

NHibernate 2
Beginner's Guide

Rapidly retrieve data from your database into .NET objects

Aaron B. Cure

BIRMINGHAM - MUMBAI

NHibernate 2
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Production Reference: 1050510

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-90-7

www.packtpub.com

Cover Image by Louise Barr (lou@frogboxdesign.co.uk)

Credits

Author

Aaron B. Cure

Reviewers

Jason Dentler

Fabio Maulo

Acquisition Editor

Usha Iyer

Development Editor

Chaitanya Apte

Technical Editor

Ajay B. Chamkeri

Copy Editor

Leonard D'Silva

Indexer

Monica Ajmera Mehta

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Priya Mukerji

Project Coordinator

Ashwin Shetty

Proofreader

Lynda Sliwoski

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Aaron Cure is an avid developer, instructor, and innovator. During his 10 years in the
military as a linguist and a satellite communications repair technician, he learned that his
real love was computer programming.

After various throes with PHP, Classic ASP, VB, and a brief encounter with Java/JSP, he found a
real passion for the .NET framework. After searching for a "better way" to carry out database
storage and retrieval, Aaron stumbled across the NHibernate framework.

Unsatisfied with the options for interacting with this great framework, he founded the
NHibernate Generation project (nhib-gen) on SourceForge to reduce the "barrier to entry"
for most developers.

Aaron and his family run a small consulting and web hosting company doing web design and
custom software development for various organizations across the country. One of their
more interesting projects has been software to control laser cutting machines.

In his spare time, he also enjoys developing projects with his daughters, using everything
from Lego NXT (using C# and Bluetooth communications) to the Microchip PIC platform
(using JAL and USB). He also collects and restores classic farm tractors, engines, and farm
equipment as well as semi trucks and trailers. He and his family display them at tractor
shows, parades, schools, and various other community events.

This book is dedicated to my beautiful and talented wife, Sherry, and my
two wonderful daughters, Kaitlyn and MacKenzie. Without their love and
support, this book would have never been written.

I would also like to thank my parents, Karen and Chuck, as I wouldn't be
here without them.

Special thanks to my editors at Packt Publishing, who had more patience
with me than I think I would have had and stuck with me throughout.

About the Reviewers

Jason Dentler started tinkering with computers as a kid in the late 80s. As a college
freshman, he got a job as an intern for a small call center company. Eight years later, he found
himself coding for the entire call center division of a Fortune 500 company at their Global
Technology Center in Las Vegas, Nevada. From there, he moved back to Texas and now works
in higher education. He is an active participant in the NHibernate community and blogs about
NHibernate, .NET, and programming in general at http://jasondentler.com.

I'd like to thank my NHibernate friends Fabio, Tuna, Jose, and Oren for
their support and mentorship, and Scott Guthrie, who with a single tweet,
literally made my blog an overnight success.

Fabio Maulo is the NHibernate development team leader.

Table of Contents
Preface 1

Chapter 1: First Look 7
What is NHibernate? 8
Why would I use it? 8
Where do I get it? 8
Can I get help using NHibernate? 9
Database table 9
The XML mapping file (hbm.xml) 10
Plain Old CLR Object (POCO) 11
Data access 11
Look how easy it is to use! 12
Summary 14

Chapter 2: Database Layout and Design 15
Before you get started 15
Laying the foundation—table layouts 16
Time for action – creating an ordering system database 16
Table layouts 19
NHibernate assigned IDs 20
Relationships 21
Normal Form 25
Putting it all together 26
Time for action – adding some tables to our Ordering system database 26
Summary 35

Chapter 3: A Touch of Class 37
Start up our applications 37
Creating objects 37
Time for action – creating our first class 38
Public properties and private variables 45

Table of Contents

[ii]

Time for action – adding a few properties 46
Converting SQL database types to .NET types 50
Properties for Foreign Keys 51
Summary 54

Chapter 4: Data Cartography 55
What is mapping? 55
Types of mapping 56
XML mapping 56

Getting started 57
Classes 57
Properties 58
ID columns 59

Mapping our types 60
Time for action – mapping basic types 60
Relationships 72

One-to-many relationships 72
Many-to-many relationships 74
Getting started 76

Time for action – mapping relationships 77
Fluent mapping 79
Summary 82

Chapter 5: The Session Procession 83
What is an NHibernate session? 83
Time for action – getting ready 84
What is a session factory? 93
Creating your first session 94
Why do we call .Commit()? 95
NHibernate session versus database session? 96
Time for action – creating a session and doing some CRUD 96
Sessions in ASP.NET 102
Summary 104

Chapter 6: I'm a Logger 105
Why do we need to log? 105
Why log4net? 106
Getting started 107
Configuration 108
Time for action – adding some logging 110
NHibernate log messages 113
Appenders 115

Table of Contents

[iii]

Creating a logger 118
Time for action – adding some custom logging 120
Summary 123

Chapter 7: Configuration 125
Looking back 125
The basics of configuration 126
Taking a look at the SQL 129
Abstracting the configuration 130
Time for action – moving our configuration 132
XML configuration 135
Summary 136

Chapter 8: Writing Queries 137
Using Data Access Objects 137
The basic Data Access Object 138
Time for action – creating our basic Data Access Object 139
Data Access Object methods 143
Time for action – adding some CRUD methods 146
Coding some GetX() methods 149
The FieldNames structure 150
Time for action – expanding our capabilities 152
The ICriteria object 154
Creating a GetAll() method 155
Paging and Sorting GetAll() methods 157
Filtering ICriteria 159
Time for action – replacing our inline code 161
Summary 162

Chapter 9: Binding Data 163
Why should we use data binding? 164
Time for action – adding an ASP.NET project 164
Basic data binding techniques 170
Common data binding methods 173
A simple templated control 176
Creating a control instance 177
The <asp:ListView> control 179
The <asp:ObjectDataSource> control 180
Time for action – adding our first data bound control 182
Direct data binding 188
One last control—the <asp:FormView> 190
Summary 195

Table of Contents

[iv]

Chapter 10: .NET Security 197
Built-in controls 197
Time for action – adding a login to our page 200
Membership providers 201
Location security 202
Configuring our provider 204
Time for action – create a membership provider 205
User roles 209
Role providers 210
Provider configuration 210
Summary 212

Chapter 11: It's a Generation Thing 213
Judging requirements 214
CodeSmith 215
nhib-gen 217
AjGenesis 218
Visual NHibernate 221
MyGeneration 221
Time for action – using MyGeneration 223
NGen NHibernate Code Generator 227
NHModeller 228
Microsoft T4 templates 232
T4 hbm2net 232
Summary 233

Chapter 12: Odds and Ends 235
Unit of Work and Burrow 235
How does this relate to NHibernate? 237
Blog.Net blogging components 237
maxRequestLength 237
Converting CSS templates 238
Time for action – converting a CSS template 239
XML documentation & GhostDoc 246
Summary 248

Appendix: Pop Quiz Answers 249
Chapter 2 – Database Layout and Design 249

Relationships 249
Chapter 3 – A Touch of Class 249

Mapping 249
Chapter 4 – Data Cartography 250

Class mapping 250

Table of Contents

[v]

Chapter 5 – The Session Procession 250
Creating and updating records 250

Chapter 6 – I'm Logger 250
Logging 250

Chapter 7 – Configuration 251
Basic configuration 251

Chapter 8 – Writing Queries 251
Fieldnames and ICriteria 251

Chapter 9 – Binding Data 251
Basic data binding 251

Chapter 10 – .NET Security 252
Access configuration 252

Chapter 12 – Odds and Ends 252
Burrowing in 252

Index 253

Preface
 NHibernate is a popular, fast growing Object-Relational Mapper (ORM) with a helpful
community of seasoned developers. It is used in thousands of commercial and open
source projects.

Armed with a set of simple (and mostly free) tools and the knowledge you'll gain from this
book, you can quickly and easily create an entire data-bound website, desktop application,
windows or web service, or virtually any other .NET project you can conceive.

What this book covers
Chapter 1, First Look, discusses what an object-relational mapper is, what NHibernate is, and
the features it provides us.

Chapter 2, Database Layout and Design, discusses how your database is constructed, how
the data is related, and how to optimize it for the best performance using NHibernate.

Chapter 3, A Touch of Class, explains how creating classes to represent your data makes it
easy for you to work with the data and allows you to branch from the design of the database,
if need be.

Chapter 4, Data Cartography, deals with the actual interface to the database with
NHibernate, either using XML mapping files, Fluent NHibernate, or no mapping at all. We
also talk about lazy loading, using a fieldnames structure to help avoid typos, and generating
the database from our mapping files or classes.

Chapter 5, The Session Procession, teaches you how to create NHibernate sessions, which
use database sessions to retrieve and store data into the database.

Chapter 6, I'm a Logger, teaches you how to use the log4net logging framework for
creating our own logs and tap into the information provided by NHibernate (including
SQL statements) to monitor and troubleshoot our application.

Preface

[2]

Chapter 7, Configuration, explains how to configure our application so, we are ready to
retrieve and store data into our database. Additional configuration options are discussed, as
well as optional configuration properties for particular situations.

Chapter 8, Writing Queries, discusses using NHibernate to actually retrieve data, to include
individual records and collections of records. We talk about filtering records and using the
fieldnames structure we created earlier to speed up our development. We also talk about
adding parameters to make paging and sorting work in data-bound controls.

Chapter 9, Binding Data, explains how to use the data methods we created earlier to build
a web application that uses our data access layer, the ObjectDataSource, and other data
controls to retrieve, display, and even insert/update database data.

Chapter 10, NET Security Providers, presents information about controlling access to and
restricting the usage of data within a .NET web application. We discuss the use of custom
membership and role providers with NHibernate to control access to information.

Chapter 11, It's a Generation Thing, discusses how to use code generation techniques such
as CodeSmith, NHib-Gen, and MyGeneration to automatically generate our data access layer
to get us up and running that much quicker.

Chapter 12, Odds and Ends, discusses some advanced topics such as the Burrow session
management framework and the NHibernate SchemaExport tool.

What you need for this book
To successfully complete the examples in this book, you will need a copy of either Visual
Studio 2008 or 2010. You can use any version as long as it includes the web application
projects. This could be either a Visual Web Developer Express version or any full version
such as Professional.

In addition to Visual Studio, you will also need a SQL database server. The examples
are generated using SQL Server Express 2008 and SQL Server Management Studio
(SSMS) Express.

You will also need to download the NHibernate binary files from sourceforge.net.

Who this book is for
This book is for new and seasoned developers of .NET web or desktop applications who
want a better way to access database data. It is a basic introduction to NHibernate, with
enough information to get a solid foundation in using NHibernate. Some advanced concepts
are presented where appropriate to enhance functionality or in situations where they are
commonly used.

Preface

[�]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions on how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "This will give us a new DLL project called
Ordering.Data inside a folder named Ordering, which contains a solution named
Ordering."

Preface

[�]

A block of code is set as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace Ordering.Data
{
 class OrderHeader
 {
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public class OrderHeader
{
 public OrderHeader() { }
}

Any command-line input or output is written as follows:

07:18:08.295 [10] INFO NHibernate.Cfg.Configuration - Mapping resource:
Ordering.Data.Mapping.Address.hbm.xml

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: Right-click on the Ordering.
Console application, and select Add | New Item.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for the book

Visit https://www.packtpub.com//sites/default/files/
downloads/8907_Code.zip to directly download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
First Look

It seems like every single project we begin as developers, no matter how simple,
requires some sort of storage. Sometimes this is a simple collection of values in
an XML file or a key-value pair in a properties file.

However, more often, we need to have access to larger volumes of data,
represented in multiple related database tables. In either case, we are generally
forced to reinvent the wheel, to create new data retrieval and storage methods
for each piece of data we want to access. Enter NHibernate.

In this chapter, we will discuss:

What NHibernate is and why we should use it

HBM mapping files

Plain Old CLR Objects (POCOs)

Data access classes

A simple web page databound to a collection of NHibernate objects

First Look

[�]

What is NHibernate?
That's a great question, and I'm glad you asked! NHibernate is an open source persistence
layer based on Object-Relational Mapping Techniques or simply a tool that creates a "virtual
representation" of database objects within the code. According to the creators of NHibernate:

NHibernate is a port of Hibernate Core for Java to the .NET Framework. It handles
persisting plain .NET objects to and from an underlying relational database. Given
an XML description of your entities and relationships, NHibernate automatically
generates SQL for loading and storing the objects.

In simple terms, NHibernate does all the database work, and we reap all the benefits! Instead
of writing reams of SQL statements or creating stored procedures that "live" in a different place
than our code, we can have all of our data access logic contained within our application.

With a few simple "tricks" that we'll discuss in Chapter 4, Data Cartography, not only will our
queries be effective, but they will also be validated by the compiler. Therefore, if our underlying
table structure changes, the compiler will alert us that we need to change our queries!

Why would I use it?
Unless you love to write CRUD (Create, Retrieve, Update, Delete) methods over and over
for each of the pieces of data you need to access (and I don't know a single developer who
does), you are probably looking for a better method. If you're like me, then you know how
to lay down an elegant database design (and if you don't, take a peek at Chapter 2, Database
Layout and Design). Once the database is ready, you just want to use it!

Wouldn't it be nice to create a few tables, and in just a few minutes, have a working set of
forms that you can use for all of your basic CRUD operations, as well as a full set of queries
to access the most common types of data? We'll discuss some of the ways to automatically
generate your NHibernate data files in Chapter 11, It's a Generation Thing.

Where do I get it?
The home of the NHibernate project is at http://www.nhforge.org, while the code is
housed at SourceForge (http://sourceforge.net/projects/nhibernate/).

If you download the latest GA (Generally Available, also known as final or stable) bin release
(binaries only, no source code) of the NHibernate project, you will have everything you need
to get started. As of this writing, the current release is NHibernate-2.1.2.GA-bin, and all
of the examples have been developed using this version. This version is available at
http://downloads.sourceforge.net/project/nhibernate/NHibernate/
2.1.2GA/NHibernate-2.1.2.GA-bin.zip.

Chapter 1

[�]

Can I get help using NHibernate?
There is a great community site for NHibernate on the Web called the NHibernate Forge. It is
located at http://www.nhforge.org/, and it provides a wealth of resources for the new
and veteran NHibernate user.

Have a go hero – looking at some sample files
A basic NHibernate project is composed of three major parts. You will need a mapping file
to tell NHibernate how the database is or should be (see the Mapping our types section in
Chapter 4) constructed, some data access methods to tell NHibernate what data you want to
retrieve or store into the database, and a POCO to allow you to interact with the data. While
XML mapping files are commonly used in NHibernate projects, they are not the only way to
map data to POCOs (more in Chapter 4).

Take a look at some sample files, but don't get too hung up on them. We'll go into more
detail in the later chapters.

Database table
The first item we need to use NHibernate is a database table to map against. In the following
screenshot, we define a table named Login with a Primary Key column named Id, two
nullable fields to store the FirstName and LastName, and two non-nullable fields to
store the UserName and Password.

First Look

[10]

The XML mapping file (hbm.xml)
The following code snippet shows the Login.hbm.xml mapping file for this simple table,
with all the information required not only to map the data, but also to create the database
from the metadata contained within the mapping file. If we do not want to be able to
generate the database from the mapping file, then we can omit all of the sql-type,
unique, and index properties.

Some immediate information you might pick up from the file are the name of the class
that NHibernate will use to map database rows (BasicWebApplication.Common.
DataObjects.Login), which is defined in the <class> tag. This says that the
BasicWebApplication.Common.DataObjects.Login object is contained in the
BasicWebApplication assembly. It further defines that the Login table is the database
table we will be mapping to, using the <table> element.

There is an <id> tag that defines what the unique identifier (ID) is for the database record,
as well as how that identifier is expected to be created. In our case, the <generator
class="hilo"> tag specifies that we will be using the hi/lo Persistent Object ID (POID)
generator for IDs.

The four string fields FirstName, LastName, UserName, and Password are then mapped
to the four database columns of the same names, using the <property> tag.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="BasicWebApplication.Common.DataObjects"
 assembly="BasicWebApplication">
 <class name="Login" table="Login">
 <id name="Id" type="Int32" unsaved-value="null">
 <column name="Id" />
 <generator class="hilo" />
 </id>
 <property name="FirstName" type="String" />
 <property name="LastName" type="String" />
 <property name="UserName" type="String" />
 <property name="Password" type="String" />
 </class>
</hibernate-mapping>

Chapter 1

[11]

Plain Old CLR Object (POCO)
The Login.cs class shown in the following code snippet is the POCO, the class that
NHibernate will use to map database rows. Each row in the database returned will be
instantiated (also known as "newed up") in a new instance of the Login class. The collection
of rows will be returned as a generic IList of Login objects or an IList<Login>.

Notice how each property in the class Login maps directly to a property element in
the hbm.xml file. We really have five public properties on this object, Id, FirstName,
LastName, UserName, and Password. Each of these properties was defined earlier in the
hbm.xml file and mapped to a database field.

When NHibernate retrieves records from the database, it will create a new instance
(also known as "new up") of a Login object for each record it retrieves and use the
public "setter" (set function) for each property to fill out the object.

public partial class Login
{
 public Login() { }

 public virtual int Id { get; set; }
 public virtual string FirstName { get; set; }
 public virtual string LastName { get; set; }
 public virtual string UserName { get; set; }
 public virtual string Password { get; set; }
}

Data access
The final class, LoginDataControl.cs, provides CRUD methods for data retrieval, storage,
and removal. The session variable is an NHibernate session (you can find out more about
session management in Chapter 5, The Session Procession).

This class defines a few simple CRUD methods that are used quite often when manipulating
database records. The GetById(int id) function allows the user to pass in an integer and
retrieve the record with that ID. The GetAll() method returns all of the records in a given
table. GetCountOfAll() returns a count of the records in the table, while allowing controls
that handle pagination and record navigation to function.

public class LoginDataControl
{
 public LoginDataControl() { }
 ISession session;

First Look

[12]

 public Login GetById(int id)
 {
 Login retVal = session.Get<Login>(id);
 return retVal;
 }

 public IList<Login> GetAll()
 {
 ICriteria criteria = session.CreateCriteria<Login>();
 IList<Login> retVal = criteria.List<Login>();
 return retVal;
 }

 public int GetCountOfAll()
 {
 return GetAll().Count;
 }
}

Look how easy it is to use!
The sample Login.aspx ASP.NET file shows one of the best reasons why we use
NHibernate. By using an ObjectDataSource, we can map the NHibernate objects directly to
the data-bound controls that will display or interact with them. All we have to do is create an
ObjectDataSource to retrieve the data from our data access class (LoginDataControl.cs),
create a set of form fields to display the data (like the <asp:GridView> "LoginGrid" below),
and let ASP.NET handle all of the tedious work for us. By the way, this page will work exactly
as shown—there is no page logic in the code behind or anywhere else.

All we have in this code is a GridView to present the information and an ObjectDataSource
to interact with our DataAccess classes and provide data for the GridView. The GridView
has BoundField definitions for all of the fields in our database table as well as Sorting and
Paging functions. The ObjectDataSource has methods mapped for Select, Select Count,
Insert, and Update. When the GridView needs to perform one of these functions, it
relies on the ObjectDataSource to handle these operations. Working in tandem, these two
controls (as well as nearly any other data bound control) can provide a very quick and simple
interface for your data!

<%@ Page Language="C#" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
 Inherits="BasicWebApplication.Web._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Chapter 1

[1�]

<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title>Untitled Page</title>
 </head>
 <body>
 <form id="form1" runat="server">
 <asp:GridView ID="LoginGrid" AutoGenerateColumns="false"
 DataSourceID="LoginSource" runat="server">
 <Columns>
 <asp:HyperLinkField HeaderText="ID" DataTextField="Id"
 SortExpression="Id" DataNavigateUrlFields="Id"
 DataNavigateUrlFormatString=
 "~/SampleForms/Login.aspx?LoginId={0}"
 Target="_parent" />
 <asp:BoundField HeaderText="FirstName"
 DataField="FirstName" />
 <asp:BoundField HeaderText="LastName"
 DataField="LastName" />
 <asp:BoundField HeaderText="UserName"
 DataField="UserName" />
 <asp:BoundField HeaderText="Password"
 DataField="Password" />
 </Columns>
 </asp:GridView>
 <asp:ObjectDataSource ID="LoginSource"
 TypeName="BasicWebApplication.DataAccess.LoginDataControl"
 DataObjectTypeName=
 "BasicWebApplication.Common.DataObjects.Login"
 SelectMethod="GetAll" SelectCountMethod="GetCountOfAll"
 runat="server"></asp:ObjectDataSource>
 </form>
 </body>
</html>

First Look

[1�]

Summary
In this chapter, we talked a little bit about what NHibernate is, and why we should use it. We
also touched on what HBM mapping files are and what they are used for, as well as the Plain
Old CLR Objects (POCOs) that NHibernate actually maps data into. Neither of these would
be very helpful to us without some Data Access Object (DAO) classes to tell NHibernate to
retrieve or save the data we are working with. Finally we looked at a simple web page that
was databound to a collection of NHibernate objects, all without any codebehind or other
additional code.

It may seem like creating all these files is a lot of work, and it might be simpler to just go
back to handcoding the SQL! I would tend to agree with you, if I didn't know the shortcut
to creating all of these files—code generation, or even better, using Fluent NHibernate!
If you can't wait, then sneak a peek at Chapter 4, Data Cartography, for more about
Fluent NHibernate.

Now that we have skimmed the surface on how NHibernate works and how to make it work
for us, let's talk about database layout and design, which is the subject of our next chapter.

2
Database Layout and Design

Like the foundation of a building, the structure of your database forms the base
for your entire application. If you take a little care and build it well, then your
overall experience with any data access technology will be greatly improved.

In this chapter, we'll discuss:

Table layouts

NHibernate assigned IDs

Relationships

Normal form

One of the most important things you can do in your project is to lay out your data in a
logical and efficient model. In this chapter, we'll discuss the fundamentals of a good
database design and how to model your data effectively.

Before you get started
The examples we are going to walk through in this and the following sections will work for
Microsoft SQL Server Express. While you can use NHibernate against nearly any database on
the planet (including MySQL, my personal favorite), SQL Server Express is available as a free
download from Microsoft. If you happen to be working on a platform that cannot run SQL
Server Express, I will provide some tips on making them work on other platforms.

Database Layout and Design

[1�]

Laying the foundation—table layouts
One of the most important things you can do from the beginning is to lay out your tables and
entire data structure logically. Spending a few extra minutes in the beginning when designing
a logical database can save you hours or even days worth of work later on. You would be
surprised at the amount of time it takes to "work around" a bad database design, or worse,
having to go back and "re-plumb" your data objects to make them work correctly.

The two rules I like to follow when creating a database are:

Lay out objects in the database so that they are organized logically, either by the
data they store or the business logic they represent

Don't store duplicate data

For example, if we were trying to model an ordering system, we would need to store
information about the order, the related customer, the products they ordered, their billing
and shipping address, and so on. It would be simple enough to create a single table to store
all of this data, but that would violate rule number two, as we would potentially have the
same address, phone number product information, and so on stored over and over.
So how do we handle this?

Time for action – creating an ordering system database
So we want to build a simple ordering system. We are going to need to store the orders, the
order items, the products they represent, the contact that placed the order, and the billing
and shipping addresses. Let's get started!

1.	 If you haven't already, install the Microsoft SQL Server Express with Tools, or install
Microsoft SQL Server Express and Microsoft SQL Server Management Studio Express
(SSMS). If you don't have the .NET Framework 3.5 installed already, then you will
need to install that before you will be able to install SSMS, as well as Windows
PowerShell. We will use SSMS to design our database.

2.	 Open SSMS (Start | All Programs | Microsoft SQL Server (version) | SQL Server
Management Studio Express).

3.	 When you open SSMS, you will be prompted for login credentials for the database.
Generally, you can enter either the hostname\SQLEXPRESS or (local)\SQLEXPRESS.

If you changed the name of the SQL Server instance when you
installed SQL Server Express, you will need to use that instance
name instead of SQLEXPRESS.

Chapter 2

[17]

4.	 Leave authentication set at Windows Authentication and click on Connect.

5.	 You will be presented with a screen similar to the following screenshot. This shows
a basic summary of the SQL Server instance that you are connected to, such as the
databases on the server, security information (logins, roles), and so on.

Database Layout and Design

[1�]

6.	 Now, we will create our "Ordering" database. Right-click on the Databases folder,
and click on New Database.

7.	 Enter the name Ordering for the Database name, and accept the default values,
then click on OK to create the database.

If you want to change the location where the database is physically
stored, you can move the slider at the bottom of the form over to
the right and adjust the "Path" settings.

Chapter 2

[1�]

8.	 Now that we have a database created, we can explore it a little on the left-hand side
in the Object Explorer by clicking the + next to Databases and the one next to our
Ordering database.

9.	 You will see the collapsed folders for Tables and Views, as well as Database
Diagrams and Security. These are the most common objects we will use within
SSMS to create database objects and manage their security permissions.

What just happened?
We have just created our basic Ordering system database. We will continue to use this
database throughout this chapter and throughout the entire book. A backup of this database
is available for you to restore in the file 2.1 - Ordering.bak.

Now that we have our database, we can move on to creating a structure to store our data!

Table layouts
Creating a table layout is a little like art, but don't worry if you're not a "Da Vinci"! If you
follow some basic guidelines about table design, you will do just fine.

One of the most important things you can do when you design your tables is give them
a good name. The name of the table should describe what types of records and data it
is meant to hold. Remember, unless you change it, the name you give your object in the
database is the name you will use to refer in the code. Do you really want to create an
"S-9619" object every time you create an order, or does creating a "BillOfLading" object
make more sense? I think just about every developer in the world would agree that more
descriptive names, even if it means a little more typing, make the database structure more
understandable and the eventual code more readable in the end.

