
MediaManager user guide

John-Paul Stanford <dev@stanwood.org.uk>

MediaManager user guide
by John-Paul Stanford
Copyright © 2007-2012 John-Paul Stanford

This document describes usage of the application MediaManager version 2.2

iii

Table of Contents
1. Introduction ... 1

Features .. 1
Sources ... 1

org.stanwood.media.source.xbmc.XBMCSource ... 1
org.stanwood.media.source.TagChimpSource ... 2
org.stanwood.media.source.HybridFilmSource ... 2

Stores ... 2
org.stanwood.media.store.memory.MemoryStore .. 2
org.stanwood.media.store.db.DatabaseStore ... 2
org.stanwood.media.store.db.FileDatabaseStore .. 3
org.stanwood.media.store.xmlstore.XMLStore2 .. 3
org.stanwood.media.store.SapphireStore .. 3
org.stanwood.media.store.mp4.MP4ITunesStore ... 3
org.stanwood.media.store.mp4.itunes.RemoteMacOSXItunesStore 4

Actions ... 5
org.stanwood.media.actions.command.ExecuteSystemCommandAction 5
org.stanwood.media.actions.podcast.PodCastAction .. 5
org.stanwood.media.actions.rename.RenameAction ... 6

2. Installation ... 7
1. Linux Binary Distribution Packages ... 7
2. Installer ... 7

3. CLI Usage ... 8
mm-manager .. 8
mm-copy-store-to-store .. 8
mm-move-into-media-directory ... 9
mm-media-file-info ... 9
mm-xbmc .. 10

Global options: ... 10
Commands: .. 10

mm-print-db-schema .. 10
mm-import-media ... 11

4. Configuration ... 12
 .. 12
Media directories .. 12

Mode .. 12
Patterns ... 12

Watch Directories ... 13
Ignore Patterns ... 13
Strip patterns .. 13
Plugins .. 14
Native applications and libraries .. 14
Global Settings ... 14
Scripting .. 14
Resources .. 15
Seen Database .. 16
Examples ... 16

5. Credits and Licenses .. 17

iv

List of Tables
4.1. Variables ... 15
4.2. Functions .. 15

v

List of Examples
1.1. XBMC settings example .. 2
1.2. Local MySQL database setup ... 3
3.1. Usage examples of mm-copy-store-to-store ... 9
4.1. Examples: .. 13
4.2. Watch Directory ... 13
4.3. Ignore patterns ... 13
4.4. Strip patterns ... 14
4.5. Registering plugins ... 14
4.6. Global settings ... 14
4.7. Configuration ... 15
4.8. Example ruby script .. 15
4.9. MySQL database resource .. 16
4.10. PostgreSQL database resource ... 16
4.11. Storing the seen database within a database resource ... 16
4.12. Default Configuration file ... 16
4.13. A more complex configuration file ... 16

vi

1

Chapter 1. Introduction
MediaManager is a application and a API which can be used to retrieve TV show and movie meta data
from Internet sources. This information is then stored locally and can be used to perform actions upon the
file files, such as renaming the media files based on meta data.

Features
• Provides a CLI tool that renames media files with the correct names.

• Fetches TV Show and Film meta data from the Internet.

• Multiple sources of media information including XBMC meta data parsers.

• Cache media information locally in stores, including a XML store.

• Run actions on the media, such as renaming it based on media information

• Provides a action for executing system commands on media files

• Provides a action creating video podcasts of media files

• Provides a API for accessing the media information.

• Provides a store that writes Sapphire XML files.

• Provides a store that saves meta data into MP4/M4V files that iTunes can read.

• Allows plugins to be registers so that custom Sources, Stores and Actions can be added.

• Provides a command line tool to manage XBMC addon scrapers.

• Runs on any platform that supports Java 1.6.

Sources
Sources are the places that MediaManager retrieves media information from. Sources are read only, so
it's not possible to write information back too them. The following sources come with MediaManager,
however others can be added.

org.stanwood.media.source.xbmc.XBMCSource
This is the main source that MediaManager was designed to use. It makes use of XBMC scrappers to fetch
media information. It is capable of reading both TV Show and Film information if the XBMC Scraper
supports it.

In order for this source to work, their must be XBMC addon scrapers installed. These can be installed and
managed using the command line tool mm-xbmc

Any parameters set on this source are passed through to the XBMC addon scrapers as parameters. In
addition this source also supports the following parameters

• scrapers a comma separated list of XBMC scraper ID's. These are the ID's of scrappers that are
usable. If not given, then all scrappers are considered usable.

