt 3pt}{\examplecontent}
A B
C D

\clipbox{2pt 3pt}{\examplecontent}
A B
C D

\clipbox{2pt}{\examplecontent}
A B
C D

\clipbox{{.5\width} {.5\totalheight} 2pt 2pt}
{\examplecontent}

A B
C D

\clipbox*{5pt 0pt 3em 2em}{\examplecontent}
A B
C D

\clipbox*{5pt -2pt 3em 2em}{\examplecontent}
A B
C D

\clipbox*{5pt 10pt 3em 2em}{\examplecontent} A B
C D

\clipbox*{5pt -3pt 3em -1pt}{\examplecontent}

A B
C D

5

6.3 Margin

\marginbox{〈all sites〉}{〈content〉}
\marginbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\marginbox{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}{〈content〉}

\begin{marginbox*}{〈1, 2 or 4 margin values〉}
〈content〉

\end{marginbox*}

This macro and environment can be used to add a margin (white space) around
the content. It can be seen as the opposite of \trimbox. The original baseline
of the content is preserved because 〈lly〉 is added to the depth.

Example:

Before \fbox{\marginbox{1ex 2ex 3ex 4ex}{Text}} After

Before Text After

\marginbox*{〈all sites〉}{〈content〉}
\marginbox*{〈left/right〉 〈top/bottom〉}{〈content〉}
\marginbox*{〈llx 〉 〈lly〉 〈urx 〉 〈ury〉}{〈content〉}

\begin{marginbox}{〈1, 2 or 4 margin values〉}
〈content〉

\end{marginbox}

This starred version is almost identical to the normal \marginbox, but also raises
the content by the 〈lly〉 amount, so that the original depth is preserved instead
of the original baseline. Note that while \marginbox is basically the opposite of
\trimbox, \marginbox* is not the opposite of \trimbox*.

Example:

Before \fbox{\marginbox*{1ex 2ex 3ex 4ex}{Text}} After

Before
Text

After

6

7 Diagrams
The box dimensions, trim values and change of the baseline for different scenarios
are visualized by the following diagrams.

Xybaseline
origindepth

\depth

\dp\br

height
\height

\ht\br

totalheight
\totalheight

width
\width

\wd\br

Figure 1: Box dimensions. Shown are also the LATEX macros and the TEX
primitives. Here \br stands for a box register. Note that the depth is a positive
values on its own downwards pointed axes.

Xy
depth

height
totalheight

width

Xy
lly

llx

ury

urx

Figure 2: Trimming. The four values are removed from each side.

7

Xy
depth

height
totalheight

width

Xy
lly

llx

moves down

ury

urx

Figure 3: Trimming with lly>depth. In this case the resulting box moves up to
the original baseline.

Xy
depth

height
totalheight

width

Xy
lly

llx moves up

ury

urx

Figure 4: Trimming with ury>height. In this case the resulting box falls down
to the original baseline

Xy
depth

height
totalheight

width

Xymoves downlly
llx

ury

urx

Figure 5: Viewport with lly>0pt. The ll and ur values are taken from the
origin. The baseline is the vertical zero reference.

8

Xy
depth

height
totalheight

width

Xy
llyllx

ury

urx

Figure 6: Viewport with lly<0pt. In this case the viewport ranges into the
depth of the original box.

Xy
lly

llx

ury

urx

Figure 7: Marginbox. The llx and urx are added to the left and right and
increase the width. The ury is added to the height and lly to the depth of the
box. This keeps the baseline at the original position.

Xy
lly

llx

ury

urx

lly

lly

Figure 8: Marginbox*. In addition to the normal margin the content is also
raised by lly, so that the original depth is preserved. This effectively moves the
baseline down.