Database Layout and Design

[20]

Table names should be singular, like the objects they represent. Each row of the table
in the database will represent a single object such as a "Contact" or a "BillOfLading" or
an "order_item".

Each column in the database is called a field. Field names should follow a similar form as
tables. A "CountryOfOrigin" or "country_of_origin" field makes more sense to someone
viewing (and even to you at 3AM!) than a field named "3412". Make your field names
descriptive so they remind you of what you intend to store in there.

The first field you define should be your Primary Key. The Primary Key of a table acts as the
Identifier for that row. By defining the field as a Primary Key, we are saying that this value is
used to uniquely identify this row and is NOT a natural key (that is, SSN or phone number).

A Primary Key should have a few basic attributes:

Be defined as an integer, long, or GUID (not a VARCHAR!)

Not allow nulls

Be unique

Be declared as the Primary Key

Be assigned by an NHibernate POID (Persistent Object ID) generator

Take a look at the table shown in the following screenshot. This table defines a
Contact object, with a Primary Key (notice the key icon) called Id defined as an integer,
and the other fields, each defined as a varchar (string), and the Email field is required
(it doesn't allow nulls).

NHibernate assigned IDs
One of the criteria for a good Primary Key is that it is assigned by an NHibernate POID
generator. Automatic assignment lets NHibernate manage the assignment of Primary Keys.
NHibernate has the "smarts" baked right in to create those IDs for us and put them back into
our object.

Chapter 2

[21]

Whenever a record is inserted into the database, it is assigned a number, either the next
number in the sequence (that is, hi/lo), or a randomly assigned GUID (Globally Unique
Identifier), depending on which POID you are using. We will talk more about POID
generators in Chapter 4, Data Cartography.

Relationships
One of the goals of our database design is to reduce the duplication of data and logically
group different types of data into different tables. A logical separation would be for things
like contacts. If we wanted to store all of our contacts, their phone numbers, addresses, and
so on, then we could store it in a table, as shown in the following screenshot:

At first glance, this looks like a pretty elegant solution that would work fine. What if I want
to store a contact without an address? Can I do this? Currently the table doesn't allow NULL
values in the address fields, so I would have to change that. How about storing more than
one address like a work and a home address? What about multiple phone numbers? The list
goes on. What we really need here is a way to logically store grouped data in its own table,
and relate it to other pieces of data. This is called a relationship, and it is probably the single
most powerful concept in database design ever. By allowing a relational database to store
metadata, or data about the data, we can now say that table A stores data in common with
table B, but there may be zero or more records for table B in table A. Makes sense? It will.

There are a few common types of relationships you need to know about, the one-to-many
(OTM), its logical inverse cousin the many-to-one (MTO), the one-to-one (OTO), and the
many-to-many (MTM). Just like their names imply, these relationships define how the data
relates to the other data. OTO relationships are fairly uncommon and can usually be modeled
directly within the base table.

Database Layout and Design

[22]

Take a look at the following two tables. They represent a typical OTM relationship,
represented by the key (denoting the Primary Key) and the infinity (∞) symbol
(denoting the Foreign Key).

In an OTM relationship, the relationship information is stored on the "Many" side, that is,
the field called Contact_Id. We will store the data from the Id column of the related contact
from the Contact table. As you will see in the following table, we have some contacts already
stored in our table with auto-numbered IDs.

Chapter 2

[2�]

If you look at the data in the Address table, you will notice that we have addresses for two of
our contacts, Mr. King and Mr. Bailey (see the Contact_Id field to match them up with the Id
field in the Contact table).

If we wanted to see this data together, then we could execute a SQL query in the
following manner:

select *
from Contact
join Address on Address.Contact_Id = Contact.Id

We have instructed the database to return all rows from the database where Contact_Id
in the Address table equals the Id field in the Contact table. This should return four rows,
one for each contact in the database. The following screenshot shows the output from
this command:

What happened to our other two rows? Why didn't they show up? SQL did exactly what
we told it to do, to join the two tables and show all the rows that are in common between
the two tables. If we don't specify a specific type of join, then SQL will automatically do an
Inner join, or in other words, it will just show rows that are common in both tables. What we
didn't do is tell it to show us all of the Contact rows regardless of whether or not we have
addresses for them. To show this data, we need to add the Left operator to return all of the
rows from the table on the Left of the query. We could also use Right if we wanted all the
Addresses and didn't care if there were Contacts associated with them. The result of this
modified query is as follows:

select *
from Contact
left join Address on Address.Contact_Id = Contact.Id

Database Layout and Design

[2�]

Adding the left keyword (the Contact table we are joining to) returns the following output:

The second most common type of relationship is the MTM table. This type of relationship
models data where multiple records on the left are related to multiple records on the
right. An example might be phone numbers. You and I might have the same work number
because we work at the same company or my wife and I might have the same home
phone number. Using an MTM relationship, we can model this data using an extra table
to store the relationship information. The relationship would look something like the
following screenshot:

The Contact_Phone table links the Contact and Phone tables together. An MTM table
implements two OTM relationships to complete the model. Notice that the Contact_Phone
table has two keys, both Contact_Id and Phone_Id. This is called a Composite Primary Key
and is used to mean that it takes both fields to make a record unique.

To create a Composite Primary Key, we simply select both the fields that we want to include
in our Composite Primary Key before we designate it as a Primary Key.

To query this data, we would use a SQL statement as follows:

select *
from Contact
join Contact_Phone on Contact_Phone.Contact_Id = Contact.Id
join Phone on Contact_Phone.Phone_Id = Phone.Id

Armed with these two types of relationships, we can model 99.9 percent of all the data we
need to store in nearly any project we come across.

Chapter 2

[2�]

Pop quiz – relationships
1. Which of the following is NOT a relational database relationship type?

a. one-to-many (OTM)

b. many-to-many (MTM)

c. many-to-one (MTO)

d. one to Several (OTS)

2. Which relationship type requires a secondary table to store the relationship data?

a. one-to-many (OTM)

b. many-to-many (MTM)

3.	 Which of the following is a VALID SQL join modifier?

a. Left

b. Right

c. Inner

d. All of the above

Normal Form
You may have heard the term Third Normal Form (3NF) when talking about databases and
wondered what it meant. Quite simply, Normalization is a way to construct databases to
standardize their appearance and to reduce duplication of data. Of the six normal forms
(1st-5th and Boyce-Codd Normal Form or BCNF, another name for 3NF), 3NF is the most
widely discussed, but First Normal Form (1NF) is the one we are most concerned with.

To be 1NF compliant, we need to eliminate duplicative columns from the same table, and
create separate tables for each group of related data and identify each row with a unique
column or set of columns (the Primary Key). In other words, we don't want to store duplicate
data, we want to store it once and relate to it.

Essentially a 3NF database will store data in multiple tables to normalize the data and reduce
duplication as we talked about earlier, and additionally:

Functional dependencies on non-key fields are eliminated by putting them in a
separate table. At this level, all non-key fields are dependent on the Primary Key.

A row is in 3NF if and only if it is in Second Normal Form (2NF) and if attributes
that do not contribute to a description of the Primary Key are moved into a
separate table.

Database Layout and Design

[2�]

Have a go hero – looking back
Take a look at the second image (with the two tables Contact and Address) under the
Relationships section again. Is this database in a 3NF design? Does it conform to all the rules
of 3NF? If not, then how could we change the structure to accommodate 3NF? Does it
make sense to make these changes or do we just want to live with the duplicated data?

Putting it all together
Now that we have all the concepts of database tables and relationships sorted out, let's add
some tables to our Ordering system.

Time for action – adding some tables to our Ordering system
database

Let's get back to our Ordering system. If you remember, we will need a table to store the
orders and one for the order items. Let's build those now!

1.	 Open up SSMS again and log in to your local database server—(local)\SQLExpress.

2.	 Click on the + next to the Ordering database so we can see the objects in
our database.

3.	 Right-click on the Tables folder, and click on New Table to bring up the new table
dialog tab. This is where we will define our first table.

Chapter 2

[27]

4.	 The new table editor tab will look similar to the table in the following screenshot. In
the Column Name box, enter Id, either type or select int in the Data Type field, and
uncheck the Allow Nulls checkbox.

5.	 Next we need to set our "Primary Key" on this field. Right-click on the black arrow to
the left of the Id column, and select Set Primary Key from the drop-down menu.

Going forward, we will complete steps 3 through 5 to create a new table. We can
call these steps our "Create a new table" process. In the future, whenever you
need to create a table, these are the steps you will need to complete.

Database Layout and Design

[2�]

6.	 As we are creating a table to hold our orders, we will need to add some fields to
store that data. Let's first create a field to hold an order number. Technically, we
could just use the unique number from the Id field, but customers usually like to see
something like "MUSA-2133-0623" as an order number, so we will create a varchar
(string) field 255 characters in length. In the Column Name field, type Number, the
Data Type field will be varchar and in place of the (50) it defaults to, replace the 50
with 255 so we can store a slightly longer order number.

Fields constructed with data types such as varchar and varbinary can
be defined as slightly larger than you plan to use them because they
will only take up as much room for storage as the data that is in them.
The "var" stands for variable. If you define the field as char(25) and
store the words "hello world" in it, then the char field will take up 25
characters of disk space. If you use a varchar(25) and store the words
"hello world" in them, it will take up only 11 characters of disk space.

7.	 Let's go ahead and add an OrderDate field as a datetime, and an ItemQty field as
int. We will use these fields to store information about when the order was placed
and the total number of items on the order.

Chapter 2

[2�]

8.	 We'll add a Total column for the Order as a decimal with 18 places before the
decimal point and two after.

9.	 Finally, we need to save our table and give it a name. You can save the file by clicking
on the Save (floppy disk) icon, pressing Ctrl + S, or selecting File | Save Table_1. Any
of these options will bring up the following Save Table dialog box, which will prompt
us to choose a name for our table:

10.	Enter the name OrderHeader (we can't use the name "Order" because Order is a
reserved word in SQL), and click on OK.

We will avoid using either SQL or .NET reserved words as our table
or field names to save us trouble later when we try to use these
tables in our .NET or SQL code.

Database Layout and Design

[�0]

11.	 If you click the refresh button (two arrows pointing in a circle) near the top of the
"Object Explorer", and then use the + buttons to navigate to the Tables folder of the
Ordering database, you should see our new "OrderHeader" table there. Open up
that folder, and you should see a Columns folder. After opening that, you should be
able to see all the columns we created, as shown in the following screenshot:

12.	You will also notice that under the Keys folder, you can see our Primary Key
definition for the Id column. SSMS also created a Clustered Index for our
Primary Key.

Chapter 2

[�1]

If we wanted to, we could have scripted the creation of this table using SQL.
Creating the table in SQL would look something like this:

CREATE TABLE [dbo].[OrderHeader](
 [Id] [int] NOT NULL,
 [Number] [varchar](255) NOT NULL,
 [OrderDate] [datetime] NOT NULL,
 [ItemQty] [int] NOT NULL,
 [Total] [decimal](18, 2) NOT NULL,
 CONSTRAINT [PK_OrderHeader] PRIMARY KEY CLUSTERED);

13.	Now to create the OrderItem table. Perform our "Create new table" process to
start our new OrderItem table. Add in the additional columns until your table looks
similar to the table shown in the following screenshot:

14.	Next, we want to create the OTM relationship from OrderHeader to OrderItem.
We need to link the 'Many' side (OrderItem.OrderHeader_Id) to the One side
(OrderHeader.Id). To do this, we just right-click to the left of the OrderHeader_Id
field and select Relationships, as shown in the following screenshot:

Database Layout and Design

[�2]

15.	 In the Relationships window, click on Add. This will create a new relationship called
FK_Table_1_Table_1. This means that the Foreign Key relationship is from Table_1
to Table_1. Don't worry about the name right now, as it will change once we select
our fields.

16.	Click on the Tables And Columns Specification box and a set of ellipses (…) will
appear. Click on the ellipses and the Tables and Columns window will appear. Open
the Id drop-down under the Foreign key table column and select our Foreign key
column, OrderHeader_Id. Click on one of the boxes under this column to "deselect"
the drop-down.

Chapter 2

[��]

17.	Under the Primary key table column, select the table OrderHeader from the
drop-down that says Table_1, and select the Id field from the field selection
below that. You should end up with a relationship that looks as shown in the
following screenshot:

18.	Finish the relationship creation by clicking on OK and then Close on the Foreign Key
Relationships screen.

19.	Save the table with the name OrderItem.

When you are prompted to save the changes to the two tables, click on Yes.

Database Layout and Design

[��]

20.	Refresh the Object Explorer, and you should be able to see both of our tables under
the Tables folder of the Ordering database.

What just happened?
Now that we have created our OrderHeader and the related OrderItem tables, we are ready
to start entering orders in our system! Our tables are fully functional, with data columns,
Primary Keys, relationships, the works! The only thing left to do is get some customers to
enter some orders, right?

Have a go hero – create some more tables
Now that you are a professional at creating tables and relationships, try adding the tables
shown in the second image and the tables shown in the last image under the Relationships
section to our Ordering database.

Create four fields on our OrderHeader to connect these tables: BillToContact_Id,
ShipToContact_Id, BillToAddress_Id, and ShipToAddress_Id, and create relationships
between the Contact and Address tables as appropriate.

Chapter 2

[��]

Summary
So far, we talked about the right and wrong ways to create tables and fields!

Specifically, we covered:

Creating our database table layouts and laying them out logically

What Normal Form means and how we use it to design out database tables

Using NHibernate assigned ID's to create Primary Key values for our database tables

Defining various types of relationships to "connect" our related data

We also discussed Primary and Foreign keys and a little about the best ways to model data.

Now that we've learned about modeling our data into tables, we are ready to talk about
creating this model inside .NET, which is the topic of the next chapter.

�
A Touch of Class

One of the greatest things that NHibernate brings to us is the ability to work
directly with objects instead of having to deal with DataSets or DataReaders.
Before we can use these objects, however, we of course need to define them.

In this chapter, we'll discuss:

Constructors

Public properties and private variables

Converting SQL database types to CLR types

Properties for Foreign Key fields

Start up our applications
We're going to be using the database that we created in Chapter 2, Database Layout and
Design, so if you haven't already logged in, go ahead and log on to the database server and
bring up our Ordering database. We will be using Visual Studio again, so you might as well
start that up while you are at it.

Creating objects
We will be interacting with our classes the entire time we are programming, so spending a
little extra time up front is an investment that will pay dividends almost immediately. As long
as we remember a few simple concepts, we will be able to make very quick work of creating
these classes. (For an even quicker way to create them, sneak a peek at Chapter 11, It's a
Generation Thing, about Code Generation!)

A Touch of Class

[��]

One of the first things we will need for our new classes is a constructor. Constructors
are used to "new up" an object. You have probably seen or written syntax similar to the
following example:

OrderHeader header = new OrderHeader();

Or in VB.NET:

Dim header As OrderHeader = New OrderHeader()

In this example, we are creating a new OrderHeader object. This object represents the
OrderHeader table we created in our database. To create this new object, we need a
constructor (in this case the "default" constructor). Our default constructor is simply a
method with no return object defined, with the same name as our class (in C#) or the
keyword New (in VB.NET). The default constructor in our class will look something
like this:

/// <summary>
/// Create an OrderHeader object Empty Constructor
/// </summary>
public OrderHeader() { }

In VB.NET:

''' <summary>
''' Create a OrderHeader object Empty Constructor
''' </summary>
Public Sub New()
End Sub

Time for action – creating our first class
In order for NHibernate to automatically fill data into our classes, we need to have
some classes for it to fill! Let's start out by creating our OrderHeader class to map the
OrderHeader data into.

Chapter 3

[��]

1.	 In a new instance of Visual Studio, select File | New | Project, as shown in the
following screenshot:

2.	 The New Project dialog will appear. If you are working in C#, select Visual C#, then
Windows, and click on Class Library, as shown in the following screenshot:

A Touch of Class

[�0]

3.	 If you are a VB programmer, select Visual Basic, Windows, Class Library, as shown in
the following screenshot:

4.	 Enter Ordering.Data in the Name: textbox, and Ordering in the Solution Name:
textbox. Make sure you leave the Create directory for solution checked.

Chapter 3

[�1]

5.	 This will give us a new DLL project called Ordering.Data inside a folder named
Ordering, which contains a solution named Ordering. When you're done
with it, the folder structure should look similar to the one shown in the
following screenshot:

6.	 Right-click on the default new class that is automatically created (either Class1.cs
or Class1.vb) and click Delete. We will be creating new classes and will not need
this default class.

A Touch of Class

[�2]

7.	 Now we want to create our OrderHeader class to represent the OrderHeader
table in the database. Right-click on the Ordering.Data label underneath Solution
'Ordering' (1 project) and click Add | Class.

8.	 When the Add New Item—Ordering.Data dialog appears, Class will automatically be
selected. In the Name: textbox, type OrderHeader.cs, and click on the Add button.

Chapter 3

[��]

9.	 We will end up with a basic class to start off. The resulting document will look
similar to the following code snippet:

using System;
using System.Collections.Generic;
using System.Text;

namespace Ordering.Data
{
 class OrderHeader
 {
 }
}

I personally like to add the public keyword to my classes
when I want them to be public so there is no confusion, so I
would change the preceding C# code to read:

public class OrderHeader

Or in VB.NET, it will look as follows:

Public Class OrderHeader

End Class

10.	Now we just need to add our default constructor logic. Between the curly braces
({ }) in C# or between the Class and End Class in VB.NET, we will add our logic.

public class OrderHeader
{
 public OrderHeader() { }

 }

And the corresponding VB.NET code:

Public Class OrderHeader
 Public Sub New()
 End Sub
End Class

A Touch of Class

[��]

11.	Ensure that your code compiles by clicking on Build | Rebuild Solution or by
pressing Ctrl + Shift + B.

What just happened?
Congratulations! We just created our first class to allow NHibernate to map data into our
application. We still have some work to do to get it to actually fill data, so let's keep going.

Have a go hero – ramping up
Now that we understand how to make some basic classes, we need to create them for
the rest of our database. Try to create basic classes for the database tables we created in
Chapter 2. The following screenshot shows the database diagram for our database:

Chapter 3

[��]

Public properties and private variables
NHibernate needs to have a place to "hold" the data that we are storing in the database.
In order for NHibernate to do its job, we need to create some public properties to contain
the data.

A property is simply a way to set and get data. We define a property by declaring a private
variable to hold the actual data and some combination of a getter and/or a setter to
manipulate the value in the private variable.

In C#, a property looks something as follows:

private int _id;
public int Id
{
 get { return _id; }
 set { _id = value; }
}

While in VB.NET, it will look as follows:

Private _id As Integer
Public Property Id() As Integer
 Get
 Return _id
 End Get
 Set(ByVal value As Integer)
 _id = value
 End Set
End Property

It is possible to create a ReadOnly property where a user has no access to the setter, that
is, the only way to set the value is by manipulating the private variable from within the class
itself. A ReadOnly property will look very similar to a property with a standard getter and
setter. As you can see here, the C# code defines a ReadOnly property by simply omitting
the setter.

private int _id;
public int Id
{
 get { return _id; }
}

A Touch of Class

[��]

In VB.NET, the property actually uses the ReadOnly keyword to denote that this property
cannot be updated, as well as removing the "setter".

Private _id As Integer
Public ReadOnly Property Id() As Integer
 Get
 Return _id
 End Get
End Property

But what about those pesky Nullable properties? How do we handle those? While we can't
put a null value for a value type (like an int), we can put one in a reference or generic type.
Instead of using a value type of int in C#, we will use a nullable int (" int?") like this:

private int? test;

In VB.NET we actually use the Nullable(of X) notation, like this:

Private test As Nullable(Of Integer)

Now we're ready to get some work done!

Time for action – adding a few properties
Now that we have our simple OrderHeader class, we need to create some properties to
actually hold our data. Let's get started.

Remember the OrderHeader table we created in Chapter 2, shown in the following
screenshot? Let's add the Id and Number fields as properties in our class.

Chapter 3

[�7]

1.	 Open the OrderHeader class that we created earlier in this chapter. There are
numerous ways to create a property, but we'll start by just creating them manually.
Under the default constructor we created earlier, let's create a private variable to
hold the Id field. We will create these as private variables to hide the functionality
from the end user, as we want them to use our properties.

There is no hidden magic in using the underscore ("_") character as
a prefix for the private variable. You can use "id", "m_Id", or virtually
anything else you want.

2.	 In C#, we declare the variable as an int, which is a shortcut for Int32.

private int _id;

In VB.NET, we will declare the variable as an Integer.

Private _id As Integer

If you are interested, play with the "Insert Snippet" dialog
on the right-click menu. You can insert properties using this
dialog fairly quickly.

3.	 Next, we need to create the property that will access our private variable. While
properties can technically be created as private or protected, we will create standard
public properties. We will mark these properties virtual or Overridable in
VB.NET to allow lazy loading. We'll talk more about this later.

4.	 We will put our property under the private variable declaration from Step 1. Add the
declaration of the public property as follows:

public virtual int Id
{
}

Here is the same code in VB.NET.

Public Overridable Property Id() As Integer
End Property

A Touch of Class

[��]

5.	 Next, we'll add our getter and setter. They simply use the return and value
keywords, which are a sort of "magic" variables for properties.

Inside our previous property declaration, insert the getter and setter as follows:

get { return _id; }
set { _id = value; }

While the VB.NET code is a little more verbose, it does the same thing:

Get
 Return _id
End Get
Set(ByVal value As Integer)
 _id = value
End Set

That's it! Your finished Id property should look as follows:

private int _id;
public virtual int Id
{
 get { return _id; }
 set { _id = value; }

 }

The VB.NET code is as follows:

Private _id As Integer
Public Overridable Property Id() As Integer
 Get
 Return _id
 End Get
 Set(ByVal value As Integer)
 _id = value
 End Set
End Property

6.	 Now let's add a property for the Number field in the database table. This field
is declared as a varchar(255), so we will create it as a collection of variable
characters, or in .NET speak, we simply call it a string.

private string _number;
public string Number
{
 get { return _number; }
 set { _number = value; }
}

Chapter 3

[��]

With a few more lines of code, the VB.NET code does the same thing:

Private _number As String
Public Property Number() As String
 Get
 Return _number
 End Get
 Set(ByVal value As String)
 _number = value
 End Set
End Property

7.	 The last thing we should do is add a constructor with our new properties so that we
can "new up" an OrderHeader object and fill all the properties at the same time.
Under our previous default constructor, let's add the following code:

public OrderHeader(string Number)
{
 this.Number = Number;
}

The same code in VB.NET is as follows:

Public Sub New(ByVal Number As String)
 Me.Number = Number
End Sub

8.	 The last thing we should do to our code, now that we are starting to get a few lines,
is to wrap our major sections in Regions. Regions allow us to expand and collapse
the code as well as provide quick headers to help us locate our code.

9.	 Between the class declaration and the default constructor, add a Region
declaration as follows:

#region Constructors

Notice that in VB.NET, you have to put the text in quotes:

#Region "Constructors"

10.	After our new constructor (just before the first property), we need to add an End
Region directive to close it out:

#endregion

Once again, in VB.NET:

#End Region.

A Touch of Class

[�0]

11.	Add a region for the properties also, calling the region "Properties".

#region Properties
…
#endregion

Once again, in VB.NET:

#Region "Properties"
…
#End Region

12.	That's it! We now have our first working class!

What just happened?
We're getting really close to mapping database data into our class with NHibernate now! We
have constructors, properties, and even some regions that we can collapse and expand at
will to make the code easier to read!

Converting SQL database types to .NET types
One of the things you will start to know as you play with it a little more is what types of
data map into .NET types. In our examples before, an int in SQL Server became an int or
Integer, while a varchar became a String. Some of the most common database types
are listed in the following table, along with their associated .NET types.

Database type .NET type

DbType.AnsiStringFixedLength – (char) System.Char

DbType.Boolean (bool, bit) System.Boolean

DbType.Byte System.Byte

DbType.StringFixedLength - 1 char System.Char

DbType.DateTime System.DateTime

DbType.Decimal System.Decimal

DbType.Double System.Double

DbType.Guid System.Guid

DbType.Int16 (short) System.Int16

DbType.Int32 (int) System.Int32

DbType.Int64 (long) System.Int64

DbType.Single System.Single

DbType.DateTime System.DateTime

DbType.AnsiStringFixedLength – ('T' or 'F') System.Boolean

DbType.AnsiStringFixedLength – ('Y' or 'N') System.Boolean

Chapter 3

[�1]

These types will help you when you try to map the rest of the database fields to properties in
our classes.

Properties for Foreign Keys
Okay, so we know how to map all of the basic fields now, but what about those pesky
Foreign Key fields, such as BillToContact_Id? How do we map those guys? They're mapped
as int in the database, so we can just map them as int or Integer, right?

Technically, we could map them as int in our code, but that would make our work much
more difficult when we go to use the actual object, and the reason we are using NHibernate
is to make our job EASIER!

What we really need to do is map these fields as objects. As each of these fields links to
another table (BillToContact_Id stores the ID from Contact) we can map these fields as
objects and actually view these related objects.

For example, the OrderItem table has a parent-child relationship to the OrderHeader
table using the field OrderHeader_Id, which links this table to the OrderHeader table. If
I was looking at an order (OrderHeader), I would want to see all the items on that order
(OrderItem). If I want to look at all the order items and see if any have a quantity of more
than five, for example, I could do something like this:

OrderHeader order = OrderHeaderDataControl.GetById(1);
foreach (OrderItem item in order.OrderItems)
{
…
}

As you can see, once I have the order, I can look at all the OrderItems simply by accessing the
OrderItems property of the OrderHeader object. So, how do we define these you ask? Just
like any other property, we are going to create a private variable and a public property. The
type we assign to the property will be another class, the one to represent the other items.
Because the Foreign Key could be one-to-many (OTM), many-to-many (MTM), or anything
else, we will use a Generic List of objects to hold our collections.