Introduction

2

Configuration

In addition to the source parameters, their is also a section of the configuration file that holds settings
for all the XBMC sources. The XBMCAddon element in the configuration file has the following optional
attributes:

• directory - The directory one system to store addons. Defaults to "$HOME/.mediaManager/ad-
dons".

• locale - The locale to use with the addons. Defaults to "en".

• addonSite - The site to install addons from. Defaults to "http://mirrors.xbmc.org/addons/dharma".

Example 1.1. XBMC settings example

<mediaManager><XBMCAddons directory="$HOME/.mediaManager/addons"locale="en"addonSite="http://mirrors.xbmc.org/addons/dharma"/></mediaManager>

org.stanwood.media.source.TagChimpSource
The TagChimpSource Source is film source that fetches film information from the website
www.tagchimp.com [http://www.tagchimp.com/]. This also includes chapter information.

org.stanwood.media.source.HybridFilmSource
The HybridFilm Source is a bit different to the other sources. It uses the other sources to find the best
information it can about a film. It's main use is to combine the extra information film chapter information
from the TagChimpSource source with the information in the XBMCSource.

This source supports the following parameters:

• xbmcSourceId Id of XBMC source to use, if parameter is not specified, then the default is used.

Stores
Stores are similar too sources, except that they are also writable. Once information has been retrieved from
a source, it is written info a store. Next time the information is needed, it can be retrieved from the store.
This makes repeatedly retrieving information a lot faster.

Stores can have parameters. These parameters are entered via the configuration file. The stores will vali-
dated their parameters when the store is access and report back any problems that are found.

Thee following stores that come with MediaManager. Each of these has different properties. Some of these
stores can also be used by other applications such as media centre's to display media meta data.

org.stanwood.media.store.memory.MemoryStore
This store is used to store the media information in memory. This allows the tool to reuse the media infor-
mation without having to fetch it from other stores or sources (which would be slower). This information
will be lost once the application exits.

org.stanwood.media.store.db.DatabaseStore

http://www.tagchimp.com/

Introduction

3

This is a store used to store TV show and film information in a database. The database can be remote or
local. This store is also used when searching for media details. The database connection details should be
specified in the the section called “Resources” section of the configuration.

The store needs a empty database to be created and the user specified in the resource must have access to
it. Upon first connection, the store will create the database tables.

Example 1.2. Local MySQL database setup

The following commands in the mysql console will setup the database when connecting locally.

mysql> CREATE DATABASE mediamanager;mysql> GRANT ALL PRIVILEGES ON mediamanager.* TO 'mediamanager'@'localhost' IDENTIFIED BY 'password'

Using the database created above, the following configuration would connect the store to the database:

<mediaManager><mediaDirectory directory="/media/films" mode="FILM"><stores><store id="org.stanwood.media.store.db.DatabaseStore"><param name="resourceId" value="mainDB"/></store></stores></mediaDirectory><resources><databaseResource id="mainDB"><url>jdbc:mysql://localhost:3306/mediamanager</url><dialect>org.hibernate.dialect.MySQLDialect</dialect><username>mediamanager</username><password>password</password></databaseResources></resources</mediaManager>

This store has the following parameters:

• resourceId - The ID of the resource that specifies the connection information. This is a required pa-
rameter.

org.stanwood.media.store.db.FileDatabaseStore
This is a store used to store TV show and film information in a database file. File file is stored withing the
MediaManager configuration directory. This store is also used when searching for media details. This is
the default store when no stores are specified for a media directory.

This store has no parameters

org.stanwood.media.store.xmlstore.XMLStore2
This store is used to store the TV show and film information in a XML file called '.mediaManag-
er-xmlStore.xml'. This file will be located in the root of the media directory and can store multiple films/
tv shows. This store can also be used when searching for TV show and film ID's.

org.stanwood.media.store.SapphireStore
This is a write only store that is used to store information in a format that can be used by the Sapphire
[http://appletv.nanopi.net/] frontrow plugin. The details of the XML format can be found here [http://
appletv.nanopi.net/manual/overriding-metadata/].

Every time episode or film information is fetched from a source, a XML file is written with the same name
as the episode or film file (except the extension is changed too .xml).

This store has the optional parameter "PreferredCertificationCounrty". If this is set, then when fetching
the rating, this country in the parameter's rating is used. If the parameter is not set or the country can't be
found, then the first rating is used.