9

8 Implementation

1 %<!COPYRIGHT>
2 \ProvidesPackage{trimclip}[%
3 %<!DATE>
4 %<!VERSION>
5 %<*DRIVER>
6 2099/01/01 develop
7 %</DRIVER>
8 Trim and clip general TeX material]

8.1 Options

9 \def\tc@driver{tc-\Gin@driver}
10 \DeclareOption{pgf}{\def\tc@driver{tc-pgf.def}\↙

PassOptionsToPackage{pgf}{graphicx}}
11 \DeclareOption{pdftex}{\def\tc@driver{tc-pdftex.def}\↙

PassOptionsToPackage{pdftex}{graphicx}}
12 \DeclareOption{xetex}{\def\tc@driver{tc-xetex.def}\↙

PassOptionsToPackage{xetex}{graphicx}}
13 \DeclareOption{dvips}{\def\tc@driver{tc-dvips.def}\↙

PassOptionsToPackage{dvips}{graphicx}}
14 \DeclareOption{dvipdfm}{\def\tc@driver{tc-xetex.def}\↙

PassOptionsToPackage{xetex}{graphicx}}
15 \DeclareOption{dvipdf}{\def\tc@driver{tc-xetex.def}\↙

PassOptionsToPackage{xetex}{graphicx}}
16 \DeclareOption*{%
17 \@ifpackageloaded{graphics}{%
18 \edef\tc@driver{tc-\CurrentOption.def}%
19 \begingroup
20 \edef\@tempa{\CurrentOption.def}%
21 \ifx\@tempa\Gin@driver\else
22 \let\on@line\@gobble
23 \PackageWarning{trimclip}{%
24 A different clipping driver was requested than the↙

\MessageBreak
25 one used for ’graphics/x’! This is not recommended↙

\MessageBreak
26 and can lead to defect output files.%
27 }%
28 \fi
29 \endgroup
30 }{%
31 \def\tc@driver{tc-\Gin@driver}%
32 \PassOptionsToPackage\CurrentOption{graphicx}%
33 }%
34 }
35 \ProcessOptions*\relax

10

36 \RequirePackage{graphicx}[1999/02/16]
37 \RequirePackage{collectbox}[2011/08/22]
38 \RequirePackage{adjcalc}

8.2 User level and auxiliary macros

\tc@readvalues

Reads the four values for trim, viewport and clip. Valid inputs are: 4 values
directly, 1 value which is taken four times, 2 values which is taken for left/right
and top/bottom.

39 \def\tc@readvalues#1{%
40 \tc@@readvalues#1 {} {} {} \\%
41 }

\tc@@readvalues

42 \def\tc@@readvalues#1 #2 #3 #4 #5\\{%
43 \adjsetlengthdefault\tc@llx{#1}%
44 \ifx\@nnil#2\@nnil
45 \tc@lly\tc@llx
46 \tc@urx\tc@llx
47 \tc@ury\tc@llx
48 \else
49 \adjsetlengthdefault\tc@lly{#2}%
50 \ifx\@nnil#3\@nnil
51 \tc@urx\tc@llx
52 \tc@ury\tc@lly
53 \else
54 \adjsetlengthdefault\tc@urx{#3}%
55 \adjsetlengthdefault\tc@ury{#4}%
56 \fi
57 \fi
58 }%

\tc@llx

\tc@lly

11

\tc@urx

\tc@ury

Dimension registers for the four trim/viewport values. Legend: ll = lower left,
ur = upper right.

59 \newdimen\tc@llx
60 \newdimen\tc@lly
61 \newdimen\tc@urx
62 \newdimen\tc@ury

\trimbox

63 \newcommand\trimbox{%
64 \collectboxcheckenv{trimbox}%
65 \@ifstar
66 \trimbox@s
67 \trimbox@
68 }
69 \def\trimbox@#1{%
70 \collectbox{\@trimclip\@trimbox{#1}}%
71 }
72 \def\trimbox@s#1{%
73 \collectbox{\@trimclip\@viewportbox{#1}}%
74 }

trimbox*

75 \expandafter\newcommand\expandafter*\csname trimbox*\endcsname{%
76 \@collectboxisenv{trimbox*}%
77 \trimbox@s
78 }

\clipbox

79 \newcommand\clipbox{%
80 \collectboxcheckenv{clipbox}%
81 \@ifstar
82 \clipbox@s
83 \clipbox@
84 }
85 \def\clipbox@#1{%
86 \collectbox{\@trimclip\@clipbox{#1}}%
87 }

12

88 \def\clipbox@s#1{%
89 \collectbox{\@trimclip\@clipvpbox{#1}}%
90 }

clipbox*

91 \expandafter\newcommand\expandafter*\csname clipbox*\endcsname{%
92 \@collectboxisenv{clipbox*}%
93 \clipbox@s
94 }

\marginbox

#1: Margins as space separated values (like for ’trim’)
Collect box first.