Specifically, we will use the generic interface IList to group our objects because we can
then cast it into any other collection that implements IList like an ArrayList to get sorting
and filtering.

A Touch of Class

[�2]

C# uses the <> identifier to denote Generic collections.

private IList<OrderItem> _orderItems;
public IList<OrderItem> OrderItems
{
 get { return _orderItems; }
 set { _orderItems = value; }
}

In VB.NET, we need to use the Of keyword to create the generic IList of the type OrderItem.

Private _orderItems As IList(Of OrderItem)
Public Property OrderItems() As IList(Of OrderItem)
 Get
 Return _orderItems
 End Get
 Set(ByVal value As IList(Of OrderItem))
 _orderItems = value
 End Set
End Property

Now all that's left is to actually create the OrderItem class, and on that class, we will put
an OrderHeader property so that we can navigate in code from the OrderItem back to its
parent through this relationship. Instead of using a Generic List, we will just use an object as
this will only hold a single OrderHeader instance.

public class OrderItem
{
 public OrderItem() { }

 private OrderHeader _orderHeader;
 public OrderHeader OrderHeader
 {
 get { return _orderHeader; }
 set { _orderHeader = value; }
 }
}

In VB.NET, the code is as follows:

Public Class OrderItem
 Public Sub New()
 End Sub

 Private _OrderHeader As OrderHeader
 Public Property OrderHeader() As OrderHeader

Chapter 3

[��]

 Get
 Return _OrderHeader
 End Get
 Set(ByVal value As OrderHeader)
 _OrderHeader = value
 End Set
 End Property
End Class

Now we're ready to map the rest of our classes!!

Have a go hero – adding more properties (and classes!)
Now that we have all of the skills we need to finish creating classes for the rest of our
database, go ahead and map the rest of the database tables we created in Chapter 2.
In case you need a refresher, take a look at the following screenshot:

A Touch of Class

[��]

Pop quiz – mapping
1. How do we map a nullable integer from the database into our class?

a. With an Integer (int or Integer)

b. Nullable Integer (int? or Nullable(of Integer))

c. This is not possible in .NET

d. None of the above

2. How do we map associations (parent-child relationship) properties?

a. Using value types (int or Integer)

b. Using Generic types (IList<> or IList(of t))

c. Using strings

3. How many constructors are required on a class?

a. At least one

b. None

c. More than one

d. The world may never know

Summary
We covered a lot of information in this chapter, mostly about mapping properties and default
constructors.

Specifically, we covered:

The use of constructors

Creating public properties and private variables to hold our NHibernate data

Converting SQL database types to CLR (.NET) types

Creating properties to contain objects to represent Foreign Key fields

If you were able to map all of the tables we created in Chapter 2, then you are well on your
way to becoming an NHibernate master!

Now that we've learned all about classes and datatypes, we're ready to dive into telling
NHibernate HOW to actually map each field to the classes we have created, which is the
topic of the next chapter.

�
Data Cartography

Our next major hurdle in the implementation of NHibernate is database
mapping. In the last few chapters, we learned how to create tables to hold our
data and how to create classes to hold that data in our application. Now we
need to create the glue to bring them together.

In this chapter, we will discuss:

Different styles of mapping

Mapping relationships

Ways to load our objects

Creating a database from our mapping files

Let's jump right in.

What is mapping?
Simply put, we need to tell NHibernate about the database that we created and how
the fields and tables match up to the properties and classes we created. We need to tell
NHibernate how we will be assigning Primary Keys, the data types that we will be using to
represent data, what variables we will store them in, and so on. You could say this is one
of the most important exercises we will perform in our pursuit of NHibernate. Don't worry
though, it's pretty easy.

Data Cartography

[��]

Types of mapping
There are two basic ways to map data for NHibernate: the traditional XML mapping in an
hbm.xml file, or the newer "Fluent NHibernate" style, which is similar to the interface
pattern introduced with the .NET 3.5 framework (see http://www.martinfowler.com/
bliki/FluentInterface.html).

In both cases, we will create a document for each of our tables. We will map each field from
our database to the property we created to display it in our class.

XML mapping
XML mapping is undoubtedly the most common method of mapping entities with
NHibernate. Basically, we create an XML document that contains all of the information
about our classes and how it maps to our database tables.

These documents have several advantages:

They are text files, so they are small
They are very readable
They use a very small number of tags to describe the data

The two biggest complaints about XML mapping is the verbosity of the text and that it is
not compiled.

We can handle some of the verbosity by limiting the amount of data we put into the
document. There are a number of optional parameters that do not absolutely need to be
mapped, but that provide additional information about the database that can be included.
We'll discuss more about that in the Properties section.

You should copy the nhibernate-mapping.xsd and nhibernate-
configuration.xsd files from the NHibernate ZIP file into your Visual
Studio schemas directory (that is C:\Program Files\Microsoft
Visual Studio 9.0\Common7\Packages\schemas\xml). This
will give you IntelliSense and validation in the .NET XML editor when editing
NHibernate mapping and configuration files.

Without compilation, when the database changes or the classes change, it's difficult
to detect mismatches until the application is actually executed and NHibernate tries to
reconcile the database structure with the mapping classes. While this can be an issue there
are a number of ways to mitigate it, such as careful monitoring of changes, writing tests for
our persistence layer, using a Visual Studio plugin, or using a code generation tool (we will
learn more about this in Chapter 11, It's a Generation Thing).

Chapter 4

[�7]

Getting started
The XML mapping document begins like any XML document, with an XML declaration. No
magic here, just a simple xml tag, and two attributes, version and encoding.

<?xml version="1.0" encoding="utf-8" ?>

The next tag we are going to see in our document is the hibernate-mapping tag. This tag
has an attribute named xmlns, which is the XML namespace that the NHibernate mapping
file should be validated against. This is directly related to a version of NHibernate, as each
version has its own XML namespace to cover changes in the mapping language.

We can also use this tag to define the namespace and assembly that the class we are
mapping resides in. The opening and closing tags for the hibernate-mapping tag are as
shown in the following code snippet:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="BasicWebApplication.Common.DataObjects"
 assembly="BasicWebApplication">

</hibernate-mapping>

These three properties within the hibernate-mapping tag make up the basic XML
mapping document.

Classes
The next tag we need to define in our document is the class tag. This is a KEY tag, because
it tells NHibernate two things—the class this mapping document is meant to represent and
which table in the database that class should map to.

The class tag has two attributes we need to be concerned with—name and table.

<class name="" table="">

</class>

The name attribute contains the fully-qualified POCO (or VB.NET) class that we want to map
to, including the assembly name.

While this can be specified in the standard fully-qualified dotted class name, a
comma, and then the assembly name, the preferred method is to define the
namespace and assembly in the <hibernate-mapping> tag, as shown in
the previous code.

Data Cartography

[��]

The table attribute specifies the table in the database that this mapping file represents. It
can be as simple as the name of the table Address or as complex as needed to adequately
describe the table.

If you need to include the owner of the table, such as dbo.Address, then you can add the
schema attribute as follows:

schema="dbo"

If we were going to map the Address class in our application to the Address table in the
database, then we would use a tag as follows:

<class name="Address" table="Address">

</class>

Technically, as the table name is the same as our class name, we could leave out
the table attribute.

Properties
We can map properties from our class to fields in the database using the id tag and the
property tag. These tags are for the standard fields in the database, not the Foreign Key
fields. We'll get to those in a minute.

The id and property tags follow a standard pattern and have a number of optional
parameters. They follow the basic format of defining the property on the class that they
are mapping to and the data type that is used to represent that data. This will generally
look as follows:

<property name="Address1" type="String">
 <column name="Address1" length="255" sql-type="varchar"
 not-null="true"/>
</property>

This is the fully-verbose method of mapping the properties, and the one I personally
use. If something happens to your database, you can re-generate the database from
this information. It's also very helpful when you are troubleshooting because all of the
information about the data is right there.

Alternately, you can map the property as follows:

<property name="Address1" />

Both methods will provide the same mapping to NHibernate, but as I stated earlier, the more
verbose method gives you a lot more flexibility.

Chapter 4

[��]

One of the optional attributes that I generally use on the id and property tags is the type
attribute. With this attribute I can tell NHibernate that I am using a particular type of data
to store that information in my class. Adding this data type, our property tag would look
as follows:

<property name="Address1" type="String" />

I also like to use the column tag, just to explicitly link the field with the property in the class,
but that again is just preference. The previous code is completely adequate.

ID columns
The first property from our class that we want to map is the Id property. This tag has
a number of attributes we can optionally set, but the simplest way we can map the Id
property is as follows:

<id name="Id">
 <generator class="hilo"/>
</id>

This tells NHibernate that we have a property in our class named Id which maps to a field in
the database called Id and also that we use the hilo method to automatically generate a
value for this field. Simple enough!

An optional attribute that I generally use on the id tag is the unsaved-value attribute.
This attribute specifies what value should be returned in a new object before it is persisted
(saved) to the database. Adding this attribute, as well as the type attribute we talked about,
the code would look as follows:

<id name="Id" type="Int32" unsaved-value="null">
 <generator class="hilo"/>
</id>

As long as our field is named Id in the database, we are good to go. But what if it was named
id or address_id? This simply wouldn't handle it. In that case, we would have to add the
optional column tag to identify it:

<id name="Id">
 <column name="address_id"/>
 <generator class="hilo"/>
</id>

Data Cartography

[�0]

Now we have mapped our address_id field from the database into a more standard Id
property on our class. Some of the additional attributes that are commonly used on the
column tag are as follows:

name: Define the name of the column in the database

length: The length of the field, as defined in the database

sql-type: The database definition of the column type

not-null: Whether or not the database column allows nulls. not-null="true"
specifies a required field

Again, these optional attributes simply allow you to further define how your database is
created. Some people don't even define the database. They just define the hbm.xml files
and use the NHibernate.Tool.hbm2ddl to create a SQL script to do this work! We'll talk
more about this in Chapter 12, Odds and Ends.

Mapping our types
Let's take a few minutes and map the basic fields from the OrderHeader table we created
earlier. What we really need to do is map all of the "standard" fields (ints, varchars,
datetimes, decimals, and so on) to their .NET counterparts we created in the classes in
Chapter 3, A touch of class.

Time for action – mapping basic types
Take a look at the following OrderHeader table. We need to map the Number, OrderDate,
ItemQty, and Total fields into our OrderHeader class.

Chapter 4

[�1]

1.	 Open the OrderHeader class we created in Chapter 3. This will be either
OrderHeader.cs or OrderHeader.vb. We will use this file for reference
while we create our mapping document. Your class should look as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace Ordering.Data
{
 public class OrderHeader
 {
 #region Constructors

 public OrderHeader() { }

 public OrderHeader(string Number, DateTime OrderDate,
 int ItemQty, decimal Total, Contact BillToContact,
 Contact ShipToContact, Address BillToAddress,
 Address ShipToAddress): this()
 {
 this.Number = Number;
 this.OrderDate = OrderDate;
 this.ItemQty = ItemQty;
 this.Total = Total;
 this.BillToContact = BillToContact;
 this.ShipToContact = ShipToContact;
 this.BillToAddress = BillToAddress;
 this.ShipToAddress = ShipToAddress;
 }

 #endregion

 #region Properties

 private int _id;
 public virtual int Id
 {
 get { return _id; }
 set { _id = value; }
 }

 private string _number;
 public virtual string Number
 {

Data Cartography

[�2]

 get { return _number; }
 set { _number = value; }
 }

 private DateTime _orderDate;
 public virtual DateTime OrderDate
 {
 get { return _orderDate; }
 set { _orderDate = value; }
 }

 private int _itemQty;
 public virtual int ItemQty
 {
 get { return _itemQty; }
 set { _itemQty = value; }
 }

 private decimal _total;
 public virtual decimal Total
 {
 get { return _total; }
 set { _total = value; }
 }

 private IList<OrderItem> _orderItems;
 public virtual IList<OrderItem> OrderItems
 {
 get { return _orderItems; }
 set { _orderItems = value; }
 }

 private Contact _billToContact;
 public virtual Contact BillToContact
 {
 get { return _billToContact; }
 set { _billToContact = value; }
 }

 private Contact _shipToContact;
 public virtual Contact ShipToContact
 {
 get { return _shipToContact; }
 set { _shipToContact = value; }

Chapter 4

[��]

 }

 private Address _billToAddress;
 public virtual Address BillToAddress
 {
 get { return _billToAddress; }
 set { _billToAddress = value; }
 }

 private Address _shipToAddress;
 public virtual Address ShipToAddress
 {
 get { return _shipToAddress; }
 set { _shipToAddress = value; }
 }

 #endregion
 }
}

Or in VB.NET, it will look as follows:

Public Class OrderHeader

#Region "Constructors"
 Public Sub New()
 End Sub

 Public Sub New(ByVal Number As String, ByVal OrderDate As _
 DateTime, ByVal ItemQty As Integer, ByVal Total _
 As Decimal, ByVal BillToContact As Contact, _
 ByVal ShipToContact As Contact, ByVal _
 BillToAddress As Address, ByVal ShipToAddress _
 As Address)
 Me.New()
 Me.Number = Number
 Me.OrderDate = OrderDate
 Me.ItemQty = ItemQty
 Me.Total = Total
 Me.BillToContact = BillToContact
 Me.ShipToContact = ShipToContact
 Me.BillToAddress = BillToAddress
 Me.ShipToAddress = ShipToAddress
 End Sub

#End Region

Data Cartography

[��]

#Region "Properties"
 Private _id As Integer
 Public Overridable Property Id() As Integer
 Get
 Return _id
 End Get
 Set(ByVal value As Integer)
 _id = value
 End Set
 End Property

 Private _number As String
 Public Overridable Property Number() As String
 Get
 Return _number
 End Get
 Set(ByVal value As String)
 _number = value
 End Set
 End Property

 Private _orderDate As DateTime
 Public Overridable Property OrderDate() As DateTime
 Get
 Return _orderDate
 End Get
 Set(ByVal value As DateTime)
 _orderDate = value
 End Set
 End Property

 Private _itemQty As Integer
 Public Overridable Property ItemQty() As Integer
 Get
 Return _itemQty
 End Get
 Set(ByVal value As Integer)
 _itemQty = value
 End Set
 End Property

 Private _total As Decimal
 Public Overridable Property Total() As Decimal
 Get

Chapter 4

[��]

 Return _total
 End Get
 Set(ByVal value As Decimal)
 _total = value
 End Set
 End Property

 Private _orderItems As IList(Of OrderItem)
 Public Overridable Property OrderItems() As IList_
 (Of OrderItem)
 Get
 Return _orderItems
 End Get
 Set(ByVal value As IList(Of OrderItem))
 _orderItems = value
 End Set
 End Property

 Private _billToContact As Contact
 Public Overridable Property BillToContact() As Contact
 Get
 Return _billToContact
 End Get
 Set(ByVal value As Contact)
 _billToContact = value
 End Set
 End Property

 Private _shipToContact As Contact
 Public Overridable Property ShipToContact() As Contact
 Get
 Return _shipToContact
 End Get
 Set(ByVal value As Contact)
 _shipToContact = value
 End Set
 End Property

 Private _billToAddress As Address
 Public Overridable Property BillToAddress() As Address
 Get
 Return _billToAddress
 End Get
 Set(ByVal value As Address)

Data Cartography

[��]

 _billToAddress = value
 End Set
 End Property

 Private _shipToAddress As Address
 Public Overridable Property ShipToAddress() As Address
 Get
 Return _shipToAddress
 End Get
 Set(ByVal value As Address)
 _shipToAddress = value
 End Set
 End Property
#End Region
End Class

2.	 Before we get started, let's create a few folders to make our job a little easier.
Right-click on your Ordering.Data project and click on Add | New Folder.

Chapter 4

[�7]

3.	 Let's name the folder Common, and we'll drag all of our existing classes (Address,
Contact, OrderHeader, and OrderItem) into that folder. This will make it easier
to find things as we get more files.

4.	 Using the same procedure, create a new folder called Mapping so we can add our
hbm.xml mapping files. When you are done, it should look as follows:

5.	 Right-click on the Mapping folder and click Add | New Item.

Data Cartography

[��]

6.	 In the Add New Item – Ordering.Data dialog box, select Data as the category, then
XML File under the template. Name the template OrderHeader.hbm.xml and click
on Add.

7.	 Once the new file has been created, it will open in the editor. It should look
something like the following screenshot:

Chapter 4

[��]

8.	 The first thing we want to do with our mapping file is to ensure that it gets compiled
into our assembly so NHibernate can find it. Right-click on the OrderHeader.hbm.
xml file and select Properties.

9.	 In the Properties dialog, drop down the Build Auction menu and select Embedded
Resource. This will ensure that the file is compiled into our assembly.

10.	 Inside our OrderHeader.hbm.xml document, we want to add the actual mapping
data. The first thing we need to add is our nhibernate-mapping element. This will
become the root element for our document. Under the <?xml version="1.0"
encoding="utf-8" ?> tag, add the hibernate-mapping tags. Your document
should look as follows:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="Ordering.Data.OrderHeader",
 assembly="Ordering.Data">

 </hibernate-mapping>

Data Cartography

[70]

11.	The next element that we will need in our mapping document is the class
element. This element lets NHibernate know which class in our assembly maps to
which table in the database. Add a class tag to map the OrderHeader class to the
OrderHeader table as follows:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
 <class name=" OrderHeader" table="OrderHeader">
 </class>

 </hibernate-mapping>

12. Now, we need to map our Id field. Between the opening and closing class tags,
add the following code to map our Id field, and let NHibernate know that it's an
Identity field by using the native generator class:

<class name=" OrderHeader " table="OrderHeader">
 <id name="Id">
 <generator class="hilo"/>
 </id>

 </class>

13.	 If you wish, you can also map the field with all the data required to generate the
database, as follows:

<id name="Id" type="Int32" unsaved-value="null">
 <column name="Id" length="4" sql-type="int" not-null="true"
 unique="true" index="PK_OrderHeader"/>
 <generator class="hilo" />

 </id>

Most programmers opt for the first syntax when they are handcoding,
as it is much less to type! However, when I automatically generate these
XML documents with a code generator, I opt to include the additional
information to help me troubleshoot later (should something go wrong).

14.	Next, we need to map our remaining properties into the class element. Add the
Number, OrderDate, ItemQty, and Total properties as follows:

<property name="Number" type="String"/>
<property name="OrderDate" type="DateTime"/>
<property name="ItemQty" type="Int32"/>
<property name="Total" type="Decimal"/>

Chapter 4

[71]

15.	That should do it! Your OrderHeader.hbm.xml file should look as follows:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
 <class name="Ordering.Data.OrderHeader, Ordering.Data"
 table="OrderHeader">
 <id name="Id">
 <column name="Id"/>
 <generator class="native"/>
 </id>
 <property name="Number" type="String"/>
 <property name="OrderDate" type="DateTime"/>
 <property name="ItemQty" type="Int32"/>
 <property name="Total" type="Decimal"/>
 </class>

 </hibernate-mapping>

What just happened?
We created an hbm.xml mapping file for our OrderHeader table and included all of the
non-Foreign Key fields. By mapping all of the fields, NHibernate now understands which
fields from the database we are using in our classes.

Pop quiz – class mapping
1. What attributes are required on the property tag?

a. type

b. name

c. column

d. name and type

2. Which of the following is a correct class implementation?

a. <class type="MyNamespace.MyClass, MyAssembly">

b. <class mapping_table="MyTable">

c. <class type="MyAssembly " table="MyTable">

d. <class name="MyAssembly" table="MyTable">

Data Cartography

[72]

Relationships
Remember all those great relationships we created in our database to relate our tables
together? If you need a refresher, then head back over to the Relationships section of
Chapter 2, Database Layout and Design. Basically, the primary types of relationships
are as follows:

One-to-many (OTM)

Many-to-one (MTO)

One-to-one (OTO)

Many-to-many (MTM)

We won't focus on the OTO relationship because it is really uncommon. In most situations,
if there is a need for a one-to-one relationship, it should probably be consolidated into the
main table.

One-to-many relationships
The most common type of relationship we will map is a one-to-many (OTM) and the other
way—many-to-one (MTO). If you remember, these are just two different sides of the same
relationship, as seen in the following screenshot:

This is a simple one-to-many (OTM) relationship where a Contact can be associated with
zero to many OrderHeader records (because the relationship fields allow nulls). Notice
that the Foreign Key for the relationship is stored on the "many" side, ShipToContact_Id
and BillToContact_Id on the OrderHeader table. In our mapping files, we can map this
relationship from both sides.

Chapter 4

[7�]

If you remember, our classes for these objects contain placeholders for each side of this
relationship. On the OrderHeader side, we have a Contact object called BillToContact:

private Contact _billToContact;
public Contact BillToContact
{
 get { return _billToContact; }
 set { _billToContact = value; }
}

On the Contact side, we have the inverse relationship mapped. From this vantage point,
there could be SEVERAL OrderHeaders objects that this Contact object is associated
with, so we needed a collection to map it:

private IList<OrderHeader> _billTOrderHeaders;
public IList<OrderHeader> BillTOrderHeaders
{
 get { return _billTOrderHeaders; }
 set { _billTOrderHeaders = value; }
}

As we have mapped this collection in two separate classes, we also need to map it in two
separate mapping files. Let's start with the OrderHeader side. As this is the "many" side of
the one-to-many relationship, we need to use a many-to-one type to map it. Things to note
here are the name and class attributes. name, again, is the property in our class that this
field maps to, and class is the "other end" of the Foreign Key relationship or the Contact
type in this case.

<many-to-one name="BillToContact" class="Contact">
 <column name="BillToContact_Id" length="4" sql-type="int"
 not-null="false"/>
</many-to-one>

Just like before, when we mapped our non-relational fields, the length, sql-type, and
not-null attributes are optional.

Data Cartography

[7�]

Now that we have the "one" side mapped, we need to map the "many" side. In the contact
mapping file, we need to create a bag element to hold all of these OrderHeaders. A bag
is the NHibernate way to say that it is an unordered collection allowing duplicated items.
We have a name element to reference the class property just like all of our other mapping
elements and a key child element to tell NHibernate which database column this field is
meant to represent.

<bag name="BillToOrderHeaders" inverse="true
 cascade="all-delete-orphan">
 <key column="BillToContact_Id"/>
 <one-to-many
 class="BasicWebApplication.Common.DataObjects.OrderHeader,
 BasicWebApplication"/>
</bag>

If you look at the previous XML code, you will see that the one-to-many tag looks very
similar to the many-to-one tag we just created for the other side. That's because this is the
inverse side of the relationship. We even tell NHibernate that the inverse relationship exists
by using the inverse attribute on the bag element. The class attribute on this tag is just
the name of the class that represents the other side of the relationship.

The cascade attribute tells NHibernate how to handle objects when we delete them.
Another attribute we can add to the bag tag is the lazy attribute. This tells NHibernate
to use "lazy loading", which means that the record won't be pulled from the database or
loaded into memory until you actually use it. This is a huge performance gain because you
only get data when you need it, without having to do anything. When I say "get Contact
record with Id 14", NHibernate will go get the Contact record, but it won't retrieve the
associated BillToOrderHeaders (OrderHeader records) until I reference Contact.
BillToOrderHeaders to display or act on those objects in my code. By default, "lazy
loading" is turned on, so we only need to specify this tag if we want to turn "lazy loading"
off by using lazy="false".

Many-to-many relationships
The other relationship that is used quite often is the many-to -many (MTM) relationship.
In the following example, the Contact_Phone table is used to join the Contact and Phone
tables. NHibernate is smart enough to manage these MTM relationships for us, and we can
"optimize out" the join table from our classes and just let NHibernate take care of it.

Chapter 4

[7�]

Just like the one-to-many relationship, we represent the phones on the Contact class with a
collection of Phone objects as follows:

private IList<Phone> _phones;
public IList<Phone> Phones
{
 get { return _ phones; }
 set { _ phones = value; }
}

Data Cartography

[7�]

Mapping the MTM is very similar to the OTM, just a little more complex. We still use a bag
and we still have a key. We need to add the table attribute to the bag element to let
NHibernate know which table we are really storing the relationship data in. Instead of a
one-to-many and a many-to-one attribute, both sides use a many-to-many element
(makes sense, it is an MTM relationship, right?). The many-to-many element structure is
the same as the one-to-many element, with a class attribute and a column child element
to describe the relationship.

<bag name="Phones" table="Contact_Phone" inverse="false" lazy="true"
 cascade="none">
 <key>
 <column name="Contact_Id" length="4" sql-type="int"
 not-null="true"/>
 </key>
 <many-to-many class=" Phone">
 <column name="Phone_Id" length="4" sql-type="int"
 not-null="true"/>
 </many-to-many>
</bag>

From the Phone side, it looks remarkably similar, as it's just the opposite view of the
same relationship:

<bag name="Contacts" table="Contact_Phone" inverse="false"
 lazy="true" cascade="none">
 <key>
 <column name="Phone_Id" length="4" sql-type="int"
 not-null="true"/>
 </key>
 <many-to-many class=" Contact ">
 <column name="Contact_Id" length="4" sql-type="int"
 not-null="true"/>
 </many-to-many>
</bag>

Getting started
This should be enough information to get us rolling on the path to becoming NHibernate
superstars! Now that we have all of the primary fields mapped, let's map the Foreign
Key fields.

Chapter 4

[77]

Time for action – mapping relationships
If you look at the following database diagram, you will see that there are two relationships
that need to be mapped, BillToContact and ShipToContact (represented by
BillToContact_Id and ShipToContact_Id in the following screenshot).

Let's map these two properties into our hbm.xml files.