It has the following parameters:

• PreferredCertificationCounrty The preferred counties rating to use.

org.stanwood.media.store.mp4.MP4ITunesStore

http://appletv.nanopi.net/
http://appletv.nanopi.net/manual/overriding-metadata/

Introduction

4

This store is used to store Film/TV show information in .mp4/.m4v files used by iTunes. This allows
iTunes to use the meta data and see the files complete with their meta data.

In order to function, this store uses the command line tools provided by the AtomicParsley application.
Their are different forks of this application on the Internet. The most feature rich version I've found is at
AtomicParsley [https://bitbucket.org/shield007/atomicparsley]. MediaManager uses this one to add atoms
that some of the other versions can't. The application must be installed on the PATH, or pointed to by the
optional store parameters.

MediaManager should be able to find these tools if it was installed using the installer. However if it was
installed via Linux packages then it will look for them on the system path. It's also possible to tell it where
to look for them. See the the section called “Native applications and libraries” chapter or the optional
parameters of the store for more information.

If using a version of AtomicParsley that does not support the setting of all fields that this store can handle,
then a warning will be printed. A version with the above link that fully supports this store can downloaded
from the MediaManager website or installed via the installer.

This store has following optional parameters:

• atomicparsley The path to the AtomicParsley command

org.stanwood.media.store.mp4.itunes.RemoteMacOSXItunesStore
This store is used to inform iTunes of file changes in a media directory. It does this by talking to a remote
server running on the same machine as iTunes. The details of the server can be found at iTunes Remote
Server [http://code.google.com/p/itunes-remote-control-server/].

The optional parameter file-separator can be used when MediaManager is running on a different operating
system to the remote client. So for example if MediaManager is on a Linux OS and the remote server is
on a windows OS, then the file separator should be set to \. See the page Regex [http://en.wikipedia.org/
wiki/Regular_expression] for more information on regular expression syntax.

The search and replace optional parameters can be used to the media directory is access at a different
location on the iTunes server machine to the machine that MediaManager is running on.

This store has following parameters:

• hostname The path to the AtomicParsley command.

• port Optional parameter giving port number of the server, defaults to 7000.

• username Required parameter giving name of user used to log into the server.

• password Required parameter giving password of user used to log into the server.

• search-pattern Optional parameter that must be used with search-replace. This parameter is used
to perform a regular expression search and replace on the file paths. This parameter is used to set the
pattern.

• search-replace Optional parameter that must be used with search-replace. This parameter is used
to perform a regular expression search and replace on the file paths. This parameter is used to set the
replacement text.

• file-separator Optional parameter that is used to set the file separator used in file names sent
to the server.

https://bitbucket.org/shield007/atomicparsley
http://code.google.com/p/itunes-remote-control-server/
http://code.google.com/p/itunes-remote-control-server/
http://en.wikipedia.org/wiki/Regular_expression

Introduction

5

Actions
Actions are tasks that are to be performed upon media files by the application mm-manager. The following
actions are provided:

org.stanwood.media.actions.command.ExecuteSystemCommandAction
This action is used execute a system command upon media files and directories

This action supports the following parameters, which are all optional:

• commandOnFile A command to execute on finding acceptable media files.

• commandOnDirectory A command to execute on finding acceptable directories within the media
directory.

• extensions A comma separated list of media file extensions to accept.

• newFile If this command creates a new file, then the name should be in this parameter.

• deletedFile If this command deletes a new file, then the name should be in this parameter.

• abortIfFileExists The name of a file, that if it exists, then this action will not perform.

Parameters can also have variable in them. These can be any of the pattern variables, as well as the fol-
lowing special variables:

• $NEWFILE The value of the 'newFile' parameter.

• $DELETEDFILE The value of the 'deletedFile' parameter.

• $MEDIAFILE_NAME The name part of the current media file been processed. So after the last file
separator, until it finds the extension.

• $MEDIAFILE_EXT The extension of the current media file been processed.

• $MEDIAFILE_DIR The directory the current media file is in.

• $MEDIAFILE The full path of the current media file.

• $HOME The current users home directory.

org.stanwood.media.actions.podcast.PodCastAction
This action is used create a pod cast of media that it finds. It will add order the most recent media files
by the date they were last modified.

This action supports the following parameters:

• mediaDirURL - This is a required parameter that specifies the URL used to find the root media
directory.

• fileLocation - This is a required parameter that specifies the location of the RSS feed relative to
the root of the media directory. It can contain standard rename patterns with the value.

• numberEntries - The maximum number of entries in the feed. The default if not set is unlimited.

Introduction

6

• extensions - A comma separated list of media file extensions to accept.

• restrictPattern - This can be used to restrict the media files. It can contain standard rename
patterns with the value.