95 \newcommand\marginbox{%
96 \collectboxcheckenv{marginbox}%
97 \@ifstar
98 \marginbox@s
99 \marginbox@

100 }
101 \def\marginbox@#1{%
102 \@collectbox{\@trimclip\@marginbox{#1}}%
103 }
104 \def\marginbox@s#1{%
105 \@collectbox{\@trimclip\@marginraisebox{#1}}%
106 }

marginbox*

#1: Margins as space separated values (like for ’trim’)

107 \expandafter\newcommand\expandafter*\csname marginbox*\endcsname↙

{%
108 \@collectboxisenv{marginbox*}%
109 \marginbox@s
110 }

\@trimclip

#1: <trim/viewport/clip macro>
#2: <values>

General macro which parses the values and feeds it to the given lower-level
macro. Finally the box is typeset. This macro will always be used inside a group
created by \@collectbox.

13

111 \def\@trimclip#1#2{%
112 \tc@readvalues{#2}%
113 #1%
114 \collectedbox
115 \tc@llx
116 \tc@lly
117 \tc@urx
118 \tc@ury
119 \usebox\collectedbox
120 }

8.3 Low-level commands

\tc@correctbaseline

Adjust baseline if required by negative depth or height.

121 \def\tc@correctbaseline#1{%

If depth is negative lower the box to get zero depth

122 \ifdim\dp#1<\z@
123 \raise\dp#1%
124 \else

Else if height is negative lower the box to get zero height

125 \ifdim\ht#1<\z@
126 \lower\ht#1%
127 \fi\fi
128 \box#1%
129 }%

\tc@correctdims

Ensure that all dimensions are non-negative.

130 \def\tc@correctdims#1{%
131 \ifdim\dp#1<\z@ \dp#1=\z@ \fi
132 \ifdim\wd#1<\z@ \wd#1=\z@ \fi
133 \ifdim\ht#1<\z@ \ht#1=\z@ \fi
134 }

\@trimbox

#1: <box register>
#2: <tllx>
#3: <tlly>
#4: <turx>

14

#5: <tury>
Removes the four length for the left, bottom, right and top from the official size
of the box register.

135 \def\@trimbox#1#2#3#4#5{%
136 \setbox#1=\hbox{%
137 %
138 \tc@llx=#2\relax
139 \tc@lly=#3\relax
140 \advance\tc@lly-\dp#1%
141 \tc@urx=#4\relax
142 \advance\tc@urx-\wd#1%
143 \tc@ury=#5\relax
144 \advance\tc@ury-\ht#1%
145 %
146 % Set dimensions now.
147 % This allows that the arguments can refer
148 % to the original dimensions without issues.
149 \hskip-\tc@llx
150 \dp#1-\tc@lly
151 \wd#1-\tc@urx
152 \ht#1-\tc@ury
153 %
154 \tc@correctbaseline{#1}%
155 }%
156 \tc@correctdims{#1}%
157 }

\@marginbox

Adds the given margins to the depth, width and height. The left margin is
created by an horizontal skip. This implementation assumes that the margins
are positive and no special checks are added. While negative margins will trim
some margin off, this will not lead to correct results if this amounts are larger
than the existing dimensions. For this the \@trimbox macro should be used.

158 \def\@marginbox#1#2#3#4#5{%
159 \setbox#1=\hbox{%
160 %
161 \tc@llx=#2\relax
162 \tc@lly=#3\relax
163 \advance\tc@lly\dp#1%
164 \tc@urx=#4\relax
165 \advance\tc@urx\wd#1%
166 \tc@ury=#5\relax
167 \advance\tc@ury\ht#1%
168 %
169 % Set dimensions now.
170 % This allows that the arguments can refer
171 % to the original dimensions without issues.