1.	 Open the OrderHeader.hbm.xml file, which should look something
as follows:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="Ordering.Data" assembly="Ordering.Data">
 <class name="OrderHeader" table="OrderHeader ">
 <id name="Id">
 <column name="Id"/>
 <generator class="hilo"/>
 </id>
 <property name="Number" type="String"/>
 <property name="OrderDate" type="DateTime"/>
 <property name="ItemQty" type="Int32"/>
 <property name="Total" type="Decimal"/>
 </class>

 </hibernate-mapping>

2.	 After the Total property, just before the end of the class tag (</class>), add a
many-to-one element to map the BillToContact to the Contact class.

<many-to-one name="BillToContact" class="Ordering.Data.Contact,
 Ordering.Data">
 <column name="BillToContact_Id" />
</many-to-one>

Data Cartography

[7�]

3.	 Next, open the Contact.hbm.xml file, which should look as follows:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="Ordering.Data" assembly="Ordering.Data">
 <class name=" Contact " table="Contact">
 <id name="Id">
 <column name="Id"/>
 <generator class="hilo"/>
 </id>
 <property name="FirstName" type="String"/>
 <property name="LastName" type="String"/>
 <property name="Email" type="String"/>
 </class>
</hibernate-mapping>

4.	 After the Email property, just before the end of the class tag (</class>),
add a one-to-many element to map the BillToOrderHeaders to the
OrderHeader class.

<bag name="BillToOrderHeaders" inverse="true" lazy="true"
 cascade="all-delete-orphan">
 <key column="BillToContact_Id"/>
 <one-to-many class="OrderHeader "/>
</bag>

5.	 That's it! You just mapped your first one-to-many property! Your finished
Contact.hbm.xml class should look as shown in the following screenshot:

Chapter 4

[7�]

What just happened?
By adding one-to-many and many-to-one child elements to the bag tag, we were able to
map the relationships to the Contact object, allowing us to use dotted notation to access
child properties of our objects within our code.

Like the great cartographers before us, we have the knowledge and experience to go forth
and map the world!

Have a go hero – flushing out the rest of our map
Now that you have some experience mapping fields and Foreign Keys from the database,
why not have a go at the rest of our database! Start off with the Contact-to-Phone MTM
table, and map the rest of the tables to the classes we created earlier, so that we will be
ready to actually connect to the database in the next chapter!

Fluent mapping
While XML mapping is undoubtedly the most common mapping method, the fluent
NHibernate method is gaining steam. This is a separate project from the main
NHibernate project, and you can find out more information about it at
http://fluentnhibernate.org/.

Some of the advantages of fluent mapping over XML mapping are as follows:

Compile-time mapping validation: XML is not evaluated by the compiler, so
renaming properties in your classes or other errors in your hbm.xml mapping would
not be detected until you actually run the application

Less verbose: XML by nature is fairly easy to read because of the number of
characters it requires to produce even simple documents, but this makes for
huge documents

Fewer repetitions: Instead of writing the same repetitive XML over and over, the
fluent interface exposes the advantages of native code

Fluent NHibernate provides these advantages by moving your mappings from XML
documents directly into your code. They're compiled along with your application! You can
also use Fluent's configuration system to specify patterns to make your code simpler and
more readable.

Data Cartography

[�0]

Remember the Address table we created for our Ordering system, shown in the following
screenshot? Let's take a look at a fluent map for this table.

The traditional XML map for this table would look something like the following block of code:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
 <class name="BasicWebApplication.Common.DataObjects.Address,
 BasicWebApplication" table="Address">
 <id name="Id" type="Int32" unsaved-value="null">
 <column name="Id" length="4" sql-type="int" not-null="true"
 unique="true" index="PK_Address"/>
 <generator class="hilo" />
 </id>
 <property name="Address1" type="String">
 <column name="Address1" length="255" sql-type="varchar"
 not-null="true"/>
 </property>
 <property name="Address2" type="String">
 <column name="Address2" length="255" sql-type="varchar"
 not-null="false"/>
 </property>
 <property name="City" type="String">
 <column name="City" length="255" sql-type="varchar"
 not-null="true"/>
 </property>
 <property name="State" type="String">
 <column name="`State`" length="2" sql-type="varchar"
 not-null="true"/>
 </property>
 <property name="Zip" type="String">
 <column name="Zip" length="12" sql-type="varchar"
 not-null="true"/>
 </property>

Chapter 4

[�1]

 <many-to-one name="Contact"
 class="BasicWebApplication.Common.DataObjects.Contact,
 BasicWebApplication">
 <column name="Contact_Id" length="4" sql-type="int"
 not-null="false"/>
 </many-to-one>
 <bag name="BillToOrderHeaders" inverse="true" lazy="true"
 cascade="all-delete-orphan">
 <key column="BillToAddress_Id"/>
 <one-to-many class="BasicWebApplication.Common.DataObjects.
 OrderHeader, BasicWebApplication"/>
 </bag>
 <bag name="ShipToOrderHeaders" inverse="true" lazy="true"
 cascade="all-delete-orphan">
 <key column="ShipToAddress_Id"/>
 <one-to-many class="BasicWebApplication.Common.DataObjects.
 OrderHeader, BasicWebApplication"/>
 </bag>
 </class>
</hibernate-mapping>

You have to admit that the code is pretty readable, but it sure is verbose! Do I really need 35
lines of code to describe classes that are already contained in my application? Wouldn't it be
cleaner to just write it as follows?

public class AddressMap : ClassMap<Address>
{
 WithTable("Address");
 Id(x => x.Id);
 Map(x => x.Address1).WithLengthOf(255);
 Map(x => x.Address2).WithLengthOf(255).Nullable();
 Map(x => x.City).WithLengthOf(255);
 Map(x => x.State).WithLengthOf(2);
 Map(x => x.Zip).WithLengthOf(12);
 References(x => x. Contact).Nullable();
 HasMany(x => x.BillToOrderHeaders).Inverse().Cascade.All();
 HasMany(x => x.ShipToOrderHeaders).Inverse().Cascade.All();
}

The preceding code is definitely more readable, if only because it's shorter.

The advantages of the fluent interface are many, from simpler compiled code to being able
to fit the entire table mapping onto one page.

Data Cartography

[�2]

If you are looking for an even simpler method, and if you can follow a couple of simple
conventions when you create your database, then you can use the "Auto Persistence Model"
to automatically map your data, and you don't need to write any mapping code at all! This
method is perfect if you have control of your database structure (you are the database
administrator or at least can change field names in the database if you want them changed
in your classes). All you have to do is create your tables, create your object classes (POCOs),
and tell Fluent to auto-map the tables to the classes because they have the same name.

Better yet, just create your POCOs, and use NHibernate to generate your database and
Fluent NHibernate to map it!

Pop quiz – fluent mapping
1. Which of the following is an advantage of fluent mapping?

a. More verbose

b. Integrated e-mail support

c. Compile-time mapping validation

d. None of the above

2. Fluent can be used without writing a single line of mapping code.

a. True

b. False

c. Using Strings

Summary
Wow, we made a lot of progress in this chapter! We talked more about mapping in a few
pages than most people learn in a lifetime.

Specifically, we covered:

How to map the basic elements of a table into a class

Mapping OTM and MTM relationships

The basics of Fluent mapping

Now that we're NHibernate mapping rockstars, we're ready to talk about connecting to the
database and managing NHibernate sessions, which is the topic of the next chapter.

�
The Session Procession

Using what we have already learned, NHibernate knows enough about our
data structure and our objects. Now it's time to let NHibernate connect to the
database.

In this chapter, we'll talk about:

What is an NHibernate session?

How does it differ from a regular database session?

Retrieving and committing data

Session strategies for ASP.NET

Using what we have already learned and the information in this chapter, we will be able to
store and retrieve information from the database!

What is an NHibernate session?
Think of an NHibernate session as an abstract or virtual conduit to the database. Gone
are the days when you have to create a Connection, open the Connection, pass the
Connection to a Command object, create a DataReader from the Command object,
and so on.

With NHibernate, we ask the SessionFactory for a Session object, and that's it.
NHibernate handles all of the "real" sessions to the database, connections, pooling, and so
on. We reap all the benefits without having to know the underlying intricacies of all of the
database backends we are trying to connect to.

The Session Procession

[��]

Time for action – getting ready
Before we actually connect to the database, we need to do a little "housekeeping". Just a
note, if you run into trouble (that is, your code doesn't work like the walkthrough), then
don't panic. See the troubleshooting section at the end of this Time for action section.

1.	 Before we get started, make sure that you have all of the Mapping and Common
files and that your Mapping files are included as "Embedded Resources" (if you're
not sure, see Chapter 4, Data Cartography). Your project should look as shown in
the following screenshot:

2.	 The first thing we need to do is create a new project to use to create our sessions.
Right-click on the Solution 'Ordering' and click on Add | New Project.

Chapter 5

[��]

3.	 For our tests, we will use a Console Application and name it Ordering.Console. Use
the same location as your previous project.

4.	 Next, we need to add a few references. Right-click on the References folder and
click on Add Reference. In VB.NET, you need to right-click on the Ordering.Console
project, and click on Add Reference.

The Session Procession

[��]

5.	 Select the Browse tab, and navigate to the folder that contains your NHibernate
DLLs. You should have six files in this folder. Select the NHibernate.dll, Castle.Core.
dll, Castle.DynamicProxy2.dll, Iesi.Collections.dll, log4net.dll, and NHibernate.
ByteCode.Castle.dll files, and click on OK to add them as references to the project.

6.	 Right-click on the References folder (or the project folder in VB.NET), and click on
Add Reference again. Select the Projects tab, select the Ordering.Data project, and
click on OK to add the data tier as a reference to our console application.

Chapter 5

[�7]

7.	 The last thing we need to do is create a configuration object. We will discuss
configuration in a later chapter, so for now, it would suffice to say that this will give
us everything we need to connect to the database. Your current Program.cs file in
the Ordering.Console application should look as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace Ordering.Console
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Or, if you are using VB.NET, your Module1.vb file will look as follows:

Module Module1

 Sub Main()
 End Sub

End Module

8.	 At the top of the file, we need to import a few references to make our
project compile. Right above the namespace or Module declarations, add
the using/Imports statements for NHibernate, NHibernate.Cfg, and
Ordering.Data:

using NHibernate;
using NHibernate.Cfg;
using Ordering.Data;

In VB.NET you need to use the Imports keyword as follows:

Imports NHibernate
Imports NHibernate.Cfg
Imports Ordering.Data

The Session Procession

[��]

9.	 Inside the Main() block, we want to create the configuration object that will
tell NHibernate how to connect to the database. Inside your Main() block, add the
following code:

Configuration cfg = new Configuration();
cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionProvider,
 typeof(NHibernate.Connection.DriverConnectionProvider)
 .AssemblyQualifiedName);

cfg.Properties.Add(NHibernate.Cfg.Environment.Dialect,
 typeof(NHibernate.Dialect.MsSql2008Dialect)
 .AssemblyQualifiedName);

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionDriver,
 typeof(NHibernate.Driver.SqlClientDriver)
 .AssemblyQualifiedName);

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionString,
 "Server= (local)\\SQLExpress;Database=
 Ordering;Trusted_Connection=true;");

cfg.Properties.Add(NHibernate.Cfg.Environment.
 ProxyFactoryFactoryClass, typeof
 (NHibernate.ByteCode.LinFu.ProxyFactoryFactory)
 .AssemblyQualifiedName);

cfg.AddAssembly(typeof(Address).AssemblyQualifiedName);

For a VB.NET project, add the following code:

Dim cfg As New Configuration()
cfg.Properties.Add(NHibernate.Cfg.Environment. _
 ConnectionProvider, GetType(NHibernate.Connection. _
 DriverConnectionProvider).AssemblyQualifiedName)

cfg.Properties.Add(NHibernate.Cfg.Environment.Dialect, _
 GetType(NHibernate.Dialect.MsSql2008Dialect). _
 AssemblyQualifiedName)

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionDriver, _
 GetType(NHibernate.Driver.SqlClientDriver). _
AssemblyQualifiedName)

Chapter 5

[��]

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionString, _
 "Server= (local)\SQLExpress;Database=Ordering; _
 Trusted_Connection=true;")

cfg.Properties.Add(NHibernate.Cfg.Environment. _
 ProxyFactoryFactoryClass, GetType _
 (NHibernate.ByteCode.LinFu.ProxyFactoryFactory). _
 AssemblyQualifiedName)

cfg.AddAssembly(GetType(Address).AssemblyQualifiedName)

10.	Lastly, right-click on the Ordering.Console project, and select Set as Startup Project,
as shown in the following screenshot:

11.	Press F5 or Debug | Start Debugging and test your project. If everything goes
well, you should see a command prompt window pop up and then go away.
Congratulations! You are done!

12.	However, it is more than likely you will get an error on the line that says
cfg.AddAssembly(). This line instructs NHibernate to "take all of my HBM.xml
files and compile them". This is where we will find out how well we handcoded our
HBM.xml files.

The Session Procession

[�0]

The most common error that will show up is MappingException was unhandled.
If you get a mapping exception, then see the next step for troubleshooting tips.

13.	Troubleshooting: NHibernate will tell us where the errors are and why they are an
issue. The first step to debug these issues is to click on the View Detail link under
Actions on the error pop up. This will bring up the View Detail dialog, as shown in
the following screenshot:

Chapter 5

[�1]

14.	 If you look at the message, NHibernate says that it Could not compile the mapping
document: Ordering.Data.Mapping.Address.hbm.xml. So now we know that the
issue is in our Address.hbm.xml file, but this is not very helpful. If we look at the
InnerException, it says "Problem trying to set property type by reflection". Still not
a specific issue, but if we click on the + next to the InnerException, I can see that
there is an InnerException on this exception.

The second InnerException says "class Ordering.Data.Address, Ordering.Data,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null not found while looking for
property: Id".

Now we are getting closer. It has something to do with the ID property. But wait,
there is another InnerException. This InnerException says "Could not find a getter
for property 'Id' in class 'Ordering.Data.Address'". How could that be? Looking at
my Address.cs class, I see:

using System;
using System.Collections.Generic;
using System.Text;

namespace Ordering.Data
{
 public class Address
 {
 }
}

Oops! Apparently I stubbed out the class, but forgot to add the actual properties. I
need to put the rest of the properties into the file, which looks as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace Ordering.Data
{
 public class Address
 {
 #region Constructors

 public Address() { }

 public Address(string Address1, string Address2, string
 City, string State, string Zip)
 : this()
 {

The Session Procession

[�2]

 this.Address1 = Address1;
 this.Address2 = Address2;
 this.City = City;
 this.State = State;
 this.Zip = Zip;
 }

 #endregion

 #region Properties

 private int _id;
 public virtual int Id
 {
 get { return _id; }
 set { _id = value; }
 }

 private string _address1;
 public virtual string Address1
 {
 get { return _address1; }
 set { _address1 = value; }
 }

 private string _address2;
 public virtual string Address2
 {
 get { return _address2; }
 set { _address2 = value; }
 }

 private string _city;
 public virtual string City
 {
 get { return _city; }
 set { _city = value; }
 }

 private string _state;
 public virtual string State
 {
 get { return _state; }
 set { _state = value; }

Chapter 5

[��]

 }

 private string _zip;
 public virtual string Zip
 {
 get { return _zip; }
 set { _zip = value; }
 }

 private Contact _contact;
 public virtual Contact Contact
 {
 get { return _contact; }
 set { _contact = value; }
 }

 #endregion
 }
}

15.	By continuing to work my way through the errors that are presented in the
configuration and starting the project in Debug mode, I can handle each
exception until there are no more errors.

What just happened?
We have successfully created a project to test out our database connectivity, and an NHibernate
Configuration object which will allow us to create sessions, session factories, and a whole
litany of NHibernate goodness!

What is a session factory?
The NHibernate framework uses the abstract factory pattern (see http://en.wikipedia.
org/wiki/Abstract_factory_pattern) for creating sessions, and this factory is created
from a Configuration object.

The following line of code builds a Session Factory object from our configuration (cfg)
object that we'll use to create sessions:

ISessionFactory sessionFactory = cfg.BuildSessionFactory();

The Session Procession

[��]

From now on, when we want to create a session, we just ask the session factory to open
a session for us as follows:

ISession session = sessionFactory.OpenSession();

In addition to opening the session, we want to wrap our statements in a "transaction" to
decrease database overhead. I know what you are thinking, wouldn't creating a transaction
for every statement actually INCREASE database overhead? In reality, the database already
uses implicit transactions for every call we make, so by explicitly telling it to create a single
transaction for all of our operations, we are actually reducing the number of calls it makes.
To create a transaction for our session, all we need to do is tell the session to begin a
transaction for us:

ITransaction tx = session.BeginTransaction();

Creating your first session
Sessions in NHibernate aren't really too tricky, but they are INCREDIBLY powerful. With an
NHibernate session, I can perform all of the CRUD (Create, Retrieve, Update, and Delete)
operations with ease. Consider the following example:

ISession session = sessionFactory.OpenSession();
ITransaction tx = session.BeginTransaction();
Contact contact = new Contact("Joe", "Jones", "jj@nhibernate.com");
session.Save(contact);
tx.Commit();

With five short lines of code, we created a new contact and stored it into the database. The
first two lines creates a session from the session factory and start a transaction, the
third line creates the contact object from the Contact class that we created, and the last
two lines commit it to the database. What if we wanted to add an address before we saved
it? We would have to include another three lines of code as follows:

ISession session = sessionFactory.OpenSession();
ITransaction tx = session.BeginTransaction();
Contact contact = new Contact("Joe", "Jones", "jj@nhibernate.com");
Address address = new Address("123 USA St", null,
 "MainTown", "IL", "80305");
contact.Addresses = new List<Address>();
contact.Addresses.Add(address);
session.SaveOrUpdate(contact);
tx.Commit();

All we need to do is create the Address object, attach it to the contact object, and when
we save the contact, the address also gets saved—automagically!

Chapter 5

[��]

Instead of having to instantiate the List<X> on every object every time you
use it, put some code in the getter of your property to handle it. The code for
the Addresses property is as follows:

private IList<Address> _addresses;
public virtual IList<Address> Addresses
{
 get
 {
 if (_addresses == null)
 _addresses = new List<Address>();
 return _addresses;
 }
 set
 {
 _addresses = value;
 }
}

Why in the getter, you may ask? Simple, when you call contact.
Addresses.Add(), it calls the getter of the contact.Addresses to
retrieve the collection before it calls Add() on it. Our code says "if it's null,
create a new list, then return it".

Did you notice that we used the .SaveOrUpdate() construct this time? When we create
a new object, we can call .Save() to commit it to the database, and after we update it,
we can call .Update(). However, if we don't want to be bothered whether it's new or not,
we can just call .SaveOrUpdate() and let NHibernate determine if it is new and how to
handle it appropriately.

Why do we call .Commit()?
I'm sure you are wondering why we keep calling .Commit() after we call .Save().
Basically, .Commit() closes our transaction and synchronizes the cached objects
with the database.

We'll talk more about caching later, but in its simplest configuration, NHibernate uses a first
level cache (or the session cache) to store objects. When you first query an object from the
database, it is placed into this cache.

If you haven't told NHibernate to update or delete an object from the database, and it has
already been cached, then it will pull this object from the cache rather than round-tripping
to the database, improving performance.

The Session Procession

[��]

By calling .Commit(), we let NHibernate know that we have updated the record(s) in the
transaction and that it should persist them to the database.

NHibernate session versus database session?
An NHibernate session encapsulates and abstracts a database session. When we use
NHibernate, we don't have to be concerned with many of the operations of the database to
include SQL statements and even session manipulation. We let the session factory take care
of all that database headache, and we just sit back and smile.

Time for action – creating a session and doing some CRUD
Now it's time to get to the real meat! We have spent the last four chapters "getting ready", and
now we will actually create some data. Just like before, if you run into trouble (doesn't work
like the walkthrough), see the troubleshooting section at the end of this Time for action.

1.	 Open the Program.cs or Module1.vb from the last Time for action, and scroll to
the line that says cfg.AddAssembly(typeof(Address).Assembly). On a new
line, add the following code:
ISessionFactory sessionFactory = cfg.BuildSessionFactory();

In VB.NET, use this code:
Dim sessionFactory As ISessionFactory = cfg.BuildSessionFactory()

2.	 Press F5 or Debug | Start Debugging and test your project. If everything goes well,
once again a command prompt window will pop up and then go away. If you happen
to get an InvalidProxyTypeException, as shown in the following screenshot, it
usually has to do with a property not being marked as "virtual" or "Overridable".

Chapter 5

[�7]

3.	 If this is your issue, then change your property to include the virtual or
Overridable keyword as follows:

private int _id;
public virtual int Id
{
 get { return _id; }
 set { _id = value; }
}

Or in VB.NET:

Private _id As Integer
 Public Overridable Property Id() As Integer
 Get
 Return _id
 End Get
 Set(ByVal value As Integer)
 _id = value
 End Set
End Property

4.	 Once your project is able to create a session factory without throwing any errors,
we are ready to go! Add the following code to your project and we can create a
contact object and commit it to the database with only four lines of code:

ISession session = sessionFactory.OpenSession();
ITransaction tx = session.BeginTransaction();
Contact contact = new Contact("George", "Washington",
 "gw@usa.gov");
session.Save(contact);
tx.Commit();

Or in VB.NET, it will be as follows:

Dim session As ISession = sessionFactory.OpenSession()
Dim tx as ITransaction = session.BeginTransaction()
Dim contact As New Contact("George", "Washington", "gw@usa.gov")
session.Save(contact)
tx.Commit()

The Session Procession

[��]

5.	 Did it work? We have two ways of finding out, namely, using NHibernate
or using SQL Server. Let's try SQL Server first. Open SSMS, and click on the
Ordering database, then on New Query in the toolbar.

6.	 In the resulting query window, type the following query and either hit F5 or click on
the Execute button.

select * from Contact

7.	 The previous query should return one (or more, depending on how many times
you ran the project) row(s). The returned rows should look as shown in the
following screenshot:

8.	 If we wanted to execute the same query from NHibernate, then we can add this
code. Once we have the IList of contact objects, we can look at the .Count
property of the contacts object to see how many items we retrieved. This can be
done as follows:

ICriteria crit = session.CreateCriteria(typeof(Contact));
IList<Contact> contacts = crit.List<Contact>();
int contactCount = contacts.Count;

Once again, in VB.NET:

Dim crit As ICriteria = session.CreateCriteria(GetType(Contact))
Dim contacts As IList(Of Contact) = crit.List(Of Contact)()
Dim contactCount as Integer = contactCount.Count

Chapter 5

[��]

Don't get too wrapped up in the ICriteria object right now,
we will take an extensive look at it in Chapter 8, Writing Queries. It
should suffice to say that it is used to query and filter data.

9. If we wanted to remove the objects we created, we can just iterate through them
and call Delete(), while passing in each object. Add the following code into your
project, and let's remove our contacts:

foreach (Contact ctc in contacts)
{
 session.Delete(ctc);
}
tx.Commit();

In VB.NET, it would look more like this:

For Each ctc As Contact In contacts
 session.Delete(ctc)
Next
tx.Commit()

10.	Execute the code by pressing F5.

11.	Go back to SSMS, and execute your select query again. As we deleted all of the
contacts, the query should return zero rows.

The Session Procession

[100]

12.	Now, let's create a slightly more complex object and save it to the database. Let's
create an OrderHeader with an associated Contact that has an address and
associate that Address and the Contact to the OrderHeader:

Contact ordCntct = new Contact("Martha", "Washington",
 "mw@usa.gov");
Address ordAddr = new Address("1600 Pennsylvania Ave NW", null,
 "Washington", "DC", "20500");
ordAddr.Contact = ordCntct;
ordCntct.Addresses = new List<Address>();
ordCntct.Addresses.Add(ordAddr);
OrderHeader header = new OrderHeader();
header.Number = "0000001";
header.OrderDate = DateTime.Now;
header.BillToContact = ordCntct;
header.BillToAddress = ordAddr;
header.ShipToContact = ordCntct;
header.ShipToAddress = ordAddr;
OrderHeader header = new OrderHeader("00001", DateTime.Now, -1,
 -1, ordCntct, ordCntct, ordAddr, ordAddr);
session.SaveOrUpdate(header);
tx.Commit();

Again, in VB.NET:

Contact ordCntct = new Contact("Martha", "Washington", _
 "mw@usa.gov");
Address ordAddr = new Address("1600 Pennsylvania Ave NW", null, _
 "Washington", "DC", "20500");
ordAddr.Contact = ordCntct;
ordCntct.Addresses = new List<Address>();
ordCntct.Addresses.Add(ordAddr);
OrderHeader header = new OrderHeader();
header.Number = "0000001";
header.OrderDate = DateTime.Now;
header.BillToContact = ordCntct;
header.BillToAddress = ordAddr;
header.ShipToContact = ordCntct;
header.ShipToAddress = ordAddr;
OrderHeader header = new OrderHeader("00001", DateTime.Now, -1, _
 -1, ordCntct, ordCntct, ordAddr, ordAddr);
session.SaveOrUpdate(header);
tx.Commit();

Chapter 5

[101]

13.	Now let's update our OrderHeader object and set the item quantity to ten items
and update it.

header.ItemQty = 10;
session.Update(header);
tx.Commit();

It's nearly identical in VB.NET:

header.ItemQty = 10
session.Update(header)
tx.Commit()

14.	As we're at it, let's change the order number to "chi3131":

header.Number = "chi3131";
session.SaveOrUpdate(header);
tx.Commit();

And the VB.NET is the same without the semi-colons:

header.Number = "chi3131"
session.SaveOrUpdate(header)
tx.Commit()

Pop quiz – creating and updating records
1. What object do we use to create new sessions?

a. Configuration object

b. E-mail object

c. Session Factory object

d. None of the above

2. Which command would save a record to the database?

a. session.Save()

b. session.Update()

c. session.SaveOrUpdate()

d. All of the above

3. How do we remove a record from the database?

a. session.Clear()

b. session.Remove()

c. session.Delete()

d. tx.Commit()

The Session Procession

[102]

Have a go hero – creating a full order
Now that we know how to create objects and child objects of those objects and so on,
let's take it one step further. Create a new OrderHeader object with a billing and shipping
Contact with two separate Addresses, namely, one for shipping and one for billing. Create
a few OrderItem objects and associate them with the OrderHeader. Save all of these
objects to the database, then create an ICriteria and query it back and take a look at the
objects that are returned.