• feedTitle - Used to give a title to the RSS feed. It can contain standard rename patterns with the
value.

• feedDescription - Used to give a description to the RSS feed. It can contain standard rename
patterns with the value.

Parameters can also have variable in them. These can be any of the following special variables:

• $MEDIAFILE_NAME The name part of the current media file been processed. So after the last file
separator, until it finds the extension.

• $MEDIAFILE_EXT The extension of the current media file been processed.

• $MEDIAFILE_DIR The directory the current media file is in.

• $MEDIAFILE The full path of the current media file.

• $HOME The current users home directory.

org.stanwood.media.actions.rename.RenameAction
This action is used to rename media files in a media directory based on a pattern found in the configuration
file. The action can also move the file to different directory if the pattern has directories in it.

This action supports the following parameters:

• pruneEmptyFolders - If true, then after renaming, empty folders will be deleted.

7

Chapter 2. Installation
Their are a few different ways to install MediaManager. The different distributions can be found at Down-
loads [http://code.google.com/p/tv-and-movies-meta-data-fetcher/downloads/list]

All of the distributions will require a Java 1.6 compatible JRE.

1. Linux Binary Distribution Packages
Their are several Linux distribution packages that can be found in the downloads section of the website.
If your distribution uses RPM packages, then following these instructions.

1. Pick the packages for your distribution

2. Download them to a directory

3. Change to that directory from the console

4. Log in as root and run the command rpm -Uvh *.rpm

This will install the application and a scripts too launch it.

2. Installer
Their is a generic Java installer that will run on any platform. Execute the following command upon the
installer jar file to start the installer:
Java -jar MediaManager-2.2-install.jar [options]
This will prompt you for the location to install the application and create start menu links to the documen-
tation.

Their are also platform specific installers that can be launched easier on some platforms. Here are the
names of the installers and the platforms they run on:

• MediaManager-2.2-install.sh - Linux installer

• MediaManager-2.2-install.windows.zip - Windows installer

• MediaManager-2.2-install.jar - Any Platform installer (including Mac OSX)

More installation guides can be found on the MediaManager Wiki [http://code.google.com/p/tv-and-
movies-meta-data-fetcher/w/list]

http://code.google.com/p/tv-and-movies-meta-data-fetcher/downloads/list
http://code.google.com/p/tv-and-movies-meta-data-fetcher/downloads/list
http://code.google.com/p/tv-and-movies-meta-data-fetcher/w/list

8

Chapter 3. CLI Usage

mm-manager
The mm-manager command is used to managed a media directory. It reads the configuration file to work
out which sources, stores and actions are to be used with media directory. Then the actions are performed
on the media directory.
mm-manager [-v] [-h] [-c config file] [-l INFO|DEBUG|log4j configuration file] [-
d media directory] [-t] [-u]

The command has the following options:

• -v, --version Display the version

• -h, --help Show the help message

• -d, --dir A required option give the location of the media directory to manage

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

• -t, --test Enable test mode that cause no changes to be written to the filesystem.

• -u, --noupdate If option is given, the XBMC addon scrapers are not updated.

mm-copy-store-to-store
The mm-copy-store-to-store command is used to copy media file information from one store to another.
This can be useful for migrating media information if add store.
mm-copy-store-to-store [-c config file] [-d directory] [-f from store ID] [-h] [-l
INFO|DEBUG|log4j configuration file] [-o to store ID] [-t] [-u] [-v] [<media files.../
directory...>]

The command has the following options:

• -f, --fromStore The store to read from

• -v, --version Display the version

• -u, --noupdate If option is given, the XBMC addon scrapers are not updated.

• -d, --dir The media directory been used.

• -t, --test Enable test mode that cause no changes to be written to the file system.

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

• -o, --toStore The store to copy to

CLI Usage

9

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

• -h, --help Show the help message

Example 3.1. Usage examples of mm-copy-store-to-store

Example of copying a single files details from one store to another

mm-copy-store-to-store --dir /mounts/TVShows --fromStore org.stanwood.media.store.xmlstore.XMLStore2 --toStore org.stanwood.media.store.db.DatabaseStore /mounts/TVShows/Heroes/Season\ 1/1\ 18\ -\ Parasite.m4v

Example of copying the details of all media files in a media directory from one store to another

mm-copy-store-to-store --dir /mounts/TVShows --fromStore org.stanwood.media.store.xmlstore.XMLStore2 --toStore org.stanwood.media.store.db.DatabaseStore /mounts/TVShows

mm-move-into-media-directory
The mm-move-into-media-directory command is used to move media files into a directory. It then uses
the sources and stores with the media file and performs the actions on it. The media files can be either
files or directories.
mm-move-into-media-directory [-v] [-h] [-c config file] [-l INFO|DEBUG|log4j con-
figuration file] [-d media directory] [-t] [-u] [<media file/directory...>]

The command has the following options:

• -v, --version Display the version

• -h, --help Show the help message

• -d, --dir A required option give the location of the media directory to manage

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

• -t, --test Enable test mode that cause no changes to be written to the file system.