15

172 \hskip\tc@llx
173 \dp#1\tc@lly
174 \wd#1\tc@urx
175 \ht#1\tc@ury
176 %
177 \box#1%
178 }%
179 \tc@correctdims{#1}%
180 }

\@marginraisebox

Like \@marginbox but raises the box accordant to the bottom margin, so that
the original depth is kept.

181 \def\@marginraisebox#1#2#3#4#5{%
182 \setbox#1=\hbox{%
183 %
184 \tc@llx=#2\relax
185 \tc@lly=#3\relax
186 \tc@urx=#4\relax
187 \advance\tc@urx\wd#1%
188 \tc@ury=#5\relax
189 \advance\tc@ury\ht#1%
190 %
191 % Set dimensions now.
192 % This allows that the arguments can refer
193 % to the original dimensions without issues.
194 \hskip\tc@llx
195 \wd#1\tc@urx
196 \ht#1\tc@ury
197 % Copy original tty values (ury is taken as temp ↙

dimension)
198 \tc@ury=\tc@lly
199 \advance\tc@lly\dp#1%
200 \dp#1\tc@lly
201 % Raise bu original tty value (now in ury)
202 \raise\tc@ury\box#1%
203 }%
204 \tc@correctdims{#1}%
205 }

\@trimbox

#1: <box register>
#2: <tllx>
#3: <tlly>
#4: <turx>

16

#5: <tury>
Removes the four length for the left, bottom, right and top from the official size
of the box register.

206 \def\@viewportbox#1#2#3#4#5{%
207 \setbox#1=\hbox{%
208 %
209 % Assign values
210 \tc@llx=#2\relax
211 \tc@lly=#3\relax
212 \tc@urx=#4\relax
213 \tc@ury=#5\relax
214 %
215 % Set dimensions now.
216 % This allows that the arguments can refer
217 % to the original dimensions without issues.
218 \hskip-\tc@llx
219 \dp#1-\tc@lly
220 \wd#1\tc@urx
221 \ht#1\tc@ury
222 %
223 \tc@correctbaseline{#1}%
224 }%
225 \tc@correctdims{#1}%
226 }

\@clipbox

Clips the box using the given trim amounts. For this the box is first trimmed
and then clipped to its official size using a driver dependent macro.

227 \def\@clipbox#1#2#3#4#5{%
228 \@trimbox{#1}{#2}{#3}{#4}{#5}%
229 \@cliptoboxdim{#1}%
230 }

\@clipvpbox

Clips the box using the given trim amounts. For this the box is first trimmed
and then clipped to its official size using a driver dependent macro.

231 \def\@clipvpbox#1#2#3#4#5{%
232 \@viewportbox{#1}{#2}{#3}{#4}{#5}%
233 \@cliptoboxdim{#1}%
234 }

17

8.4 Driver loading
The clipping support is output driver dependent. The driver selected by graphics
is used and a definition file is used if its exists. Otherwise either the default
pdftex implementation or the pgf fall-back driver is used.

235 \InputIfFileExists{\tc@driver}{%
236 {\let\on@line\@gobble
237 \PackageInfo{trimclip}{Using driver ’\tc@driver’.}}%
238 }{%
239 \input{tc-pgf.def}%
240 {\let\on@line\@gobble
241 \PackageInfo{trimclip}{No clipping driver ’\tc@driver’ ↙

available.\MessageBreak Using fall-back PGF driver.}}%
242 }

8.5 Driver files
8.5.1 PGF fall-back driver

243 %<!COPYRIGHT>
244 \ProvidesFile{tc-pgf.def}[2012/05/13 v1.0 trimclip fall-back ↙

clipping driver using PGF]

245 \RequirePackage{pgf}

\@cliptoboxdim

Clips to official box dimension.