Sessions in ASP.NET
Because of the stateless nature of ASP.NET, traditional session management doesn't work
so well. If we try to create a single session and use it across several pages or requests,
then this statelessness makes it more difficult for us to maintain this than it would in
say a Winforms application.

There are a few strategies that we can use to overcome this, including implementing a
Singleton pattern, storing the session in the user's Context, or using another framework
such as NHibernate.Burrow.

The Singleton is probably the easiest to implement. We simply create a sealed class (meaning
all of the member methods and variables are declared static) and create a property called
Instance. Then, we create a non-static constructor that has the implementation details
we want such as the SessionFactory property.

In C#, this SessionProvider class would look as follows:

public sealed class SessionProvider
{
 static readonly SessionProvider instance = new SessionProvider();
 public static SessionProvider Instance
 {
 get
 {
 return instance;
 }
 }

 public ISessionFactory SessionFactory { get; set; }

 public SessionProvider()
 {
 Configuration cfg = new Configuration();
 cfg.Properties.Add(NHibernate.Cfg.Environment.
 ConnectionProvider, typeof(NHibernate.Connection

Chapter 5

[10�]

 .DriverConnectionProvider).AssemblyQualifiedName);
 cfg.Properties.Add(NHibernate.Cfg.Environment.Dialect,
 typeof(NHibernate.Dialect.MsSql2008Dialect)
 .AssemblyQualifiedName);
 cfg.Properties.Add(NHibernate.Cfg.Environment.
 ConnectionDriver, typeof(NHibernate.Driver.SqlClientDriver)
 .AssemblyQualifiedName);
 cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionString,
 "Server= (local)\\SQLExpress;Database=ordering;
 Trusted_Connection=true;");
 cfg.Properties.Add(NHibernate.Cfg.Environment.
 ProxyFactoryFactoryClass, typeof(NHibernate.ByteCode.LinFu
 .ProxyFactoryFactory).AssemblyQualifiedName);
 cfg.AddAssembly(typeof(BasicWebApplication.Common
 .DataObjects.Address).Assembly);

 SessionFactory = cfg.BuildSessionFactory();
 }
}

The same factory in VB.NET is just as easy to include:

Public NotInheritable Class SessionProvider
 Shared ReadOnly m_instance As New SessionProvider()
 Public Shared ReadOnly Property Instance() As SessionProvider
 Get
 Return m_instance
 End Get
 End Property

Private _SessionFactory As ISessionFactory
 Public Property SessionFactory() As ISessionFactory
 Get
 Return _SessionFactory
 End Get
 Set(ByVal value As ISessionFactory)
 _SessionFactory = value
 End Set
 End Property

 Public Sub New()
 Dim cfg As New Configuration()
 cfg.Properties.Add(NHibernate.Cfg.Environment. _
 ConnectionProvider,GetType(NHibernate.Connection. _
 DriverConnectionProvider).AssemblyQualifiedName)
 cfg.Properties.Add(NHibernate.Cfg.Environment.Dialect, _
 GetType(NHibernate.Dialect.MsSql2008Dialect). _
 AssemblyQualifiedName)

The Session Procession

[10�]

 cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionDriver, _
 GetType(NHibernate.Driver.SqlClientDriver). _
 AssemblyQualifiedName)
 cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionString, _
 "Server=(local)\SQLExpress;Database=ordering; _
 Trusted_Connection=true;")
 cfg.Properties.Add(NHibernate.Cfg.Environment
 .ProxyFactoryFactoryClass, GetType(NHibernate.ByteCode.LinFu. _
 ProxyFactoryFactory).AssemblyQualifiedName)
 cfg.AddAssembly(GetType(BasicWebApplication.Common.DataObjects. _
 Address).Assembly)
 SessionFactory = cfg.BuildSessionFactory()
 End Sub
End Class

Now, to create a session, all we have to do is call as follows:

ISession session = SessionProvider.Instance.SessionFactory.
 OpenSession()

Another strategy is to store the session in the Context.Items using the Application_
BeginRequest and Application_EndRequest methods in the Global.asax code or
in an HTTPModule. I personally don't like these methods as much because it makes the
ASP.NET application more difficult to troubleshoot, as you are adding an additional step
in the lifecycle of the page.

One of the better frameworks for managing sessions (as well as other items like Units of Work,
which we will talk about in Chapter 12, Odds and Ends) is NHibernate.Burrow. This framework
is part of the NHibernate.Contrib project. You can find out more information about this
framework and how to use it at http://nhforge.org/wikis/burrow/home.aspx.

Summary
We covered some great topics in this chapter that include:

What is an NHibernate session?

How does it differ from a regular database session?

A little about retrieving and committing data

Using sessions within ASP.NET

We also touched a little on configuration, caching, and session factories.

Now that we've learned about some basic data manipulation, we're ready to move on to
logging, which is the topic of the next chapter.

�
I'm a Logger

According to the Apache project (http://www.apache.org), approximately
4 percent of all code written is for logging. This is a pretty significant number,
especially if your application is of any real size. If we are going to write all of
this code, we might as well use a framework that will make it easy for us to
configure what gets logged, where we log it, and how much of it gets logged.

In this chapter, we'll talk about:

Why do we need to log?

Why log4net?

Creating a logger

Creating an appender

Integrating NHibernate logging

Let's get started.

Why do we need to log?
Good question, glad you asked. We need to log a number of events, from simple
instrumentation items, such as configuration times and application performance, to
audit logging and application errors. All of these events tell us different things about
our application or provide us with additional information, should we require it.

I’m a Logger

[10�]

Why log�net?
There are three primary reasons for choosing log4net as our logging framework. First and
foremost, it's an incredibly powerful logging framework with open extensibility. Second,
it's open source so there is no charge associated with implementing or using it. Last,
but not least, it's bundled with NHibernate because NHibernate uses it as its internal
logging framework.

More information about log4net can be found at http://logging.apache.org/log4net.

If we are using log4net, we can simply set a few configuration options and access a
number of interesting NHibernate internal log operations. One of the most helpful of these
operations is the ability to view the SQL statements as they are generated. You can see a
sample of this in the following screenshot:

As you can see, having access to this information is really useful. By knowing the SQL that
NHibernate is executing, we can take this SQL statement and execute it directly in our SQL
tool, such as SSMS, and see EXACTLY what is being returned to NHibernate. This helps us
troubleshoot mapping issues, database design issues, and so on.

Chapter 6

[107]

The SQL listed here is as follows:

SELECT shiptoorde0_.ShipToContact_Id as ShipToCo7_1_, shiptoorde0_.Id as
Id1_,

shiptoorde0_.Id as Id4_0_, shiptoorde0_.Number as Number4_0_,

shiptoorde0_.OrderDate as OrderDate4_0_, shiptoorde0_.ItemQty as
ItemQty4_0_,

shiptoorde0_.Total as Total4_0_, shiptoorde0_.BillToContact_Id as
BillToCo6_4_0_,

shiptoorde0_.ShipToContact_Id as ShipToCo7_4_0_

FROM OrderHeader shiptoorde0_

WHERE shiptoorde0_.ShipToContact_Id = 163842

If we execute this in SSMS, we can see the records that the database returned to NHibernate.

Getting started
log4net has three major objects that we need to be concerned with—the LogManager,
loggers, and appenders. Imagine that log4net is a big bucket into which we throw all of
the items we want to log on little scraps of paper. Instead of writing all of these pieces of
paper by hand, we use an object called a logger. Loggers are used to classify and organize
information as it is added to the bucket.

Once we have our information in the bucket, we need to get it out somehow, so we use
an appender. Appenders take information from the bucket and "write" it out somewhere,
depending on our configuration.

Multiple appenders can process the same log event and handle it in their own way. A couple
of good examples of this are a Rolling File appender and an e-mail appender. If, for example,
a high priority event is logged (such as a critical application error), then we may not only
want to log it to a file, but also e-mail it to an administrator. We can configure appenders
for each of these situations and many others that will be discussed later in the chapter.

To give you an idea of what kind of information log4net can provide about NHibernate,
we add the following line of code as the first line of the Main() method of our Ordering.
Console application. This gives us a lot of logging information automatically.

log4net.Config.BasicConfigurator.Configure();

I’m a Logger

[10�]

With this simple code in place, the basic log4net configuration will be invoked, and as we
are running a console application, it will be logged to the console. When you run the
application, you will see a lot of NHibernate debug information scroll by. It should look
something as follows:

Have a go hero – adding some logging
Try adding the following code to your Main() method of the console application, and then
run it. Make sure you add a reference to the log4net.dll to your application (if it's not
already there) and a using log4net statement at the top.

log4net.Config.BasicConfigurator.Configure();

Did your results look like those in the previous screenshot?

Configuration
Before we can actually do anything useful with log4net, we need to set it up. This basic
configuration, much like NHibernate's own configuration, can be added in multiple places.
log4net can be configured in code, as follows:

log4net.Appender.RollingFileAppender fileAppender = new
 log4net.Appender.RollingFileAppender();
fileAppender.Name = "GeneralLog";
fileAppender.File = "Logs/general.txt";
fileAppender.AppendToFile = true;
fileAppender.MaximumFileSize = "100KB";
fileAppender.RollingStyle = log4net.Appender.RollingFileAppender.
RollingMode.Size;
fileAppender.MaxSizeRollBackups = 5;

Chapter 6

[10�]

fileAppender.Layout = new log4net.Layout.PatternLayout("%d{HH:mm:
ss.fff} [%t] %-5p %c - %m%n");
log4net.Config.BasicConfigurator.Configure(fileAppender);

log4net is more traditionally configured from an app.config or web.config file, or as an
XML file deployed with the application. This allows much quicker reconfiguration if additional
logging is needed. For instance, if you are having an issue in production, you can simply flip
the level flag on your file appender from Error to Debug and any additional logs that you
have declared as Debug will now be added to that log file. This allows you to reconfigure
logging while the application is still running, without having to deploy a debug build or
attach a debugger to your application.

Application, web, and XML configuration files are all constructed the same way, using an
XML type layout. The previous files' appender would look something as follows in the
configuration file:

<appender name="GeneralLog" type="log4net.Appender.
RollingFileAppender">
 <file value="Logs/general.txt" />
 <appendToFile value="true" />
 <maximumFileSize value="100KB" />
 <rollingStyle value="Size" />
 <maxSizeRollBackups value="5" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d{HH:mm:ss.fff} [%t] %-5p %c - %m%n"/>
 </layout>
</appender>

The major parts of the appender has just declared that you need to be concerned with
the name (GeneralLog) and the type (log4net.Appender.RollingFileAppender).
These two items will be used to control what items get logged and what type of logging
gets performed.

I’m a Logger

[110]

Time for action – adding some logging
In our Ordering.Console application of Chapter 5, The Session Procession, we were able
to query data out of the database using a ICriteria object. We saw that NHibernate
returned the data we asked for, but what if we wanted to know more? How do we see the
SQL that was actually generated? Let's add some logging to our console application to show
us the SQL that NHibernate generates.

1. Open the References folder of the Ordering.Console application. Is the log4net dll
already referenced? If not, then right-click on References, click Add Reference, and
browse to the log4net.dll that was included with the NHibernate release.

2.	 Right-click on the Ordering.Console application, and select Add | New Item. Select
Application Configuration File, leave the name as App.config, and click on the
Add button, as shown in the following screenshot:

Chapter 6

[111]

3.	 The first thing we need to add to our App.config file is a <configSections>
tag inside the <configuration> section, with an additional closing
</configSections> tag, as shown in the following code snippet:

<?xml version="1.0"?>
<configuration>
 <configSections>
 </configSections>
</configuration>

4.	 Inside our <configSections> block, we need to add a configuration section
handler for log4net, so .NET will know how to interpret the log4net section we are
going to create next. This simply says "when you get to a section named 'log4net',
use the log4net.Config.Log4netConfigurationSectionHandler in the
log4net assembly to process it".

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,
 log4net"/>
 </configSections>
</configuration>

5.	 Next, under the closing </configSections> tag, before the closing
</configuration> tag, we will add our log4net block, as shown in the
following block of code:

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,
 log4net"/>
 </configSections>
 <log4net>
 </log4net>
</configuration>

I’m a Logger

[112]

6.	 Inside our <log4net> block, we'll add a simple appender (in this case, it's the
console appender). We'll talk more about the <conversionPattern> later, but
basically, it controls the format of the messages. In this case, it displays the date
(%d{HH:mm:ss.fff}), the ID of the thread the log came from in square brackets
([%t]), the priority of the log (%p), the class the message came from (%c), a dash
(-), the content of the log message (%m), and a newline (%n).

<log4net>
 <appender name="Console" type="log4net.Appender.ConsoleAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d{HH:mm:ss.fff} [%t] %p %c -
 %m%n"/>
 </layout>
 </appender>
</log4net>

7.	 The last item we need to add to our application configuration is a <root> block.
This is the "default" block for log4net, which will set up the basic configuration.
Right after the </appender> tag, we'll add a <root> block and an
<appender-ref> tag to tell log4net to activate the "Console" appender.

 </appender>
 <root>
 <appender-ref ref="Console"/>
 </root>
</log4net>

8.	 If you added the log4net configuration earlier in the Have a go hero—adding some
logging section, then comment it out, as shown in the next line of code. If you didn't
add it earlier, then don't worry, we don't need it.

//log4net.Config.BasicConfigurator.Configure();

In VB.NET, comment the code as follows:

'log4net.Config.BasicConfigurator.Configure()

9.	 At the top of our Main() method, add the following line:

log4net.Config.XMLConfigurator.Configure();

Or in VB.NET:

log4net.Config.XMLConfigurator.Configure()

Chapter 6

[11�]

10.	Pressing F5 or Debug | Start Debugging will execute the code, and you will see the
following screenshot:

11.	That's it! You've configured your first log4net XML configuration!

What just happened?
We just configured log4net using an XML configuration in the application configuration
file. This is my personal favorite way to configure log4net because all of my configuration
information is in the same place as my other application information.

We will learn more about filtering these messages and directing them to different appenders
in the next few sections.

NHibernate log messages
Now that we have some basic logging configured, NHibernate spits out a lot of information.
You will see various messages displayed such as "Using reflection optimizer" and "Mapping
resource:". These messages let you know what NHibernate is doing, what stage of operation
it is in, and what issues (if any) it encounters.

One of the first things you will see in these logs is the name of the assembly that we told
NHibernate to read the mapping files from.

07:18:08.295 [10] INFO NHibernate.Cfg.Configuration - Mapping resource:
Ordering.Data.Mapping.Address.hbm.xml

I’m a Logger

[11�]

As we included the *.hbm.xml files in the Ordering.Data.Mapping assembly,
NHibernate is processing these files and logging as it processes each property of each file.
NHibernate will list each of the properties in the mapping document, which class it belongs
to, as well as the database field that is it being mapped to. An example of one of these
mapping entries would look something like as follows:

07:32:49.299 [10] INFO NHibernate.Cfg.XmlHbmBinding.Binder - Mapping
class: Ordering.Data.Address -> Address

07:32:49.410 [10] DEBUG NHibernate.Cfg.XmlHbmBinding.Binder - Mapped
property: Id -> Id, type: Int32

07:32:49.474 [10] DEBUG NHibernate.Cfg.XmlHbmBinding.Binder - Mapped
property: Address1 -> Address1, type: String

07:32:49.479 [10] DEBUG NHibernate.Cfg.XmlHbmBinding.Binder - Mapped
property: Address2 -> Address2, type: String

...

6162 [9] DEBUG NHibernate.Cfg.XmlHbmBinding.Binder (null) - Mapped
property: Contact -> Contact_Id, type: Ordering.Data.Contact

This line says that the XML HBM Binding binder is being used to map the Contact property
of type Ordering.Data.Contact to the Contact_Id field from the database. This can
be useful to double check your mapping files and to make sure that they are doing what you
think they should be.

While all this information is useful sometimes, most of the time it's information overload.
Did you notice the various logging levels, INFO and DEBUG? While the INFO is fairly helpful
to us, the DEBUG messages add a lot of useless chatter unless we are trying to debug a
specific issue. How can we filter out these DEBUG messages you ask? Simple. We just need to
tell log4net to only log messages at a priority higher than DEBUG, so we will add a minimum
level to our root level log4net configuration.

<root>
 <level value="INFO"/>

 <appender-ref ref="Console"/>
</root>

Chapter 6

[11�]

By adding this minimum level tag, we filter out the DEBUG level entries, which helps make
our log more readable:

Now each of the mapping classes displays on only three lines. As we usually need only a
small subset of information to make sure NHibernate is doing what we think it should be
doing, this minimal information is usually sufficient.

We can set the minimum level to any of the seven predefined levels: ALL, DEBUG, INFO,
WARN, ERROR, FATAL, and OFF.

Appenders
There are a number of predefined appender types, from file and console appenders to
telnet, database, and even e-mail. If there isn't a predefined appender that meets your
needs, then you can write your own (as log4net is an extensible framework) and make it
work any way that you like! I recently saw an appender that creates entries on the popular
microblogging website Twitter.

Defining an appender is as simple as adding it to the configuration and telling log4net to
write to it. If we wanted to log to a file, for example, we could use the Rolling File appender.
I use the Rolling File appender all the time because you can configure it to rotate logs on a
daily or size basis, along with numerous other options.

I’m a Logger

[11�]

To define a Rolling File appender that will create a new log every day, we could use the
following code:

<appender name="RollingLogFileAppender"
 type="log4net.Appender.RollingFileAppender">
 <file value="logfile" />
 <appendToFile value="true" />
 <rollingStyle value="Date" />
 <datePattern value="yyyyMMdd" />
 <staticFileName value="false" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date [%thread] %-5level %logger
 [%property{NDC}] - %message%newline" />
 </layout>
</appender>

This appender will create a log file with the name logfile20200925 in the application
directory. While this is useful, we can make it better. First, let's change the name of the
value parameter of the file tag to include a path, and we'll also sneak a change into the
datePattern tag to append .log to the end as follows:

<appender name="RollingLogFile"
 type="log4net.Appender.RollingFileAppender">
 <file value="logs\logfile" />
 <appendToFile value="true" />
 <rollingStyle value="Date" />
 <datePattern value="yyyy-MM-dd'.log'" />
 <staticFileName value="false" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date [%thread] %-5level %logger
 [%property{NDC}] - %message%newline" />
 </layout>
</appender>

By simply adding in a path and appending a literal string '.log' inside our double quotes at
the end of the datePattern, we will now get a log file named logs\logfile2020-09-
25.log, and this file will rotate every day, so tomorrow we will get a logs\logfile2020-
09-26.log, and so on.

To activate this appender, all we have to do is go into our <root> block and add another
<appender-ref> tag for our new appender as follows:

<root>
 <priority value="INFO"/>
 <appender-ref ref="Console"/>
 <appender-ref ref="RollingLogFile"/>
</root>

Chapter 6

[117]

Now whenever our application is running, it will roll over into a new log everyday.

This setup is great and will log the same events to both the console and to our log file. What
if I wanted a different logging level for the two? Say I still wanted INFO level log messages to
display in the console, but wanted DEBUG level messages to go into the log file? Again, with
log4net, it's pretty simple, if not blatantly obvious.

We need to remove the logging level from the root block, and instead, we can set a
<threshold> on each of the appenders. Now our RollingLogFile appender will log
DEBUG level and above messages. If we put a <threshold> block on the console and set it
to INFO, we will have achieved our goal.

<appender name="RollingLogFile"
 type="log4net.Appender.RollingFileAppender">
 <threshold value="DEBUG" />
 <file value="logs\logfile" />
 <appendToFile value="true" />
 <rollingStyle value="Date" />
 <datePattern value="yyyy-MM-dd'.log'" />
 <staticFileName value="false" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date [%thread] %-5level %logger
 [%property{NDC}] - %message%newline" />
 </layout>
</appender>

If I only want DEBUG through WARN messages (DEBUG, INFO, WARN, and nothing else) to go
to the console, I could do that with log4net too! All we have to do is add a filter to one of the
appenders as follows:

<filter type="log4net.Filter.LevelRangeFilter">
 <param name="LevelMin" value="DEBUG" />
 <param name="LevelMax" value="WARN" />
</filter>

What if we only want information from a particular logger, such as NHibernate messages, to
go into the rolling file log and everything else to the console? We need to create a new block
in our configuration called a logger. We would divide our root block into two parts, a root
and a logger block as follows:

<root>
 <priority value="INFO"/>
 <appender-ref ref="Console"/>
</root>
<logger name="NHibernate" additivity="false">
 <level value="DEBUG"/>
 <appender-ref ref="RollingLogFile"/>
</logger>

I’m a Logger

[11�]

In this case, NHibernate is the name that NHibernate uses to log all of its internal
messages. additivity="false" tells log4net to "use up" this message and not to pass it
on to other appenders, so it will only show up in the appenders that are added in this block.

Why did I use level instead of priority in the logger, you ask? They are completely
interchangeable. Either one will work in either block.

Pop quiz – creating and updating records
1. What do we use to make log4net logs visible to us?

a. Appender

b. Logger

c. Session Factory

d. None of the above

2. What XML tag acts as a log level or priority filter?

a. priority

b. level

c. filter

d. All of the above

3. How do we configure log4net?

a.	 App.config/Web.config

b. XML file

c. Inline code

d. All of the above

Creating a logger
If we want to log our own information using the log4net framework, we need to create a
logger. Creating a logger of our own is actually quite simple.

Once log4net is configured, we simply call LogManager.GetLogger(<type>) and pass in
the class type we are working with. For example, if we wanted to log the creation of a new
Address, we would simply call GetLogger() to get a log object and then call one of the
logging methods such as Info().

private static ILog log = LogManager.GetLogger(typeof(Address));
...
log.InfoFormat("New Address Created: {0}", Address.Id);

Chapter 6

[11�]

This example uses the InfoFormat() method. Most of the logging levels
(DEBUG, INFO, WARN, ERROR, and FATAL) have these Format() methods, which take
multiple arguments (in the format of the params parameter list) that you can use to render
logs containing contextual information. These methods use the same constructs as the
string.Format() method.

One thing to remember: While logging lots of information is great, logging
sensitive information such as SSN or credit card numbers can expose your
application to security concerns such as information leakage, so make sure
what you are logging is only what you need to get the job done.

In practice, I usually create an ILog variable log at the top of each class, so when I want to
use it, I am ready. An example of this in a simple class would be something as follows:

using log4net;
namespace Ordering.Console
{
 public class TestClass
 {
 private static ILog log = LogManager.GetLogger(typeof(TestClass));
 public int GetTestValue(string TestVal)
 {
 try
 {
 log.DebugFormat("Parsing value '{0}'.", TestVal);
 return int.Parse(TestVal);
 }
 catch (Exception ex)
 {
 log.Error("GetTestValue error occured", ex);
 }
 return -1;
 }
 }
}

You can see that we have a public static ILog variable named log and we are calling
log.Error() in the catch block. Now we can call logging methods (that is, log.Debug,
log.Error, and so on) in our code whenever a need arises.

I’m a Logger

[120]

Time for action – adding some custom logging
Now that we have all the key pieces of our application in place, let's add some logging
information to our Ordering.Console application to give us some information about what's
going on inside.

1.	 The first thing we need to do is add a using or Imports statement to the main
class of our application.

using log4net;

And in VB.NET:

Imports log4net;

2.	 Next, let's add a new logger to the class so that we can add logging messages. Inside
the class or module, add the following code to get a local instance of the logger:

private static ILog log = LogManager.GetLogger(typeof(Program));

Once again in VB.NET:

Private log As ILog = LogManager.GetLogger(GetType(Module1))

3.	 Now we're ready to log some data. Let's start out by adding some simple
instrumentation timings. Let's find out how long it's taking us to configure
NHibernate.

Under the line log4net.Config.XmlConfigurator.Configure(), let's add a
start time to base our timings on:

Stopwatch sw = Stopwatch.StartNew();

The VB.NET code is very similar:

Dim sw As Stopwatch = Stopwatch.StartNew()

4.	 Next, on the line after the creation of the ISessionFactory in our code (about
eight lines below the line we just added), we will add our first log message. Let's
write out a DEBUG message that shows the amount of time it took to create our
NHibernate configuration and build the Session Factory.

log.DebugFormat("Configuration Time: {0}ms",
 sw.Elapsed.TotalMilliseconds);

The VB.NET code is nearly identical:

log.DebugFormat("Configuration Time: {0}ms",
 sw.Elapsed.TotalMilliseconds)

Chapter 6

[121]

5.	 Now, if you run the console application, you should get a log entry that is similar
to the one shown in the following screenshot. Notice that it took a little over five
seconds for us to configure NHibernate and to create our Session Factory.

6.	 It seems like our timing logs might get lost in the ethos of all the other logs. Let's
create a new logger specifically for audit logs and make our timing log to use our
Audit logger.

Under the line where we created the static ILog log earlier, let's create a new ILog,
but instead of passing it a type, we are going to pass it a string to create the log from
as follows:

private static ILog audit = LogManager.GetLogger("Audit"));

Once again, in VB.NET:

Private audit As ILog = LogManager.GetLogger("Audit")

7.	 Back on the line where we added our logging before, we will change the line from
log.DebugFormat() to audit.DebugFormat() as follows:

audit.DebugFormat("Configuration Time:
 {0}ms",sw.Elapsed.TotalMilliseconds);

I’m a Logger

[122]

8.	 Now, we can configure log4net to only log Audit messages to the console. In the
App.config, create a new <logger> block. We will add two properties to the
new block, the name "Audit" that we created earlier and the additivity "false". We
also need to move the <appender-ref> tag for the Console appender from the
<root> block to the <logger> block. This is done as follows:

<root>
 <priority value="ALL"/>
 <appender-ref ref="RollingLogFile"/>
</root>
<logger name="Audit" additivity="false">
 <appender-ref ref="Console"/>
</logger>

9.	 Run the application, and it should log a message, as shown in the
following screenshot:

What just happened?
We have configured log4net to print not only NHibernate debug messages, but our own
custom messages as well. By creating the Audit logger at a global level in our application,
we can separate these messages or incorporate them into our own separate logs.