• -u, --noupdate If option is given, the XBMC addon scrapers are not updated.

mm-media-file-info
The mm-media-file-info command is used to list the Apple atoms in a MP4/M4V media file which is given
as a argument. It can be used to check the meta data that iTunes will see.
mm-media-file-info [-v] [-h] [-c config file] [-l INFO|DEBUG|log4j configuration
file] [<media file>]

The command has the following options:

• -v, --version Display the version

• -h, --help Show the help message

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

CLI Usage

10

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

mm-xbmc
The mm-xbmc command is used to manage XBMC addons. It has the sub commands and arguments listed
below.

usage: mm-xbmc [--global-options] <command> [--command-options] [argu-
ments]

Global options:
• -v, --version Display the version

• -h, --help Show the help message

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

Commands:
• list - Lists the installed XBMC addons

• update - Update the installed XBMC addons to the latest versions

• install - Install a new XBMC addon

• remove - Install a new XBMC addon

mm-print-db-schema
The mm-print-db-schema command is used to print the database schema for creating an intimal database.
A hibernate dialect must be passed to it, see ??? for more information on dialects.
mm-print-db-schema [-v] [-h] [-d dialect] [-c config file] [-l INFO|DEBUG|log4j
configuration file]

The command has the following options:

• -v, --version Display the version

• -h, --help Show the help message

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

• -d, --dialect The database dialect.

CLI Usage

11

mm-import-media
The mm-import-media command is used to check for new media in watched directories. If it find media,
it attempts to lookup the information for the files and move them to the correct media directory. See the
section called “Watch Directories” for configuration details.
mm-import-media [-v] [-h] [-a] [-d] [-e] [-t] [-u] [-c config file] [-l INFO|DEBUG|log4j
configuration file]

The command has the following options:

• -v, --version Display the version

• -h, --help Show the help message

• -c, --config_file The location of the configuration file. If option is not given then it will load
from default locations.

• -l, --log_config The log configuration mode. Either INFO, or DEBUG for the built in config-
urations, or a file name of a log4j configuration file.

• --dontUseDefaults, -d Don't use default media directories.

• --noupdate, -u If this option is present, then the XBMC addons won't be updated

• --deleteNonMedia, -e Delete files are that are not media files (use with care)

• --test, -t If this option is present, then no changes are performed.

• --actions, -a Execute actions on new media files

12

Chapter 4. Configuration

The applications and the API make use of a XML configuration file. This stores information about the
media directories and how they should be managed.

The applications have CLI options that can be used too tell it which configuration file too use. If this
option is not present, then it will look for the file at the location /etc/mediamanager-conf.xml
and $HOME/.mediaManager/mediamanager-conf.xml. If these can't be found, then a default
configuration file will be created at $HOME/.mediaManager/mediamanager-conf.xml.

Media directories
MediaManager is used to manage media in media directories, this means you need to tell it about the media
directories. Their is a mediaDirectory entity in the configuration file used to do this. It has the following
attributes:

• directory - The location of the media directory.

• mode - The type of media. . See the section called “Mode”.

• pattern - The rename pattern. See the section called “Patterns”.

• ignoreSeen - option attribute, if set to true then once a file is seen it will not be processed again

Mode
Media directories can operate in different modes. This effects how the media is handled and which pattern
tokens can be used. The currently supported modes are:

• TV_SHOW - Media files are TV episodes

• FILM - Media files are films

Patterns
A pattern can be associated with a media directory. This is used by actions like the Rename action to
rename file media files and change the directory structure.

The following list contains the meaning for each token:

• %d - If HighDef, replaced with "HD"

• %e - episode number

• %f - last episode number of the episode contains multiple episodes

• %h - show Id

• %i - the show or film image URL

• %n - show name

Configuration

13

• %p - part number

• %s - season number

• %t - episode title or film title

• %u - the show or film short summary

• %w - If Wide screen, replaced with "WS"

• %x - extension (avi, mkv....)