246 \def\@cliptoboxdim#1{%
247 \setbox#1\hbox{\begin{pgfpicture}%
248 \pgfpathmoveto{\pgfqpoint\z@{-\dp#1}}%
249 \pgfpathlineto{\pgfqpoint\z@{\ht#1}}%
250 \pgfpathlineto{\pgfqpoint{\wd#1}{\ht#1}}%
251 \pgfpathlineto{\pgfqpoint{\wd#1}{-\dp#1}}%
252 \pgfpathclose
253 \pgfusepathqclip
254 \pgfset{inner sep=\z@,outer sep=\z@,minimum size=\z@}%
255 \pgfnode{rectangle}{base west}{\usebox#1}{}{}%
256 \pgfsetbaselinepointnow{\pgfpoint\z@\z@}%
257 \end{pgfpicture}}%
258 }

8.5.2 pdftex driver

259 %<!COPYRIGHT>
260 \ProvidesFile{tc-pdftex.def}[2012/05/13 v1.0 Clipping driver for↙

pdftex]

18

\@cliptoboxdim

Clips to official box dimension.
Uses now \pdfliteral because \pdfxform does not support transparencies

and patterns with TikZ.

261 \def\@cliptoboxdim#1{%
262 \setbox#1=\hbox{%
263 \Gin@defaultbp\WIDTH{\wd#1}%
264 \Gin@defaultbp\DEPTH{\dp#1}%
265 \@tempdima\ht#1%
266 \advance\@tempdima\dp#1%
267 \Gin@defaultbp\TOTALHEIGHT{\@tempdima}%
268 \pdfsave
269 \pdfliteral direct {%
270 0 -\DEPTH\space \WIDTH\space \TOTALHEIGHT\space re↙

W n
271 }%
272 \hbox to 0pt{\copy#1\hss}%
273 \pdfrestore
274 \hskip \wd#1
275 }%
276 }

8.5.3 dvips driver

277 %<!COPYRIGHT>
278 \ProvidesFile{tc-dvips.def}[2012/05/13 v1.0 Clipping driver for ↙

dvips]

\@cliptoboxdim

#1: box register to clip
Clips to official box dimension.

The following clipping code was suggested by Joseph Wright (LaTeX3 project),
but slightly modified for this package.

279 \def\@cliptoboxdim#1{%
280 \setbox#1=\hbox{%
281 \adjsetlength\@tempdima{\ht#1+\dp#1}%
282 \edef\TOTALHEIGHT{-\strip@pt\@tempdima\space}%
283 \edef\DEPTH{\strip@pt\dp#1\space}%
284 \edef\WIDTH{\strip@pt\wd#1\space}%
285 \special{%
286 ps:
287 /mtrxc matrix currentmatrix def
288 currentpoint gsave
289 translate
290 Resolution 72 div VResolution 72 div

19

291 scale
292 newpath
293 0 \DEPTH \WIDTH \TOTALHEIGHT rectclip
294 newpath
295 mtrxc setmatrix
296 }%
297 \box#1%
298 \special{ps: grestore }%
299 }%
300 }

8.5.4 xetex driver

301 %<!COPYRIGHT>
302 \ProvidesFile{tc-xetex.def}[2012/05/13 v1.0 Clipping driver for ↙

xetex]

\@cliptoboxdim

Clips to official box dimension.
The following clipping code was suggested by Joseph Wright (LaTeX3 project),

but slightly modified for this package.

303 \def\@cliptoboxdim#1{%
304 \setbox#1=\hbox{%
305 \Gin@defaultbp\WIDTH{\wd#1}%
306 \Gin@defaultbp\DEPTH{\dp#1}%
307 \@tempdima\ht#1%
308 \advance\@tempdima\dp#1%
309 \Gin@defaultbp\TOTALHEIGHT{\@tempdima}%
310 \special{pdf:bcontent }%
311 \special{%
312 pdf:literal direct
313 0 -\DEPTH\space \WIDTH\space \TOTALHEIGHT\space re
314 }%
315 \special{pdf:literal direct W }%
316 \special{pdf:literal direct n }%
317 \box#1%
318 \special{pdf:econtent }%
319 }%
320 }

20

	Introduction
	Dependencies
	Drivers
	Package Options
	Argument Values
	Usage
	Trimming
	Clipping
	Margin

	Diagrams
	Implementation
	Options
	User level and auxiliary macros
	Low-level commands
	Driver loading
	Driver files
	PGF fall-back driver
	pdftex driver
	dvips driver
	xetex driver