Chapter 6

[12�]

Have a go hero – adding some logging
Now that we have our custom logging configured, take a minute and log the NHibernate
logger to a new rolling log file appender named "NHibernateFile". Make sure you add a new
<logger> block for your file appender and tell it to only grab the NHibernate information.

Summary
We covered a lot of information in this chapter about logging and specifically log4net. By
manipulating a few configuration items, we can modify not only what we log, but also how
and where we log.

Specifically, we discussed:

The reasons for logging

Why we use log4net

Creating loggers and appenders

Integrating NHibernate logging into our own code

Now that we have our logging in place, we are ready to discuss the configuration of
NHibernate in Chapter 7, Configuration.

7
Configuration

Configuration is simply a way to provide NHibernate with the information it
requires to connect to the database, map our classes, and generally provide us
with all of its benefits.

In this chapter, we'll discuss:

Configuring in the Web.Config/App.Config

Configuring in XML

Configuring in code

Logging SQL statements

So let's get on with it.

Looking back
If you remember, back in Chapter 5, The Session ProcessionThe Session Procession when we talked about
NHibernate sessions, we inserted some basic code to get us up and running that
looked as follows:

Configuration cfg = new Configuration();

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionProvider,
 typeof(NHibernate.Connection.DriverConnectionProvider).
 AssemblyQualifiedName);

cfg.Properties.Add(NHibernate.Cfg.Environment.Dialect,

Configuration

[12�]

 typeof(NHibernate.Dialect.MsSql2008Dialect).
 AssemblyQualifiedName);

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionDriver,
 typeof(NHibernate.Driver.SqlClientDriver).AssemblyQualifiedName);

cfg.Properties.Add(NHibernate.Cfg.Environment.ConnectionString,
 "Server= (local)\\SQLExpress;Database=ordering;
 Trusted_Connection=true;");
cfg.Properties.Add(NHibernate.Cfg.Environment.
 ProxyFactoryFactoryClass,typeof(NHibernate.ByteCode.LinFu.
 ProxyFactoryFactory).AssemblyQualifiedName);

cfg.AddAssembly(typeof(Ordering.Data.Address).Assembly);

Instead of using the cfg.Properties.Add(..) syntax, we can easily use
cfg.SetProperty(..). It takes the same syntax (property name,
value), but it just looks a little cleaner.

This code creates a basic NHibernate configuration to SQL Server, but it has a few issues. The
most glaring of these issues is our connection string, which is hardcoded into our application.
If we need to change it, we have to recompile our code.

When we promote our application through the various levels of the Software Development
Lifecycle (SDLC), we usually have to go to different environments with different configuration
requirements. It is usually easier to have this configuration information abstracted to
another file. A separate version of this file can be maintained for each environment.

The basics of configuration
If you look back at our initial configuration in code, you will notice that there are
five configuration options that we set. They are ConnectionProvider, Dialect,
ConnectionDriver, ConnectionString, and ProxyFactoryFactoryClass. All
of these elements have a property called name that we will use to set the value. We will
set the same properties in the configuration file.

The property ConnectionDriver is usually not needed because setting theis usually not needed because setting the dialect will
take care of driver settings using a sensible default.

These settings provide the basic information that NHibernate needs to get up and running.
I like to call these the "Big 4 plus 1 (the mapping assembly)".

Chapter 7

[127]

The ConnectionProvider property tells NHibernate what method it needs
to use to build connections. This is usually set to "NHibernate.Connection.
DriverConnectionProvider", but other providers can be used by providing the full
classname of the provider (as shown) or adding the assembly name if it resides outside of
NHibernate ("MyCode.MyCustomProvider, MyCodeAssy").

The Dialect property lets NHibernate know what database "language" it needs to speak.
In our project, we are connecting to an MS SQL Server 2008 database, so we use the
NHibernate.Dialect.MsSql2008Dialect. If we wanted to use MySQL instead,
then we could substitute the NHibernate.Dialect.MySQLDialect dialect and we
would be off to the races.

An interesting point to note here: To change the database provider with
NHibernate is a one line configuration change. If you can create the same data
structure, you don't need to change your code to port it to another database
server. Moving from SQL Server to MySQL is as easy as recreating the tables in
MySQL and changing the dialect and connection string!

The ConnectionStringName (and it's cousin connection.connection_string)
give NHibernate the information about how to connect to the database. The
ConnectionString property accepts a string that is the actual connection string, while
the ConnectionStringName specifies a connection string in the <connectionStrings>
section of the configuration that contains the connection string.

Using the <connectionString> section allows you to encrypt these values
using the native Microsoft Encryption and Decryption provider. The easiest way
to use these providers is to run the command line tool aspnet_regiis.exe.

c:\windows\Microsoft.NET\Framework\v2.0.50727\
aspnet_regiis -pef connectionStrings . -prov
DataProtectionConfigurationProvider

Decrypting is just as easy; use –pdf for decrypting instead of –pef for
encrypting, and you don't need to add the provider name because it is
already specified in the configuration file.

c:\windows\Microsoft.NET\Framework\v2.0.50727\aspnet_
regiis -pdf connectionStrings .

One note—the aspnet_regiis.exe tool looks for a file named Web.config
instead of App.config in our project. We can trick it into working by simply
renaming the App.config file to Web.config, running the command, and
then changing the name back to App.config, and it works just fine.

Also noteworthy, this command is machine-specific unless you specify a new
encryption key. You can override this key setting in your App.config or
Web.config file, otherwise it uses the value in the Machine.config,
which is re-encrypt. You will either need to override the setting or re-encrypt
the file on each machine.

Configuration

[12�]

The ProxyFactoryFactoryClass is used to allow NHibernate to perform lazy loading.
For example, if you have an instance of our Ordering.OrderHeader class and you access
its OrderItems property, NHibernate will lazily load (retrieve from the database) all of
the associated Ordering.OrderItem objects automatically, without you having to write
another query.

Three basic proxy factories that come with NHibernate are as follows:

NHibernate.ByteCode.LinFu.ProxyFactoryFactory

NHibernate.ByteCode.Castle.ProxyFactoryFactory

NHibernate.ByteCode.Spring.ProxyFactoryFactory

Most users will be perfectly happy with the LinFu proxy factory. Some NHibernate gurus
think it has a slight speed improvements over the Castle DynamicProxy factory.

Castle DynamicProxy factory implementation was the standard NHibernate implementation
for several years, and many NHibernate users still implement it. Castle will be useful to you if
you decide to implement the Active Record Pattern using NHibernate. The Castle project has
a full implementation of this pattern using NHibernate. You can find more information about
it at http://www.castleproject.org/activerecord/.

The Spring ProxyFactory is used with the Spring Inversion of Control (IoC) framework, so
unless you are using Spring, you won't need to use this one. More information is available
at the Spring framework website— http://www.springframework.net/.

The final configuration property we need to add is the mapping property, with an element
of assembly that contains the name of our mapping assembly.

A completed configuration will look as follows:

Chapter 7

[12�]

Pop quiz – basic configuration
1. Which of the following properties allows us to encrypt our sensitive

configuration settings?

a. ConnectionStringName

b. ConnectionString

c. Dialect

d. None of the above

2.	 Which property can be added, but isn't usually necessary?

a. Dialect

b. ProxyFactoryFactoryClass

c. ConnectionDriver

3.	 Which of the following is used for lazy loading?

a. ProxyFactoryFactoryClass

b. ConnectionProvider

c. Dialect

d. The world may never know

Taking a look at the SQL
Sometimes when we are troubleshooting issues, it's nice to look at the generated SQL
statements. We can copy these out, execute them directly against the server, and find
issues where we may have mistyped a value, flubbed a condition, or flipped a bit.

To make this configuration work, we just have to add the ShowSql configuration property
to our configuration, and set it to true. In an inline configuration, the value would look
as follows:

cfg.SetProperty(NHibernate.Cfg.Environment.ShowSql, "true"); NHibernate.Cfg.Environment.ShowSql, "true");NHibernate.Cfg.Environment.ShowSql, "true");

Configuration

[1�0]

This will add the SQL statements to our log4net loggers, which we can filter and direct,
as necessary, from our configuration. If we add it to our existing Ordering.Console
application, the resulting logs will look similar to the following screenshot:

One thing to note, the log4net logger NHibernate.SQL provides a much
more complete SQL logging and is much preferred to using the ShowSql
configuration property.

Have a go hero – using the connection string name
Having the connection string for our application hardcoded into our code is obviously a
bad idea. If our password were to become compromised, we would have to recompile and
deploy our application to change it.

Take a minute and convert the configuration in our Ordering.Console application to use
the ConnectionStringName property, and create a <connectionString> with the same
name in the App.config file.

Abstracting the configuration
One of the most common ways to configure NHibernate is to put the configuration into the
Web.config or App.config file of the application. Other settings for your application are
already stored here such as application settings in the <appSettings> block and database
connection strings in the <connectionStrings> block.

By placing our configuration information in the Web.config, we can consolidate all of our
configuration information together and take advantage of the available protections on that
file such as cryptography and file separation, which we will talk about a little later.

Chapter 7

[1�1]

In order to take advantage of mapping in the Web.config (or App.config) file, we need
to add a configuration section handler declaration at the top of our configuration file, just
like the one we added for log4net in the previous chapter. Inside the <configSections>
element, we need to add a new <section> handler element with a name property
of hibernate-configuration and a type property of NHibernate.Cfg.
ConfigurationSectionHandler, NHibernate. It should look as follows:

<configSections>
 <section name="hibernate-configuration"
 type="NHibernate.Cfg.ConfigurationSectionHandler,
 NHibernate"/>
 ...
</configSections>

With the configuration handler in place for the hibernate-configuration section,
we are ready to define that section. Inside our configuration file, we will add a section of
type hibernate-configuration with a property of xmlns (XML namespace) that tells
NHibernate what structure we will be using to create our configuration. The current version
of this document is nhibernate-configuration-2.2. The code for this section would be
written as follows:

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
</hibernate-configuration>

Inside this section, we need to add the session-factory configuration section. We will
add the Big 4+1 properties to configure NHibernate, connection.provider, dialect,
connection.connection_string_name, proxyfactory.factory_class, and
mapping. A sample configuration for our application would be written as:

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
 </property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2008Dialect
 </property>
 <property name="connection.connection_string_name">
 Ordering
 </property>
 <property name="proxyfactory.factory_class">
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu
 </property>
 <mapping assembly="Ordering.Data"/>
 </session-factory>
</hibernate-configuration>

Configuration

[1�2]

To tell NHibernate to use our configuration, we just create a new Configuration object
and call the Configure() method:

Configuration cfg = new Configuration();
cfg.Configure();

Our Configuration object is now configured, and our call to
cfg.BuildSessionFactory() will function just like before.

Time for action – moving our configuration
Let's take a minute and convert the configuration from the Ordering.Console application
to an App.config configuration.

1.	 Open the Program.cs or Module1.vb file, depending on which language you
are using.

2.	 Comment out the existing cfg.SetProperty lines, using either the // or '
depending on your language. Make sure you leave the statement where you "new
it up" as we will use that again. When you are finished, your code should look
as follows:

You can use the comment button on the toolbar to
comment out the selected code.

Configuration cfg = new Configuration();

//cfg.SetProperty("connection.provider", //"NHibernate.Connection.
DriverConnectionProvider");
//cfg.SetProperty("dialect", //"NHibernate.Dialect.
MsSql2008Dialect");
//cfg.SetProperty("connection.connection_string_name",
//"Ordering");
//cfg.SetProperty("proxyfactory.factory_class", //"NHibernate.
ByteCode.LinFu.ProxyFactoryFactory, //NHibernate.ByteCode.LinFu");
//cfg.AddAssembly(typeof(Address).Assembly);

Or in VB.NET:

Dim cfg As New Configuration()

'cfg.SetProperty("connection.provider", '"NHibernate.Connection.
DriverConnectionProvider")
'cfg.SetProperty("dialect", '"NHibernate.Dialect.
MsSql2008Dialect")

Chapter 7

[1��]

'cfg.SetProperty("connection.connection_string_name", "Ordering")
'cfg.SetProperty("proxyfactory.factory_class", '"NHibernate.
ByteCode.LinFu.ProxyFactoryFactory, 'NHibernate.ByteCode.LinFu")
'cfg.AddAssembly(GetType(Address).Assembly)

3.	 While we are in this class, let's add the new code that tells NHibernate to read from
the configuration file. Under the code we just commented, add the following line
of code:

cfg.Configure();

In VB.NET, it will look the same without the semicolon:

cfg.Configure()

4.	 Now we need to add our configuration properties to the App.config. If we
were using a Web.config, the configuration would be exactly the same.
Open the App.config, and find the <configSections> block. Add the
ConfigurationSectionHandler section handler to this block. When
you are done, the completed block should look as follows:

<configSections>
 <section name="hibernate-configuration"
 type="NHibernate.Cfg.ConfigurationSectionHandler,
 NHibernate"/>
 <section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,
 log4net"/>
</configSections>

5.	 Now NHibernate will be looking for the section named hibernate-
configuration that we named above, so let's create that section by adding a
<hibernate-configuration> block under the </configSections> tag.

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
</hibernate-configuration>

6.	 Inside the <hibernate-configuration> block, we need to add a
<session-factory> section to define the configuration properties:

<session-factory>
</session-factory>

Configuration

[1��]

7.	 Next we need to define the "Big 4+1" properties, connection.provider,
dialect, connection.connection_string_name, proxyfactory.factory_
class, and the mapping assembly within the <session-factory> tags:

<property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
</property>
<property name="dialect">
 NHibernate.Dialect.MsSql2008Dialect
</property>
<property name="connection.connection_string_name">
 Ordering
</property>
<property name="proxyfactory.factory_class">
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu
</property>
<mapping assembly="Ordering.Data"/>

8.	 When you are done, you should have a completed section that looks similar to the
following screenshot:

9.	 Run the application by pressing F5 or Debug | Start Debugging. The
application should connect to the database and perform just like it did
with the inline configuration.

Chapter 7

[1��]

What just happened?
Since we moved our configuration into a configuration file, we now have a lot more
flexibility to integrate our code into the standard SDLC. We can use our build process to
replace sections of the configuration with appropriate values for each environment (such
as Development, Test, QA, Production), move the <connectionStrings> section to an
external file, or other standard environment migration options.

XML configuration
Another common way to configure NHibernate is to put the configuration into an XML file.
This is really simple, as it follows the exact same format as the App.config/Web.config
files. All you have to do is create an XML file in your application and add the same settings
that you would add to the App.config file.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
 </property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2008Dialect
 </property>
 <property name="connection.connection_string_name">
 Ordering
 </property>
 <property name="proxyfactory.factory_class">
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu
 </property>
 <mapping assembly="Ordering.Data"/>
 </session-factory>
</hibernate-configuration>

Configuration

[1��]

To take advantage of this new configuration, we just call Configure with the name of the
file:cfg.Configure("NHibernate.xml");

One thing to remember, make sure you go into Properties for your XML file
and set the Copy to Output Directory drop-down to Copy if newer.

Have a go hero – using an XML configuration file
Take the existing App.config file we created above, copy the <hibernate-
configuration> section, paste it into a new XML file, and modify your cfg.Configure()
statement to use the new XML file instead of the App.config file.

Summary
This chapter was all about configuration and the different ways to accomplish that task.

Specifically, we covered:

How to configure NHibernate using the Web.Config/App.Config file

Configuring NHibernate using an XML file

Inline configuration of NHibernate in code

Logging SQL statements using log4net

Now that our configuration is set, we're ready to create some real queries and retrieve
exactly the data we want, which is the topic of the next chapter.

�
Writing Queries

Definitely one of the strongest reasons for switching to NHibernate has to be
the way that you query data. By using simple constructions, we can build very
complex queries with ease, without writing ANY SQL!

In this chapter, we'll spend a little time on:

Data Access Objects (DAO)

ICriteria queries

The Fieldnames structure

Projection

Let's get started!

Using Data Access Objects
When we originally created our Session object and wrote a couple of queries in Chapter
5, The Session ProcessionThe Session Procession, we created all of our code inline. While this works for a simple
sample, in a real application we don't want to embed this logic with our application logic,
for a number of reasons.

Embedding our data access logic inside our application presents a few issues. Firstly, if we
have our queries in the application, we can't reuse them in other applications without
copying them. Second, by decoupling our presentation layer from our data layer, we can
take advantage of technologies such as Silverlight and WPF more readily by using web
services. Additionally, if we make any changes to our data layer, we would have to go
back several places and change it in each place, instead of just fixing it in the data layer.

Writing Queries

[1��]

The basic Data Access Object
In order for our Data Access Objects to be effective for our use, they need to contain a
few basic methods. In general, our DAOs will be responsible for all of the CRUD (Create,
Retrieve, Update, and Delete) operations, so we will need to create methods to handle
those operations.

We should add a local ISession variable called Session to allow easy access from our
class. This gives us a single place to update in our class, should we decide to change the
way we are handling sessions.

private ISession Session
{
 get { return SessionFactory.OpenSession(); }SessionFactory.OpenSession(); } }
}

The VB.NET code looks almost the same:

Private ReadOnly Property Session() As ISession
 Get
 Return SessionFactory.OpenSession()SessionFactory.OpenSession()
 End Get
End Property

In order to make the interaction with our Data Access Object feel more natural to use, we
need to do one more thing—add a Singleton object. Basically, we will create a property,
called Instance, that will allow us to call the methods on our Data Access Object as if
they were static methods.

So, instead of the following code:

ContactDataControl cdc = new ContactDataControl();
Contact contact = cdc.GetById(1);

we simply use:

Contact contact = ContactDataControl.Instance.GetById(1);

To make this happen, all we need to do is add the Instance property, which only has
a getter.

private static ContactDataControl contactDataControl;
private static object lockContactDataControl = new object();
public static ContactDataControl Instance
{
 get
 {

Chapter 8

[1��]

 lock (lockContactDataControl)
 {
 if (contactDataControl == null)
 {
 contactDataControl = new ContactDataControl();
 }
 }

 return contactDataControl;
 }
}

In VB.NET, the code is as follows:

Private Shared contactDataControl As ContactDataControl
Private Shared lockContactDataControl As New Object()
Public Shared ReadOnly Property Instance() As ContactDataControl
 Get
 SyncLock lockContactDataControl
 If contactDataControl Is Nothing Then
 contactDataControl = New ContactDataControl()
 End If
 End SyncLock

 Return contactDataControl
 End Get
End Property

Now that we understand the basics of a Data Access Object, let's create one.

Time for action – creating our basic Data Access Object
Let's go back and remove our inline code from our previous applications and replace it with
Data Access Objects.

1.	 Let's start off by cleaning up our Program.cs or Module1.vb class a little.
We want to remove all of the code from the Main() method, except for the
log4net.Config.XmlConfigurator.Configure() and the Contact and
Address object creation. When you are done, your method should look as follows:

static void Main(string[] args)
{
 log4net.Config.XmlConfigurator.Configure();
 Contact contact = new Contact("Joe", "Jones",
 "joeyj@waywardone.com");

Writing Queries

[1�0]

 Address address = new Address("2000 E. Captive Way", null,
 "Madville", "MA", "78701");
 address.Contact = contact;
 contact.Addresses = new List<Address>();
 contact.Addresses.Add(address);
}

The VB.NET method should look very similar:

Sub Main()
 log4net.Config.XmlConfigurator.Configure()
 Dim contact As New Contact("Joe", "Jones",
 "joeyj@waywardone.com")
 Dim address As New Address("2000 E. Captive Way", Nothing,
 "Madville", "MA", "78701")
 address.Contact = contact
 contact.Addresses = New List(Of Address)()
 contact.Addresses.Add(address)
End Sub

2.	 Now let's create our Data Access Object for the Contact object. Right-click on
the DataAccess folder of the Ordering.Data project, click Add | Class, and name
it ContactDataControl.

Chapter 8

[1�1]

3.	 At the top of our class, we will need to define some imports. Add the following code
to let .NET know about the NHibernate and log4net namespaces:

using NHibernate;
using NHibernate.Criterion;
using log4net;

And for our VB.NET brothers and sisters:

Imports NHibernate
Imports NHibernate.Criterion
Imports log4net

4.	 Now let's add an ILog in case we want to log anything from our methods along
the way. Inside the ContactDataControl class, add the log4net logger code
as follows:

private static ILog log = LogManager.GetLogger(typeof
 (ContactDataControl));

Once again, in VB.NET:

Private Shared log As ILog = LogManager.GetLogger
 (GetType(ContactDataControl))

5.	 Let's add in the Instance property so we can access this code without having to
new it up:

private static ContactDataControl contactDataControl;
private static object lockContactDataControl = new object();
public static ContactDataControl Instance
{
 get
 {
 lock (lockContactDataControl)
 {
 if (contactDataControl == null)
 {
 contactDataControl = new ContactDataControl();
 }
 }

 return contactDataControl;
 }
}

Writing Queries

[1�2]

In VB.NET, it looks like this:

Private Shared contactDataControl As ContactDataControl
Private Shared lockContactDataControl As New Object()
Public Shared ReadOnly Property Instance() As ContactDataControl
 Get
 SyncLock lockContactDataControl
 If contactDataControl Is Nothing Then
 contactDataControl = New ContactDataControl()
 End If
 End SyncLock

 Return contactDataControl
 End Get
End Property

6.	 Our Data Access Object wouldn't be very useful if it didn't have access to the
NHibernate session, so let's add that next:

private ISession Session
{
 get
 {
 return SessionFactory.OpenSession()Session;SessionFactory.OpenSession()Session;Session;
 }
}

The VB.NET property is really similar:

Private ReadOnly Property Session() As ISession
 Get
 Return SessionFactory.OpenSession()SessionFactory.OpenSession()
 End Get
End Property

7.	 Now let's go back and repeat these steps to create Data Access Objects for the other
four objects—Address, OrderHeader, OrderItem, and Phone.

What just happened?
We now have a base for a set of Data Access Objects that we can expand to cover all of the
data storage and retrieval scenarios that we devise.

All we need to do now is add some logic to save, update, delete, and retrieve data, so let's
get to it.

Chapter 8

[1��]

Data Access Object methods
We will need to create a Save() method to handle create and update operations, a
Delete() method to handle deletions, and a few GetX() methods to retrieve data.

In order to implement the basic Save() and Delete() methods, we should do two things:

Insert the logic for the method

Wrap the method in a transaction

Why do we need to wrap it in a transaction? If something goes wrong and our action can't be
completed, we can roll back the transaction and handle it in our code.

public int Save(Contact contact)
{
 ITransaction transaction = null;

 try
 {
 transaction = Session.BeginTransaction();
 Session.SaveOrUpdate(contact);

 transaction.Commit();
 return contact.Id;
 }
 catch (Exception ex)
 {
 log.Error(ex);
 if (transaction != null && transaction.IsActive)
 transaction.Rollback();
 throw;
 }
}

Adding our Save() method in VB.NET is just as trivial.

Public Function Save(ByVal contact As Contact) As System.Nullable
 (Of Integer)
 Dim retVal As System.Nullable(Of Integer) = Nothing
 Dim transaction As ITransaction = Nothing

 Try
 transaction = Session.BeginTransaction()
 Session.SaveOrUpdate(contact)

Writing Queries

[1��]

 If transaction IsNot Nothing AndAlso transaction.IsActive Then
 transaction.Commit()
 Else
 Session.Flush()
 End If

 retVal = contact.Id
 Catch ex As Exception
 log.[Error](ex)
 If transaction IsNot Nothing AndAlso transaction.IsActive Then
 transaction.Rollback()
 End If
 Throw
 End Try

 Return retVal
End Function

As you can see, the Save method is pretty simple. We create a transaction, call
Session.SaveOrUpdate() (letting NHibernate decide whether the object needs
to be inserted or updated) and Commit() the transaction when we are done. If an
error occurs, we can roll back the transaction and log the error.

The Delete() method is equally simple; all we do is change the save command to a delete
command by calling Session.Delete() to remove the object from the database.

public void Delete(Contact contact)
{
 ITransaction transaction = null;

 try
 {
 transaction = Session.BeginTransaction();
 Session.Delete(contact);
 transaction.Commit();
 }
 catch (Exception ex)
 {
 log.Error(ex);
 if (transaction != null)
 transaction.Rollback();
 throw;
 }
}

Chapter 8

[1��]

The Delete() method in VB.NET is equally painless to implement.

Public Function Delete(ByVal contact As Contact) As Boolean
 Dim retVal As Boolean = False
 Dim transaction As ITransaction = Nothing

 Try
 transaction = Session.BeginTransaction()

 Session.Delete(contact)

 If transaction IsNot Nothing Then
 transaction.Commit()
 Else
 Session.Flush()
 End If

 retVal = True
 Catch ex As Exception
 log.[Error](ex)
 If transaction IsNot Nothing Then
 transaction.Rollback()
 End If
 Throw
 End Try

 Return retVal
End Function

Another method that is handy to have on our Data Access Object is a Refresh() method.
This method will call the Session.Refresh() method on the object, forcing NHibernate
to retrieve the latest object from the database directly instead of a potentially cached copy.
This is useful if we have an outside process, service, or user that may be interacting with the
database behind the scenes. This method can be simply implemented as follows:

public void Refresh(Contact contact)
{
 Session.Refresh(contact);
}

In VB.NET, the only real difference is the syntax of the language.