• %y - year

• %% - add a % char

The patterns also support the syntax "{ Part %p }". The braces means the contents inside are optional.
So in this case if the media does not have a part number, then it would be added to the filename.

Example 4.1. Examples:

The following options show what happens when they are used to rename the 4th episode of the 2nd sea-
son of the show heroes.

• "S%s E%e - %t.%x" = "S2 E04 - The Kindness of Strangers.avi"

• "%sx%e.%n.%t.%x" = "2x04.Heroes.The Kindness of Strangers.avi"

• "%sx%e.%h.%t.%x" = "2x04.17552.The Kindness of Strangers.avi"

Watch Directories
MediaManager is able to monitor file system directories for new media. When it finds it, it can be processed
and moved into media directories. Use the command the section called “mm-import-media” to check for
new media. The following example shows how to setup a file system directory for monitoring.

Example 4.2. Watch Directory

<mediaManager><watchDirectory directory="/mounts/newMedia"/></mediaManager>

Ignore Patterns
MediaManager can be configured to ignore media files that match a regular expressions. The following
example shows how to configure ignore patterns that cause files to be not be processed.

Example 4.3. Ignore patterns

<mediaManager><mediaDirectory directory="/media/films" mode="FILM" pattern="%t{ Part %p}.%x"><ignore>.*[S|s]amples.*</ignore><ignore>.*temp.*</ignore></mediaDirectory></mediaManager>

Strip patterns
Quite often before a media file is renamed, it can contain tokens to indicate where it came from and the
type of media. MediaManager makes use of these when looking up the media information and has a default

Configuration

14

list of know strip patterns. It's possible to configure different strip patterns for each media directory which
will override the default patterns in use. The patterns are regular expressions.

Example 4.4. Strip patterns

<mediaManager><mediaDirectory directory="/media/films" mode="FILM" pattern="%t{ Part %p}.%x"><strip>blueray</strip><strip>xvid</strip><strip>dvd(\d+)</strip></mediaDirectory></mediaManager>

Plugins
It is possible to extend MediaManager with plugins. Plugins are capable of adding new Sources, Stores
and Actions. Plugins must extend the correct interfaces like the internal Sources, Stores and Actions. They
must then be packaged into a .jar file and imported into MediaManager. The following example shows the
configuration file entries needed to tell MediaManager about a plugin.

Example 4.5. Registering plugins

<mediaManager><plugins><plugin jar="$HOME/.mediaManager/plguins/myplugin.jar" class="com.mm.plugins.MyPlugin"/></plugins></mediaManager>

Native applications and libraries
Some parts of MediaManager depend on native applications/libraries to function. Usually MediaManager
runs on any platform that supports Java 1.6. However these parts need native applications, so they must
either be installed on the system or MediaManager must be told how to find them. If they can't be found,
then parts of MediaManager that use then will be disabled.

If MediaManager was installed via the installer, then the native folder will have been installed already and
it should find then. If installing from a Linux package, then their is a chance that native applications and
libraries won't be found. MediaManager will fist look for them in a folder pointed to by configuration,
then an environment variable MM_NATIVE_DIR and lastly on the system path.

If they are not install, then they can be downloaded from the me-
dia manager website at http://code.google.com/p/tv-and-movies-meta-data-fetcher/downloads/de-
tail?name=MediaManager-2.2-native.zip&can=2&q=. The native folder should be unzipped from the
downloaded file and pointed to by the configuration. See the section the section called “Global Set-
tings” [14].

Global Settings
Their are some global settings which can be configured. Below is a list of settings:

• configDirectory - The location of the local configuration directory

• native - A directory which contains the native applications/libraries used by MediaManager

The native setting is used to specify the location of a directory containing the native applications and
libraries that MediaManager depends on. See the the section called “Native applications and libraries”
section for mare information.

Example 4.6. Global settings

<mediaManager><global><configDirectory>$HOME/.mediaManager</configDirectory><native>$HOME/.mediaManager/native</native></global></mediaManager>

Scripting

http://code.google.com/p/tv-and-movies-meta-data-fetcher/downloads/detail?name=MediaManager-2.2-native.zip&can=2&q=
http://code.google.com/p/tv-and-movies-meta-data-fetcher/downloads/detail?name=MediaManager-2.2-native.zip&can=2&q=

Configuration

15

MediaManager can be configured to use scripts. These scripts can be in any langauge supported by Java.
For example jruby or jython. In order for this to work the libraries for the language must be on the classpath
before lauching MediaManager. The examples in this guide are usally done with jruby.

Scripts can contain functions that are called when certian events occur. These methods have access to
globals variables allowed by the script engine. Here is a list of parameters and varaibles.