Public Sub Refresh(ByVal contact As Contact)
 Session.Refresh(contact)
End Sub

Writing Queries

[1��]

If we implement these basic methods on a new Data Access Object (one DAO for each of our
data objects (POCOs)), we can quickly have a very functional Data Access library.

Time for action – adding some CRUD methods
Let's go back to our Data Access Object stubs we created earlier, and add some functionality
to them.

1.	 We will start by defining a Save method that takes a Contact object as a
parameter:

public int Save(Contact contact)
{
 ITransaction transaction = null;

 try
 {
 transaction = Session.BeginTransaction();
 Session.SaveOrUpdate(contact);

 transaction.Commit();

 return contact.Id;
 }
 catch (Exception ex)
 {
 log.Error(ex);
 if (transaction != null && transaction.IsActive)
 transaction.Rollback();
 throw;
 }

}

Our VB.NET code is also simple to implement:

Public Function Save(ByVal contact As Contact) As Integer
 Dim transaction As ITransaction = Nothing

 Try
 transaction = Session.BeginTransaction()
 Session.SaveOrUpdate(contact)

 transaction.Commit()

Chapter 8

[1�7]

 return contact.Id
 Catch ex As Exception
 log.[Error](ex)
 If transaction IsNot Nothing AndAlso transaction.IsActive
Then
 transaction.Rollback()
 End If
 Throw
 End Try
End Function

The code for the delete method is as follows:

public void Delete(Contact contact)
{
 ITransaction transaction = null;

 try
 {
 transaction = Session.BeginTransaction();

 Session.Delete(contact);

 transaction.Commit();
 }
 catch (Exception ex)
 {
 log.Error(ex);
 if (transaction != null)
 transaction.Rollback();
 throw;
 }
}

The Delete() method in VB.NET is equally painless to implement.

Public Function Delete(ByVal contact As Contact)
 Dim transaction As ITransaction = Nothing

 Try
 transaction = Session.BeginTransaction()

 Session.Delete(contact)

 transaction.Commit()
 Catch ex As Exception

Writing Queries

[1��]

 log.[Error](ex)
 If transaction IsNot Nothing Then
 transaction.Rollback()
 End If
 Throw
 End Try
End Function

2.	 Let's go ahead and add a Refresh method to our Data Access Object in case we
want to use it later. This is done as follows:

public void Refresh(Contact contact)
{
 Session.Refresh(contact);
}

The VB.NET code is as follows:

Public Sub Refresh(ByVal contact As Contact)
 Session.Refresh(contact)
End Sub

3.	 Now let's repeat steps 1 through 3 to add these methods to the Data Access Objects
for the other four data objects: Address, OrderHeader, OrderItem, and Phone.

4.	 Let's go back to our Program.cs or Module1.vb and take advantage of the code
we just added. First, we need to make sure our application knows about our data
layer. Make sure you have the appropriate using or Imports statements at the
top of your Program.cs or Module1.vb file as follows:

using Ordering.Data;
using Ordering.Data.DataAccess;

And in VB.NET, it is as follows:

Imports Ordering.Data
Imports Ordering.Data.DataAccess

5.	 At the bottom of the Main() method, let's add the code to save our Contact and
Address objects.

Since the address is a child object of the contact, we just need to save the
contact and the address will be automatically saved. Add this line of code under
the contact.Addresses.Add(address) line:

intcontactId = ContactDataControl.Instance.Save(contact);

It is just as easy in VB.NET:

Dim contactId as Integer = ContactDataControl.Instance.
Save(contact)

Chapter 8

[1��]

6.	 Set a breakpoint on this line by clicking on the line and hitting F9 or by
right-clicking on the line and selecting Breakpoint | Insert Breakpoint.

7.	 Press F5 or click Debug | Start Debugging, and the application should stop and wait
at this breakpoint.

8.	 Press F10 or click Debug | Step Over to allow the debugger to move to the next line.

9.	 Hover over the contactId variable, and you will see that our variable now contains
an ID assigned by NHibernate (in my case 72, your results will vary), as shown in the
following screenshot:

What just happened?
Now that we have the Save and Delete methods, as well as a Refresh method, we
have the C, U, and D parts of the CRUD model implemented. Now we can go on to the
retrieval methods.

Coding some GetX() methods
We want to have GetById() and GetAll() methods at least, as these methods are
used frequently.

The simplest get method that we will code is the GetById() method, which is not just
cleverly named, but should also retrieve an object by its ID. This method is really simple to
code, because NHibernate already knows how to go get an object using its unique identifier.

To retrieve a record by its ID, all we have to do is call Session.Get<T>() and pass it an ID.

If you haven't seen the <T> syntax before (or the (Of T) syntax in
VB.NET), it is the .NET syntax for generics. It simply means ANY TYPE, so
<T> for our Contact object would be <Contact> or (Of Contact).

An example of the GetById() method would look as follows:

public Contact GetById(int Id)
{
 return Session.Get<Contact>(Id);
}

Writing Queries

[1�0]

The VB.NET code looks very similar, we just substitute the (Of T) syntax for the <T> syntax
of C#:

Public Function GetById(ByVal Id As Integer) As Contact
 Return Session.Get(Of Contact)(Id)
End Function

This is probably the simplest query we will have to write, as we are just re-packaging what
NHibernate already gives us.

The FieldNames structure
One of the most useful things we can do (especially if we are using some sort of code
generation to keep it in sync!) is to generate a FieldNames structure. One of the complaints
that I hear from other developers coming to NHibernate is that the queries aren't strongly
typed, so if the database structure changes or if they have a typo in their code, they won't
know at compile time that they have broken code.

Traditional NHibernate queries are generally written as follows:

criteria.Add(Restriction.Eq("FirstName", fName);

In this case, if we change the field name in the database from FirstName to FName (and we
don't adjust our mapping file, and leave FName to map to FirstName in our class), our code
will compile just fine. However, when we run it, we will get a runtime exception because the
FirstName field doesn't exist on our object.

One simple way to overcome this issue is to use a FieldNames structure, which simply maps
string names of the properties to a local structure where we can access them. Instead of the
previous code, our new query would look as follows:

criteria.Add(Restriction.Eq(FieldNames.FirstName, fName);

Now, if we change the name of the field, the FirstName field would be removed from our
FieldNames structure and FName would be there instead. The compiler would throw an error
because FieldNames does not contain a property "FirstName", and we would be able to fix it
right there.

In C#, we define this as a structure because it's lightweight and efficient:

#region FieldNames

public struct FieldNames
{
 public const string Id = "Id";
 public const string LastName = "LastName";

Chapter 8

[1�1]

 public const string FirstName = "FirstName";
 public const string Email = "Email";
 public const string Addresses = "Addresses";
 public const string Phones = "Phones";
 public const string BillToOrderHeaders = "BillToOrderHeaders";
 public const string ShipToOrderHeaders = "ShipToOrderHeaders";
}

#endregion

In VB.NET, we have two options. We can kludge it together using a structure, but we have tostructure, but we have to, but we have to
define a private property for it to work properly, or we can create a class.

#Region "FieldNames"

Public Structure FieldNames
 Public Const Id As String = "Id"
 ...
 Public Const ShipToOrderHeaders As String = "ShipToOrderHeaders"
 Private structureHolder as Boolean

End Structure

#End Region

You can also declare this as a Module, and it will be functionally equivalent, if slightly more
resource intensive:

#Region "FieldNames"

Public Module FieldNames
 Public Const Id As String = "Id"
 ...
 Public Const ShipToOrderHeaders As String = "ShipToOrderHeaders"
End Class

#End Region

Personally, even with the small kludge, I like the structure because it's more lightweight and
just seems a little cleaner. Whichever way you decide to choose, the FieldNames structure
will save us time and headaches when trying to troubleshoot our code later.

Writing Queries

[1�2]

Time for action – expanding our capabilities
Let's go back to our Data Access Objects we created earlier and give them a little
more substance.

1.	 We will start by opening up the ContactDataControl.cs or
ContactDataControl.vb as appropriate, and adding a FieldNames structure.
At the top of the file, under the class declaration, add the following code:

#region FieldNames

 public struct FieldNames
 {
 public const string Id = "Id";
 public const string LastName = "LastName";
 public const string FirstName = "FirstName";
 public const string Email = "Email";
 public const string Addresses = "Addresses";
 public const string Phones = "Phones";
 public const string BillToOrderHeaders = "BillToOrderHeaders";
 public const string ShipToOrderHeaders = "ShipToOrderHeaders";
 }

#endregion

The VB.NET structure will look as follows (don't forget the private variable):

#Region "FieldNames"

 Public Structure FieldNames
 Public Const Id As String = "Id"
 Public Const LastName As String = "LastName"
 Public Const FirstName As String = "FirstName"
 Public Const Email As String = "Email"
 Public Const Addresses As String = "Addresses"
 Public Const Phones As String = "Phones"
 Public Const BillToOrderHeaders As String =
 "BillToOrderHeaders"
 Public Const ShipToOrderHeaders As String =
 "ShipToOrderHeaders"
 Private structureHolder As Boolean
 End Structure

#End Region

Chapter 8

[1��]

2.	 Next we will add the code for our GetById() method so we can retrieve individual
records. Add the following code to the class after the Delete() method we
created earlier:

public Contact GetById(int Id)
{
 return Session.Get<Contact>(Id);
}

The VB.NET code looks very similar, we just substitute the (Of T) syntax for the
<T> syntax of C#:

Public Function GetById(ByVal Id As Integer) As Contact
 Return Session.Get(Of Contact)(Id)
End Function

3.	 Let's go back to our Program.cs or Module1.vb file and test our new code. In the
Program.cs file, after the line: int? contactId = ContactDataControl.
Instance.Save(contact);add the following code:

Contact retContact = ContactDataControl.Instance.
GetById(contactId.Value);

In VB.NET, under the line that reads Dim contactId As System.Nullable(Of
Integer) = ContactDataControl.Instance.Save(contact) addadd
Dim retContact As Contact = ContactDataControl.Instance.
GetById(contactId.Value)

4.	 Set a breakpoint on this line by clicking on the line and hitting F9 or
right-clicking on the line and selecting Breakpoint | Insert Breakpoint.

5.	 Press F5 or click Debug | Start Debugging and the application should stop and wait
at this breakpoint.

6.	 Press F10 or click Debug | Step Over to allow the debugger to move to the next line.

Writing Queries

[1��]

7.	 Hover over the retContact variable, and you will see that our variable now
contains the full Contact record:

What just happened?
We created a GetById() method and a FieldNames structure, and we were able to use that
GetById() method to retrieve a record that we inserted.

Now we are ready to move on to some SERIOUS querying.

The ICriteria object
In my opinion, the best way to write queries with NHibernate is to use a criteria
object. The ICriteria object is created from a session, using the syntax Session.
CreateCriteria<T>() or Session.CreateCriteria(Of T)(). By passing in a type,
we basically tell NHibernate what type of objects we will be querying. For example, the
following code:

ICriteria criteria = Session.CreateCriteria<Contact>();

would evaluate to a pseudo-SQL query of:

SELECT * FROM Contact;

Once we have an ICriteria object built, we can simply ask it to retrieve the requested
records for us. If we want it to return a list of objects, in this case, a list of Contact objects,
we simply call criteria.List<T>() or criteria.List(Of T)().

IList<Contact> contacts = criteria.List<Contact>();

Chapter 8

[1��]

If we expect our query to return a single record and to return NULL otherwise, we can tell
NHibernate to return a UniqueResult<type>().

Contact contact = criteria.UniqueResult<Contact>();

These three pieces of code will be used OVER and OVER in our query methods, so it's a good
thing they are easy to use!

Pop quiz – FieldNames and ICriteria
1. Why do we create a FieldNames structure?

a. Looks cool

b. To provide consistency in property name strings

c. To change database field names

d. We shouldn't

2. How do we get a collection of entities from our ICriteria object?

a. criteria.Query()

b. criteria.IList<T>()

c. criteria.List<T>()

d. criteria.GetAll()

3. How many records will criteria.UniqueResult<T>() return?

a. Exactly one

b. Zero

c. Zero or one (or an Exception)

d. Impossible to tell

Creating a GetAll() method
To make our Data Access Object more functional, we will need to create our GetAll()
method that simply returns all records. We will also want to create GetAll() and
GetCountOfAll() methods with some additional parameters that will let us take
advantage of the paging functionality of the ASP.NET framework controls when we
have larger result sets.

Writing Queries

[1��]

Using an ICriteria object, it's really simple to write a GetAll() method. All we have
to do is new up an ICriteria object, and call .List<T>() on it. It will retrieve all of
the objects of that type. The code for our GetAll() method would look like this:

public IList<Contact> GetAll()
{
 ICriteria criteria = Session.CreateCriteria<Contact>();
 return criteria.List<Contact>();
}

It is just as simple in VB.NET:

Public Function GetAll() As IList(Of Contact)
 Dim criteria As ICriteria = Session.CreateCriteria(Of Contact)()
 Return criteria.List(Of Contact)()
End Function

To create a GetCountOfAll() method, we are going to use something new, a
Projection. Basically, a projection says "instead of retrieving the records, just grab the
information I am asking for". This is usually an aggregate of some sort, such as a count of
records, the sum of a field, and so on. The following image shows a list of the projections
available in the Projections class.

Chapter 8

[1�7]

Some of the more common projections we use are Projections.RowCount() and
Projections.Distinct(). In order to get the record count for our GetCountOfAll()
method, we just need to create an ICriteria, call .SetProjection() on the ICriteria,
tell it we need a RowCount() projection, and ask for the result. The code looks as follows:

public int GetCountOfAll()
{
 ICriteria criteria = Session.CreateCriteria<Contact>();
 int result = (int)criteria.SetProjection(Projections.RowCount()).
 UniqueResult();
 return result;
}

The VB.NET code is so similar, you probably don't even need to see it, but here it is:

Public Function GetCountAll() As Integer
 Dim criteria As ICriteria = Session.CreateCriteria(Of Contact)()
 Dim result As Integer =
 CInt(criteria.SetProjection(Projections.RowCount()).
 UniqueResult())
 Return result
End Function

Now we have some simple GetAll() and a GetCountOfAll() methods that will return
every object in the database and the count of those objects.

Paging and Sorting GetAll() methods
The GetAll() methods mentioned earlier are very useful, but what if we only want a
subset of those records? For example, what if we want the first 25 instances, then the next
25, and so on? This happens a lot in ASP.NET applications when we want to return paginated
data 25 records at a time, instead of an entire list of 5,000 records.

In order to make this work, we simply need to tell the criteria what record to start returning
from, and how many records to return. With one more variable, SortExpression, we can
tell it to sort the records also, so that paging and sorting can be added to our data-bound
controls such as the gridview.

To make this work, we need to pass in an integer for firstResult to return, a second
integer for the maxResults to return, and a string for the sortExpression.

When ASP.NET passes the sort criteria, it is in the form "SORT_FIELD" or
"SORT_FIELD<space>DESC". We need to split this field on the space, and if the
second field exists and contains "DESC", then we need to sort descending; otherwise,
we will sort ascending.

Writing Queries

[1��]

The code for this is easier to read than the explanation. It is as follows:

public IList<Contact> GetAll(int firstResult, int maxResults,
 string sortExpression)
{
 ICriteria criteria = Session.CreateCriteria<Contact>();

 if (!String.IsNullOrEmpty(sortExpression))
 {
 string[] sort = sortExpression.Split(' ');
 bool ascending = true;
 if (sort.Length > 1 && sort[1].ToUpper() == "DESC")
 {
 ascending = false;
 }
 criteria.AddOrder(new NHibernate.Criterion.Order(sort[0],
 ascending));
 }

 if (firstResult != 0)
 criteria.SetFirstResult(firstResult);

 if (maxResults != 0)
 criteria.SetMaxResults(maxResults);

 return criteria.List<Contact>();
}

The VB.NET code is nearly identical:

Public Function GetAll(ByVal firstResult As Integer, ByVal maxResults
As Integer, ByVal sortExpression As String) As IList(Of Contact)
 Dim criteria As ICriteria = Session.CreateCriteria(Of Contact)()

 If Not String.IsNullOrEmpty(sortExpression) Then
 Dim sort As String() = sortExpression.Split(" "c)
 Dim ascending As Boolean = True
 If sort.Length > 1 AndAlso sort(1).ToUpper() = "DESC" Then
 ascending = False
 End If
 criteria.AddOrder(New NHibernate.Criterion.Order(sort(0),
 ascending))
 End If

 If firstResult <> 0 Then
 criteria.SetFirstResult(firstResult)

Chapter 8

[1��]

 End If

 If maxResults <> 0 Then
 criteria.SetMaxResults(maxResults)
 End If

 Return criteria.List(Of Contact)()
End Function

Now we have sorting and paging methods that we can duplicate in our other Data
Access Objects.

Have a go hero – creating some paging and sorting methods
Take a few minutes and code up the GetAll(), GetAll(int,int,string), and
GetCountOfAll() in our Contact Data Access Object. When you are done, go back to the
Program.cs or Module1.vb and use the ContactDataControl.Instance.GetAll()
method to return an IList<Contact> (or IList(Of contact)).

Filtering ICriteria
Our GetById() and GetAll() methods are great, and they do just what we want, but
what if we want more? What if we don't want all of the Contacts, but only those that have
a first name of "Joe", or birthdays between the 1st of January and 31st of December in 1990?
That's where we can use things such as Restrictions in NHibernate to "trim down" the
collection of results.

One of the most common filtering actions is to restrict the result set to a particular value, or
a something that contains a particular value. If we wanted to only get Contacts with the first
name "Joe", we could create the following query:

ICriteria criteria = Session.CreateCriteria<Contact>();
criteria.Add(Restrictions.Eq(FieldNames.FirstName, "Joe"));
return criteria.List<Contact>();

If we wanted everyone who has a first name that starts with "Joe", we could change it to:

ICriteria criteria = Session.CreateCriteria<Contact>();
criteria.Add(Restrictions.Like(FieldNames.FirstName, "Joe%"));
return criteria.List<Contact>();

Writing Queries

[1�0]

And if we had multiple criteria, such as a first name that starts with A and born between
1/1/1990 and 12/31/1990, we can just add that as follows:

ICriteria criteria = Session.CreateCriteria<Contact>();
criteria.Add(Restrictions.Like(FieldNames.FirstName, "A%"));
criteria.Add(Restrictions.Between(FieldNames.BirthDate, new
DateTime(1990,01,01), new DateTime(1990,12,31));
return criteria.List<Contact>();

We can add as many additional restrictions as we need to accomplish the needs of our
query. But, what if we wanted to find all of the contacts that live in the state of "MA"? This
data isn't part of the Contact object, but it's related Addresses property. How do we add
this filter, you ask? We simply create another ICriteria object, while using our original
ICriteria object instead of the session. It will look something like this:

ICriteria criteria = Session.CreateCriteria<Contact>();
ICriteria addrCriteria =
 criteria.CreateCriteria(FieldNames.Addresses);
addrCriteria.Add(Restrictions.Eq(AddressDataControl.
 FieldNames.State, "MA"));
return criteria.List<Contact>();

If you don't want to use the new ICriteria again, then you can just string the command
together as follows:

ICriteria criteria = Session.CreateCriteria<Contact>(); criteria.Creat
eCriteria(FieldNames.Addresses).Add(Restrictions.Eq
 (AddressDataControl.FieldNames.State, "MA"));
return criteria.List<Contact>();

There are a number of additional restrictions, such as "Greater Than" (Restrictions.
Gt), "Greater Than or Equal To" (Restrictions.Ge), "In" (Restrictions.In), and "Not"
(Restrictions.Not). These restrictions can be combined. For example, the code for
"Where the First Name does NOT start with 'A'" is as follows:

ICriteria criteria = Session.CreateCriteria<Contact>();
criteria.Add(Restrictions.Not(Restrictions.Like
 (FieldNames.FirstName, "A%")));
return criteria.List<Contact>();

Did you notice the "%" sign above? If you are not familiar with SQL syntax, this is a wildcard
character. When used with the function Like, we can restrict the data to find precisely what
we need. For example, if I wanted to find all of the instances that started with "A", I could
use Like("A%"). If I wanted to find all the instances that ENDED with "ing", I could say
Like("%ing"). Similarly, if I wanted all the instances with an "X" in the middle, I could use
Like("%X%").

Chapter 8

[1�1]

Much more information and some great examples are included in the NHibernate
documentation, but you should have enough information here to get started.

Time for action – replacing our inline code
As we have a working Data Access Object, we can now go in and create the custom methods
we need for a particular function.

1.	 Open up the ContactDataControl.cs or ContactDataControl.vb again, and
let's go down to the bottom of the class, just before the end.

2.	 Let's create a new function to return all of the Contacts that have addresses in
a particular state, and we will pass that state with a string variable. Add the
following method to your code:

public IList<Contact> GetByState(string State)
{
 ICriteria criteria = Session.CreateCriteria<Contact>();
 criteria.CreateCriteria(FieldNames.Addresses).Add
 (Restrictions.Eq(AddressDataControl.FieldNames.State, State));
 return criteria.List<Contact>();
}

If you are working in VB.NET, add the following code:

Public Function GetByState(ByVal State As String) As IList(Of
 Contact)
 Dim criteria As ICriteria = Session.CreateCriteria(Of Contact)()
 criteria.CreateCriteria(FieldNames.Addresses).Add
 (Restrictions.Eq(AddressDataControl.FieldNames.State, State))
 Return criteria.List(Of Contact)()
End Function

3.	 Let's go back to our Program.cs or Module1.vb file and test out our new code. In
the Program.cs file, after the line where we retrieved our Contact object by ID,
add the following code:

IList<Contact> stateContacts =
 ContactDataControl.Instance.GetByState("VT");

In VB.NET add the following code:

Dim stateContacts As IList(Of Contact) =
 ContactDataControl.Instance.GetByState("VT")

Writing Queries

[1�2]

4.	 Set a breakpoint on this line by clicking on the line and hitting F9 or
right-clicking on the line and selecting Breakpoint | Insert Breakpoint.

5.	 Press F5 or click Debug | Start Debugging and the application should stop and wait
at this breakpoint.

6.	 Press F10 or click Debug | Step Over to allow the debugger to move to the next line.

7.	 Hover over the stateContacts variable. Does it contain anything? Nope, it's NULL,
because there are no Contacts that live in "Vermont".

8.	 Now let's change the "VT" in our code to "MA", and execute it again. Now we get
some results, as we can see by hovering over the stateContacts variable again.

What just happened?
We are now able to write custom queries to retrieve collections of data from whatever
portions of the system we want, and filter that data any which way.

Summary
We have covered a lot of information in this chapter: several ways to write queries, format
them, and how to retrieve the data that we want.

Specifically, we covered:

The need for and how to create basic Data Access (DA) objectsAccess (DA) objects (DA) objects

Creating NHibernate Queries using ICriteria objectsQueries using ICriteria objects

Using the Fieldnames structure to help eliminate coding issuesstructure to help eliminate coding issues

How to use projection to retrieve record counts

Now that we are experts at writing NHibernate queries to retrieve data, we can move on to
DataBinding, or tying our data to controls in ASP.NET and Windows Forms, which is the topic
of the next chapter.

�
Binding Data

One of the most common tasks we are asked as programmers to perform is to
display data on a web page or a windows form. Data binding on the Web or
in a windows form isn't all that difficult. In most cases, it's a simple matter of
retrieving the data you want to display, telling the control how to display it, and
letting the magic happen.

In this chapter, we are going to talk about:

Data Binding techniques

<asp:ListView>

<asp:ObjectDataSource>

Direct Data Binding

<asp:GridView>

<asp:Repeater/asp:DataList>

<asp:DropDownList/asp:CheckBoxList>

<asp:FormView>

Let's get started!

Binding Data

[1��]

Why should we use data binding?
Data binding is pretty simple and one of my personal favorite features of ASP.NET. By adding
a few simple controls to my page and setting a few properties, my HTML page can become
a dynamic, "living" page. I can add data to the database and have it displayed on my page,
formatted in any way I want.

Imagine creating a website for your favorite club, and like most clubs, they need a calendar
for upcoming events. If you define this in a web page and need to go in every time someone
wants to add an event and change the page, how long do you think you would want to be
the webmaster?

Wouldn't it be easier on the webmaster if we just create a web page, which is bound to a
database table, and allow members to add their own events to the database?

Time for action – adding an ASP.NET project
Before we can create any ASP.NET controls to bind data to, we need to have an ASP.NET
web application to hold them. Let's create a web application project to use in the rest of
our examples.

1.	 Right-click on the Ordering solution, and click Add | New Project.

Chapter 9

[1��]

2.	 Select ASP.NET Web Application, and name it Ordering.Web, as shown in the
following screenshot:

The primary advantage of an ASP. NET Web Application over a traditional
website project is that the code is precompiled, so you don't have to publish
your source code to your website. Additionally, IIS is not needed to run the
website project from inside Visual Studio for debugging, so you don't need
to go through setting up a virtual directory and so on, thus making the initial
setup simpler.