Table 4.1. Variables

Name Description

log The logger, used to log output. (Commons logging logger)

Table 4.2. Functions

Name Description

onEventPreMediaImport(mediaDirectory) Called before media is imported from a media di-
rectory

onEventPostMediaImport(mediaDirectory) Called after media is imported from a media direc-
tory

onEventPreManageMedia(mediaDirectory) Called before a media directory is mananged.

onEventPostManageMedia(mediaDirectory) Called after a media directory is mananged.

Example 4.7. Configuration

<mediaManager><scripts><file language="ruby" location="/a/test/script.rb"/></scripts></mediaManager>

Example 4.8. Example ruby script

def onEventPreMediaImport(watchDirectory)$log.info("onEventPreMediaImport(#{watchDirectory})")enddef onEventPostMediaImport(watchDirectory)$log.info("onEventPostMediaImport(#{watchDirectory})")enddef onEventPreManageMedia(mediaDirectory)$log.info("onEventPreManageMedia(#{mediaDirectory})")enddef onEventPostManageMedia(mediaDirectory)$log.info("onEventPostManageMedia(#{mediaDirectory})")end

Resources
Resources can be configured in the resources section of the database. Resource information describes
connection information to systems resources such as a database. The database resource as the following
options:

• id - Used to identify the resource to other parts of the configuration.

• url - The JDBC URL to the database. The URL syntax depends on the database been connected to, but
typical contains the hostname and database name.

• dialect - The is the SQL dialect that the hibernate database library should use. Below are some exam-
ples:

• MySQL - org.hibernate.dialect.MySQLDialect

• HSQLDB - org.hibernate.dialect.HSQLDialect

• PostgreSQL - org.hibernate.dialect.PostgreSQLDialect

• Microsoft SQL Server - org.hibernate.dialect.SQLServerDialect

• Oracle - org.hibernate.dialect.OracleDialect

Configuration

16

• username - The name of the user used to access the database

• password - The password of the user used to access the database

• schemaCheck - Optional parameter that controls how the database schema should be checked when
connecting to the database. Possible values are "validate" and "none". This defaults to validate which
causes the database schema to be validated. On some database connections, the validation reports
problems when their are none. So setting this parameter to none, will cause no schema checks to be
done.

Example 4.9. MySQL database resource

<mediaManager><resources><databaseResource id="mainDB"><url>jdbc:mysql://localhost:3306/SampleDB</url><dialect>org.hibernate.dialect.MySQLDialect</dialect><username>dbuser</username><password>dbpassword</password></databaseResources></resources></mediaManager>

Example 4.10. PostgreSQL database resource

<mediaManager><resources><databaseResource id="mainDB"><url>jdbc:postgresql://localhost/mydatabase</url><dialect>org.hibernate.dialect.PostgreSQLDialect</dialect><username>dbuser</username><password>dbpassword</password></databaseResources></resources></mediaManager>

Seen Database
The seen database is used to store a list of files that have been seen before. This also records the time the
file was last modified so that if it's updated the changes will be noticed. Media directories can be set to
ignore seen media files. This seeds up the processing of media files. By default the seen database is stored
in a file in the configuration directory. It's also possible to store the seen database in a actual database.
This is done be setting up a database resource and configuring the seen database to use it.

Example 4.11. Storing the seen database within a database resource

This will set the seen database to use the database resource "mainDB".

<mediaManager><resources><databaseResource id="mainDB"><url>jdbc:mysql://localhost:3306/SampleDB</url><dialect>org.hibernate.dialect.MySQLDialect</dialect><username>dbuser</username><password>dbpassword</password></databaseResources></resources><seenDatabase resourceId="mainDB"/></mediaManager>

Examples
Example 4.12. Default Configuration file

This configuration file shows the required options needed to configure a media directory. It uses de-
fault sources, stores and actions. Here is what is used by default with a media directory:

• source - the section called “org.stanwood.media.source.xbmc.XBMCSource”

• stores - the section called “org.stanwood.media.store.db.FileDatabaseStore”, the sec-
tion called “org.stanwood.media.store.mp4.MP4ITunesStore”

• actions - the section called “org.stanwood.media.actions.rename.RenameAction”

The default stores, sources and actions will ensure that the latest meta data is downloaded for the media di-
rectory and that the files are renamed according to their meta data. If the file is a m4v/mp4 file, then meta da-
ta is inserted into the file.

<!-- A configuration file that uses defualt sources, stores and actions --><mediaManager><!-- Example Film media directory --><mediaDirectory directory="/media/films" mode="FILM" pattern="%t{ (%y)}{ Part %p}.%x" ignoreSeen="true"></mediaDirectory><!-- Example TV show media directory --><mediaDirectory directory="/media/TV" mode="TV_SHOW" pattern="%n/Season %s/%sx%e - %t.%x"></mediaDirectory></mediaManager>

Example 4.13. A more complex configuration file

<mediaManager><global><!-- Used to define the location where configuration settings are stored --><configDirectory>$HOME/.mediaManager</configDirectory></global><!-- Example Film media directory --><mediaDirectory directory="/media/films" mode="FILM" pattern="%t{ (%y)}{ Part %p}.%x" ignoreSeen="true"><!-- The default extensions have been overriden for this directory so that the media managerwill only consider .avi and .m4v files as media files. --><extensions><extension>avi</extension><extension>m4v</extension></extensions><sources><source id="org.stanwood.media.source.xbmc.XBMCSource"/></sources><stores><!-- Update MP4 files with meta data --><store id="org.stanwood.media.store.mp4.MP4ITunesStore"/><!-- Cache film info in a XML Store --><store id="org.stanwood.media.store.xmlstore.XMLStore2"/></stores><actions><!-- Make sure files and directories have the correct owner. Only works on a unix system,when MediaManager is running as root. --><action id="org.stanwood.media.actions.command.ExecuteSystemCommandAction"><param name="commandOnFile" value="chown jp.users "$MEDIAFILE""/><param name="commandOnDirectory" value="chown jp.users "$MEDIAFILE""/></action><!-- Make sure files and directories have the correct permissions. Only works on a unix system,when MediaManager is running as root. --><action id="org.stanwood.media.actions.command.ExecuteSystemCommandAction"><param name="commandOnFile" value="chmod 660 "$MEDIAFILE""/><param name="commandOnDirectory" value="chmod 770 "$MEDIAFILE""/></action><!-- Give all the media the correct name based on the pattern --><action id="org.stanwood.media.actions.rename.RenameAction"/><!-- Create a potcast of the newest films, using the default number of entries --><action id="org.stanwood.media.actions.podcast.PodCastAction"><param name="mediaDirURL" value="http://my.media.com/podcasts/Films"/><param name="fileLocation" value="rss.xml"/><param name="extensions" value="m4v"/></action><!-- Encode any .avi files into .m4v files using the HandBrakeCLI application --><action id="org.stanwood.media.actions.command.ExecuteSystemCommandAction"><param name="commandOnFile" value="/usr/bin/HandBrakeCLI -i "$MEDIAFILE" -o "$NEWFILE" preset='AppleTV 2'"/><param name="newFile" value="$MEDIAFILE_DIR/$MEDIAFILE_NAME.m4v"/><param name="extensions" value="avi"/><param name="abortIfFileExists" value="$NEWFILE"/></action></actions></mediaDirectory><!-- Example TV show media directory --><mediaDirectory directory="/media/TV" mode="TV_SHOW" pattern="%n/Season %s/%sx%e - %t.%x"><sources><source id="org.stanwood.media.source.xbmc.XBMCSource"><param name="posters" value="true"/></source></sources><stores><store id="org.stanwood.media.store.xmlstore.XMLStore2"/></stores><actions><!-- Give all the media the correct name based on the pattern --><action id="org.stanwood.media.actions.rename.RenameAction"/><!-- Create per show RSS video podcasts that contain the most recent 5 show episodes --><action id="org.stanwood.media.actions.podcast.PodCastAction"><param name="mediaDirURL" value="http://my.media.com/podcasts/TV"/><param name="numberEntries" value="5"/><param name="fileLocation" value="%n/rss.xml"/><param name="extensions" value="avi,mkv,mp4,m4v"/><param name="feedDescription" value="%u"/><param name="feedTitle" value="%n"/></action></actions></mediaDirectory><!-- A media directory using the default stores and sources, but opting to have no actionsperformed on the media directory --><mediaDirectory directory="/media/TV1" mode="TV_SHOW" pattern="%n/Season %s/%sx%e - %t.%x"><actions/></mediaDirectory><!-- Used to change the location and locale of the XBMC addons been used by the XBMC source --><!--<XBMCAddons directory="$HOME/.mediaManager/xbmc" locale="en"/>--></mediaManager>

17

Chapter 5. Credits and Licenses
MediaManager

• John-Paul Stanford <dev@stanwood.org.uk> - Original Author

Documentation copyright 2007-2012, John-Paul Stanford <dev@stanwood.org.uk>