Binding Data

[1��]

3.	 Right-click on the Ordering.Web project and select Set as StartUp Project, as shown
in the following screenshot:

Chapter 9

[1�7]

4.	 Right-click on the Ordering.Web project and select Add Reference, as shown in the
following screenshot:

5.	 Click on the Projects tab, select the Ordering.Data project and then click on the
OK button.

Binding Data

[1��]

6.	 Open the Web.config file to add the sections for NHibernate and log4net.
The easiest way to do this is to copy the sections from the App.config
file in the Ordering.Console project. At the top of the file, between the
<configSections> and <sectionGroup> tags, add the following
hibernate-configuration and log4net configuration section blocks:

<section name="hibernate-configuration"
 type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate"/>
<section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,
 log4net"/>

7.	 Below the </configSections> section, add the <hibernate-configuration>
and <log4net> configuration blocks:

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider</property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2008Dialect</property>
 <property name="connection.connection_string_name">
 Ordering
 </property>
 <property name="proxyfactory.factory_class">
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu
 </property>
 <mapping assembly="Ordering.Data"/>
 </session-factory>
</hibernate-configuration>
<log4net>
 <appender name="Console"
 type="log4net.Appender.ConsoleAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d{HH:mm:ss.fff}
 [%t] %p %c - %m%n"/>
 </layout>
 </appender>
 <appender name="RollingLogFile"
 type="log4net.Appender.RollingFileAppender">
 <threshold value="DEBUG" />
 <file value="logfile" />
 <appendToFile value="true" />
 <rollingStyle value="Date" />
 <datePattern value="yyyy-MM-dd'.log'" />
 <staticLogFileName value="false" />
 <layout type="log4net.Layout.PatternLayout">

Chapter 9

[1��]

 <conversionPattern value="%date [%thread] %-5level %logger
 [%property{NDC}] - %message%newline" />
 </layout>
 </appender>

 <!-- levels: ALL, DEBUG, INFO, WARN, ERROR, FATAL, OFF -->
 <root>
 <priority value="ALL"/>
 <appender-ref ref="RollingLogFile"/>
 </root>
 <logger name="Audit" additivity="false">
 <appender-ref ref="Console"/>
 </logger>
</log4net>

8.	 Replace the <connectionStrings/> block with our <connectionStrings>
section:

<connectionStrings>
 <add name="Ordering"
 connectionString="Server=(local)\SQLExpress;
 Database=ordering;Trusted_Connection=true;" />
</connectionStrings>

9.	 Press F5 or select Debug | Start Debugging to view our progress.

If you get a pop-up window as follows, select Modify the Web.config file
to enable debug, which will change the <compilation> tag in the
<system.web> section of the Web.config file to read: <compilation
debug="true">. In VB.NET, the line will read: <compilation
debug="true" strict="false" explicit="true">.

Binding Data

[170]

Remember to set the debug flag to false before you compile your web project
for production. If the compilation tag has debug="true", then the application
will contain information that could make it easier for an attacker to plan an
attack to compromise your site or its users.

10.	When your browser starts, it should display an empty web page, as shown in the
following screenshot. This is because we haven't added any content to our web
application yet.

What just happened?
Now that we have a working ASP.NET web application project, we are ready to create some
data bound controls.

Basic data binding techniques
There are a few simple techniques you will need to employ to make data binding work. The
basic items we will need are a source of data, some data items to bind, and a control that
allows data binding.

Essentially, a Data Source is an instance or a collection of instances that we will use to
populate our control(s). For instance, if we had a group of products, we could create an
IList of classes containing image and product name, size, weight, price, and so on.

Chapter 9

[171]

There are two common ways to set the DataSource property of a control. The first is
to directly bind it from the code behind or within another object. The second is to use a
DataSourceId to specify the ID of a control on the page such as an ObjectDataSource
control from which the data is coming.

The individual data items that make up the Data Source can be just about anything, from a
simple string to a full-blown POCO with properties of child POCOs.

There are several controls that allow data binding, such as the DataGrid, ListView, Repeater,
DataList, and even a Textbox or Label. These controls will bind in one of two ways, namely,
simple or complex data binding.

With simple data binding, we can bind a single data item property, such as Image, to a
property of the control, Text for example. In ASP.NET, this could look something like
as follows:

<asp:TextBox Text='<%# Eval("Image") %>' runat="server" />

Complex binding allows us to bind one or more properties of the Data Source to one or more
properties of the control. This works well for collections of records, even if a collection only
contains one record. An example of complex binding would be a GridView, which renders a
spreadsheet-type grid or table for the bound data:

<asp:GridView ID="productGrid" AutoGenerateColumns="false"
 runat="server">
 <Columns>
 <asp:ImageField DataImageUrlField="Image"
 DataAlternateTextField="ProductName" />
 <asp:BoundField DataField="ProductName" HeaderText="Product" />
 </Columns>
</asp:GridView>

Binding Data

[172]

For each record bound to the DataSource property of the control, a new row will be
generated. In the case of the GridView just mentioned, it will generate an image () tag
containing the URL to the product image and a second column containing the product name.
It will also have a header on the ProductName column, with the title Product. It should look
as shown in the following screenshot:

Chapter 9

[17�]

Common data binding methods
Each control has a primary way to bind data to it, and they generally fall into two categories,
namely, directly bound and templated. A directly-bound control uses individual fields,
such as the .Text and .Value properties, or individual controls such as the <asp:
BoundField> and <asp:ImageField> controls. A couple of simple examples of this
type of control, besides the GridView control, are the <asp:DropDownList> and
<asp:CheckBoxList>.

The <asp:DropDownList> exposes the properties DataSource, DataTextField,
and DataValueField. By setting these properties, either in the ASPX page or the code
behind, our data will be bound to the control. The ASPX code for this control would be
something like as follows:

<asp:DropDownList ID="productDropDownList"
 DataTextField="ProductName"
 DataValueField="Image" runat="server" />

When we view the page with a browser, the control that gets generated is as follows:

The <asp:CheckBoxList> also exposes the properties DataSource, DataTextField,
and DataValueField. The ASPX code for this control would be something like as follows:

<asp:CheckBoxList ID="productDropDownList"
 DataTextField="ProductName"
 DataValueField="Image" runat="server" />

Binding Data

[17�]

When we view the page with a browser, the control that gets generated is as follows:

When we use a templated control, we specify what the resulting ASPX page should look like.
We create a basic layout for each of the data items and the control renders them when it
binds the data.

When we create the layout, we need to display our data within that layout. We can do
this a number of ways, but the simplest has to be the Eval("PropertyName") method.
To display the data, you simply tell the Eval() method the name of the property in the
DataSource that it should display and it substitutes that data for the placeholder. The basic
ASP.NET code is as follows:

<%# Eval("PropertyName") %>

If we wanted to bind the Image field of our DataSource to the ImageUrl property of an
<asp:Image> control, we can use the syntax as follows:

<asp:Image ImageUrl='<%# Eval("Image") %>' runat="server" />

If we want to change the format of the data, we can use the standard string formatting
methods that we use with the string.Format() method. For example, if we need to
prepend ~/Images/ to our Image property, we can call:

DataBinder.Eval(Container.DataItem, "Image", "~/Images/{0}")

This will replace the {0} placeholder with the data in the Image property, resulting in a
string of ~/Images/product1.jpg.

Chapter 9

[17�]

One thing to keep in mind when you are data binding is that not all the data
that you bind will be safe. Unsavory characters or even normal users may add
content through your web forms or other processes that would render unsafe
information to browsers that render your content.

One attack of this type is called Cross-site Scripting (XSS) and it's a big problem
for applications that present user or third-party data. Make sure that you use the
proper encoding (Server.HTMLEncode, Server.URLEncode, and so on)
or use the Microsoft Anti-Cross Site Scripting Library methods to perform this
task. (http://msdn.microsoft.com/en-us/security/ee658075.
aspx).

To view this in action, all you have to do is put the following code into the
"ProductName" of one of our products:

<script>alert('XSS');

</script>

When we render this data, the browser will show an alert box with the
message "XSS".

We can protect the data in our previous repeater control by simply URLEncoding
the Image and HTMLEncoding the ProductName, like this:

<asp:Image ImageUrl='<%# Server.UrlEncode
 (Eval("Image").ToString()) %>' runat="server" />

<%# Server.HtmlEncode(Eval("ProductName").ToString())
%>

One thing to note: Server.HtmlEncode will not necessarily protect you
from all script attacks; you will need to be aware of what context your data is
being written to.

The Anti-Cross Site Scripting Library has more methods to protect this data, such
as the AntiXss.JavascriptEncode method.

Binding Data

[17�]

A simple templated control
One of the simplest templated controls has to be the <asp:Repeater> control. You give
it an <ItemTemplate>, provide data, and it renders. It doesn't get much simpler than
that! An example of the <asp:Repeater> control in action would be something like
the following:

<asp:Repeater ID="productRepeater" runat="server">
 <ItemTemplate>
 <asp:Image ImageUrl='<%# Eval("Image") %>' runat="server" />

 <%# Eval("ProductName") %>

 </ItemTemplate>
</asp:Repeater>

By using the <%# Eval() %> syntax, we set various properties of the controls or render the
text to the website.

Pop quiz – basic data binding
1.	 Which controls provide the most flexibility over layout and design?

a. Templated controls

b. Directly-bound controls

c. Simple controls

d. They're all the same

2. How do we bind data to a templated control?

a. DataSource property

b. DataSourceID property

c. From another object

d. Templated controls cannot display data

3. How can we define the data that we want a templated control to display?

a. <%# Eval("PropertyName") %>

b. <%# PropertyName %>

c. <%# Response.Write("PropertyName") %>

d. Templated controls cannot display data

Chapter 9

[177]

Creating a control instance
Many of the CSS templates "in the wild" use lists and reorganize them with CSS so they are
displayed in the way the designer intended. Instead of generating a table with three columns
and having to manually manipulate the data into those columns, we can use CSS to lay out
the data.

Consider the following table structure to lay out our products:

<table>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <td>Product 1</td>
 <td>Product 2</td>
 <td>Product 3</td>
 </tr>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 <tr>
 <td>Product 4</td>
 <td>Product 5</td>
 <td>Product 6</td>
 </tr>
</table>

While this layout would definitely present our products to our user, it has a few limitations.
First, it's pretty "heavy", in other words, it makes the browser work harder than a CSS layout
does to generate all of the tables and rows. Also, it takes more logic to make it work if you
only have a number of products that aren't readily divisible by three. Lastly, and probably
most importantly, it's much more difficult for the webmaster (you) to maintain and
keep straight.

With an Unordered List (UL), some List Items (LI), and a simple block of CSS code, we can
make our products "flow" neatly into columns.

.products li
{
 Display: inline;
 float: left;
 Margin: 0 0 15px 15px;
}

Binding Data

[17�]

Now, if we create an unordered list (UL) that contains our products, they will lay out in nice
neat columns:

<ul class="products">

Product 1

Product 2

Product 3

Product 4

Product 5

Product 6

If we look at this code in the browser, it will look like this:

Chapter 9

[17�]

The nice thing about this CSS is that if we resize the browser window, the products will
automatically rearrange themselves to fit in the window.

The <asp:ListView> control
The first thing we need to do to see some data binding in action is to add a control that can
actually take advantage of it. One of the simplest and most versatile controls to use has to be
the new <asp:ListView> control in ASP.NET 3.5.

The <asp:ListView> control has a few nice features that make it ideal for data binding,
especially in the dynamic web world with JavaScript and CSS. One of these features is the
<LayoutTemplate> block, which lets you specify a "wrapper" for the generated data.

If you're not quite sure what that means, it simply means that we want to create a set of tags
to "wrap" our data. This could be the tags for our data items, a set of <div> or
<table> tags, or any other code.

In order to get the <LayoutTemplate> to generate the same code we created earlier, we
just need to add in our tags with the class declaration, and an <asp:PlaceHolder>
with the ID of itemPlaceHolder and a runat="server", as shown in the following
code snippet:

<LayoutTemplate>
 <ul class="products">
 <asp:PlaceHolder ID="itemPlaceholder" runat="server" />

</LayoutTemplate>

Then, to create the product data, we just create an <ItemTemplate> with our <asp:
Image> and our text declaration:

<ItemTemplate>

 <asp:Image ImageUrl='<%# Eval("Image") %>' runat="server" />

 <%# Eval("ProductName") %>

</ItemTemplate>

Another great feature of the <asp:ListView> control is the <EmptyDataTemplate>.
We can set some default code for the control to display if there are no records to display.

<EmptyDataTemplate>
 <div>
 No products were found
 </div>
</EmptyDataTemplate>

Binding Data

[1�0]

With all the code together, the <asp:ListView> control would look as follows:

<asp:ListView ID="productList" runat="server">
 <LayoutTemplate>
 <ul class="products">
 <asp:PlaceHolder ID="itemPlaceholder" runat="server" />

 </LayoutTemplate>
 <ItemTemplate>

 <asp:Image ImageUrl='<%# Eval("Image") %>' runat="server" />

<%# Eval("ProductName") %>

 </ItemTemplate>
 <EmptyDataTemplate>
 <div>
 No products were found
 </div>
 </EmptyDataTemplate>
</asp:ListView>

The <asp:ObjectDataSource> control
A great way to work with NHibernate data and data-bound controls is to populate the
controls with an <asp:ObjectDataSource>. This control allows you to specify what type
of objects the control will return (DataObjectTypeName) and what object the control will
need to access to perform the CRUD operations (TypeName).

The basic <asp:ObjectDataSource> control just needs four things to get it going, namely,
an ID, a DataObjectTypeName (POCO), a Type Name (Data Access Object), and a CRUD
method (Create, Read, Update, and Delete). A sample <asp:ObjectDataSource> to
retrieve all of the OrderHeader items in the database would look like this:

<asp:ObjectDataSource ID="orderHeaderSource"
 DataObjectTypeName="Ordering.Data.OrderHeader"
 TypeName="Ordering.Data.DataAccess.OrderHeaderDataControl"
 SelectMethod="GetAll" runat="server">
</asp:ObjectDataSource>

Now that we have the ID (orderHeaderSource), we can use it in any data-bound control
with a DataSourceID property! This includes <asp:Repeater>, <asp:ListView>,
<asp:GridView>, <asp:FormView>, and so on.

So, you say, this is great if I want to get ALL the records but what about calling other methods
on the DataAccessControl? No problem.

Chapter 9

[1�1]

Let's say that we wanted to get an OrderHeader with the ID of "1". Remember our
OrderHeaderDataControl has a method GetById that is as follows:

public OrderHeader GetById(int Id)
{
 return Session.Get<OrderHeader>(Id);
}

All we have to do is change the SelectMethod to GetById and pass in the number "1". We
can do this with a SelectParameter.

The parameters for the Select, Insert, Update, and Delete methods are specified in blocks
between the start and end <asp:ObjectDataSource> tags. To specify a static parameter
of Id with the value of "1", we can just declare it as follows:

<SelectParameters>
 <asp:Parameter Name="Id" Type="Int32" DefaultValue="1" />
</SelectParameters>

Now our <asp:ObjectDataSource> will call the GetById method and pass in the number
"1" to the "Id" property.

What if we want the parameter to come from a QueryString variable called
OrderHeaderId? We just change the <asp:Parameter> to an <asp:
QueryStringParameter> as follows:

<asp:QueryStringParameter Name="Id" Type="Int32"
 QueryStringField="OrderHeaderId" />

If we wanted the parameter to come from a Session variable called "CurrentOrderId"?

<asp:SessionParameter Name="Id" Type="Int32"
 SessionField="CurrentOrderId" />

The possibilities are virtually endless. To specify multiple parameters to a method, all you
have to do is add multiple <asp:XParameter> controls, and ASP.NET will figure out which
method to call, based on the number and types of the parameters that you specify.

Take a look at this fully-populated OrderHeader <asp: ObjectDataSource> control to
get an idea of what is possible:

<asp:ObjectDataSource ID="OrderHeaderDetailSource"
 SelectMethod="GetById" InsertMethod="Save"
 UpdateMethod="Save" DeleteMethod="Delete" DataObjectTypeName="
 Ordering.Data.OrderHeader"
 TypeName=" Ordering.Data.DataAccess.OrderHeaderDataControl"
 runat="server">
 <SelectParameters>

Binding Data

[1�2]

 <asp:QueryStringParameter Name="id"
 QueryStringField="OrderHeaderId" Type="Int32" />
 </SelectParameters>
 <InsertParameters>
 <asp:Parameter Name="orderHeader" Type="Object" />
 <asp:Parameter Direction="Output" Name="id" Type="Object" />
 </InsertParameters>
 <UpdateParameters>
 <asp:Parameter Name="orderHeader" Type="Object" />
 <asp:Parameter Direction="Output" Name="id" Type="Object" />
 </UpdateParameters>
 <DeleteParameters>
 <asp:Parameter Name="orderHeader" Type="Object" />
 </DeleteParameters>
</asp:ObjectDataSource>

Time for action – adding our first data bound control
Now we can add some data-bound controls to the web application project we created
earlier, and really see the power of NHibernate and ASP.NET together.

1.	 Open up the Default.aspx page from the Ordering.Web solution we created
earlier. In the <head> section, between the </title> tag and the </head> tag,
add the following CSS code to properly render our items:

<style type="text/css">
 .contacts li
 {
 display: inline;
 float: left;
 margin: 0 0 15px 15px;
 }
</style>

2.	 Inside the body, between the <div> and </div> tags, add the following code:

<asp:ListView ID="contactView" runat="server">
</asp:ListView>

Chapter 9

[1��]

3.	 If you look down at the bottom of the screen, you will see three buttons, Design,
Split, and Source. Select the Split button to split the page into two parts, one
displaying the code and the other displaying the "real-time view" of your page.

Binding Data

[1��]

4.	 As you can see in the Design portion of the screen, our control needs an
<ItemTemplate> and a <LayoutTemplate>. We'll start off by adding the
<LayoutTemplate> to create our tags and adding the placeholder for the
Data Items. Between the opening and closing <asp:ListView> tags, add the
following code:

<LayoutTemplate>
 <ul class="contacts">
 <asp:PlaceHolder ID="itemPlaceholder" runat="server" />

</LayoutTemplate>

5.	 The next thing we need to add is the actual <ItemTemplate> block, which
will fill into our <asp:PlaceHolder> control named ItemPlaceHolder in the
<LayoutTemplate> block. Add the following code to bind the Last Name and
First Name with a comma between them:

<ItemTemplate>

 <p>
 <%# Eval("LastName") %>, <%# Eval("FirstName") %>
 </p>

</ItemTemplate>

6.	 At this point, it would be nice to see if what we have is working. Let's add some data
to our page so we can test it out. Add the following <asp:ObjectDataSource>
code to tell NHibernate to get some data for us:

<asp:ObjectDataSource ID="contactSource"
 DataObjectTypeName="Ordering.Data.Contact"
 TypeName="Ordering.Data.DataAccess.ContactDataControl"
 SelectMethod="GetAll" runat="server">
</asp:ObjectDataSource>

7.	 The last thing we have to do to make it work is tell our <asp:ListView>
control to use our <asp:ObjectDataSource>. In the opening of the tag,
add the following code:

DataSourceID="contactSource"

So, your final <asp:ListView> tag should look as follows:

<asp:ListView ID="contactView" DataSourceID="contactSource"
 runat="server">

Chapter 9

[1��]

8.	 Press F5 or select Debug | Start Debugging to view our progress. You should get
something similar to the following screenshot:

If you run into trouble, then take a look at your <asp:ObjectDataSource>
control. Most likely it's an issue with your DataObjectTypeName (POCO) or
the TypeName (Data Access Control) namespaces.

Take a look at your object and see what the namespace is, and adjust the
DataObjectTypeName or TypeName to match the full names of the
actual POCO or DAO classes.

Your TypeName will be Ordering.Data.DataAccess.
ContactDataControl if your ContactDataControl is as follows:

namespace Ordering.Data.DataAccess
{
 public class ContactDataControl

However, if your ContactDataControl doesn't have any namespace
wrapper, such as Public Class ContactDataControl, then the
TypeName will just be the name of the project and the name of the class
or Ordering.Data.ContactDataControl.

Binding Data

[1��]

9.	 Now that we have some basic data-bound controls, let's get a little trickier. Let's add
another control inside our tags such as the <asp:HyperLink> control. We
will bind the Text property of the control to the Email property of the Data Item.
We will bind the NavigateUrl property to a formatted string, "mailto:{0}?subje
ct=NHibernate&body=Hello from NHibernate", filling in the {0} with the Email
property. Add the following code after the <%# Eval("FirstName") %> tag, but
before the </p>:

<asp:HyperLink NavigateUrl='<%# DataBinder.Eval(
 Container.DataItem,"Email",
 "mailto:{0}?subject=NHibernate&body=Hello from NHibernate") %>'
 Text='<%# Eval("Email") %>' runat="server" />

10.	Now if we run the code, we will have a hyperlink under each of our contacts that has
an e-mail address, as shown in the following screenshot:

Chapter 9

[1�7]

If we click on one of the links, it will start our default e-mail handler and pre-fill the address,
subject, and body for us, as shown in the following screenshot:

11.	The last thing we should do is add an <EmptyDataTemplate>, in case our data
control doesn't return any data. After the <ItemTemplate> block, add the
following block of code:

<EmptyDataTemplate>
 <div>
 No contacts were found
 </div>
</EmptyDataTemplate>

12.	Our completed code should look as follows:

<body>
 <form id="form1" runat="server">
 <div>
 <asp:ListView ID="contactView" DataSourceID="contactSource"
 runat="server">
 <LayoutTemplate>
 <ul class="contacts">
 <asp:PlaceHolder ID="itemPlaceholder"
 runat="server" />

 </LayoutTemplate>
 <ItemTemplate>

 <p>

Binding Data

[1��]

 <%# Eval("LastName") %>,
 <%# Eval("FirstName") %>

 <asp:HyperLink NavigateUrl='<%# DataBinder.Eval
 (Container.DataItem,"Email","mailto:
 {0}?subject=NHibernate&body=Hello from
 NHibernate") %>' Text='<%# Eval("Email") %>'
 runat="server" />
 </p>

 </ItemTemplate>
 <EmptyDataTemplate>
 <div>
 No contacts were found
 </div>
 </EmptyDataTemplate>
 </asp:ListView>
 <asp:ObjectDataSource ID="contactSource"
 DataObjectTypeName="Ordering.Data.Contact"
 TypeName="Ordering.Data.DataAccess.ContactDataControl"
 SelectMethod="GetAll" runat="server">
 </asp:ObjectDataSource>
 </div>
 </form>
</body>

What just happened?
With just a few lines of ASP.NET code (and no code-behind), we have created a
complete CSS-driven, data-bound web page that displays contacts in a neatly
formatted columnar layout.

Direct data binding
The easiest (though probably hardest to maintain) method to bind data to controls is to
retrieve the data in the code behind and set it to the DataSource property of the control.

To make the <asp:ListView> from the previous section work, we can knock up a quick
Products class:

public Products(string Image, string ProductName)
{
 this.Image = Image;
 this.ProductName = ProductName;
}
public string Image { get; set; }
public string ProductName { get; set; }

Chapter 9

[1��]

Next, we just need to create a few instances of the Products class inside the
Page_Load method:

IList<Products> products = new List<Products>();
products.Add(new Products("Images/product1.jpg", "Product 1"));
products.Add(new Products("Images/product2.jpg", "Product 2"));
products.Add(new Products("Images/product3.jpg", "Product 3"));
products.Add(new Products("Images/product4.jpg", "Product 4"));
products.Add(new Products("Images/product5.jpg", "Product 5"));
products.Add(new Products("Images/product6.jpg", "Product 6"));

And finally, we set the DataSource of the control to our list of products and call
DataBind(), as shown in the following lines of code:

productList.DataSource = products;
this.DataBind();

VOILA! We have a data-bound list of products that displays using CSS exactly like our
original list.

There are two major problems with binding data this way:

Your data retrieval and storage code is visibly separated from your display.

You have to do all of the data "munging" yourself, that is, taking the data from the
control and saving it, binding the data to the control, updating it when it changes,
and so on.

Binding Data

[1�0]

Have a go hero – give direct data binding a try
In the code that we created earlier, remove the DataSourceID property from the <asp:
ListView> control and create your own IList<Contact>, either manually or by retrieving
them from the database using one of the methods on the Ordering.Data.DataAccess.
ContactDataControl. Populate the <asp:ListView> by setting your IList<Contact>
to the DataSource property of the <asp:ListView> and calling this.DataBind().

One last control—the <asp:FormView>
One of the easiest ways to add data manipulation to a .NET application is to use
the <asp:FormView> control. This control is a templated control, with templates
for <ItemTemplate> (ReadOnly view), <InsertItemTemplate> (Insert),
<EditItemTemplate> (Edit), and <EmptyDataTemplate>.

The following code snippet shows the basic syntax of the control, which is similar to the
others that we have implemented:

<asp:FormView ID="contactFormView" DataSourceID="contactDetailSource"
DataKeyNames="Id" runat="server">

</asp:FormView>

One property, which is of particular interest to us, that this control exposes is the
DataKeyNames property. By setting this property, we tell the control the name of the
Primary Key field or fields (separated by a comma) that make a unique record. To set this
property for our objects, we just need to say:

DataKeyNames="Id"

As with all templated controls, we can use CSS to "spruce up" the look of our templates.
Here is an example of using an HTML <fieldset> control with an ordered list () to
give us a nice look that is easy to skin:

<ItemTemplate>
 <fieldset>
 <legend>Contact Detail</legend>

 <asp:Label ID="idLabel" Text="Id" runat="server" />
 <asp:Label ID="id" Text='<%# Eval("Id") %>'
 runat="server" />

 <asp:Label ID="lastNameLabel" Text='LastName'
 runat="server" />

Chapter 9

[1�1]

 <asp:Label ID="lastName" Text='<%# Eval("LastName") %>'
 Enabled="false" runat="server" />

 <asp:Label ID="firstNameLabel" Text='FirstName'
 runat="server" />
 <asp:Label ID="firstName" Text='<%# Eval("FirstName") %>'
 Enabled="false" runat="server" />

 <asp:Label ID="emailLabel" Text='Email' runat="server" />
 <asp:Label ID="email" Text='<%# Eval("Email") %>'
 Enabled="false" runat="server" />

 </fieldset>
 <asp:Button ID="add" CommandName="New" Text="Add" runat="server" />
 <asp:Button ID="edit" CommandName="Edit" Text="Edit"
 runat="server" />
 <asp:Button ID="delete" CommandName="Delete" Text="Delete"
 runat="server" />
</ItemTemplate>

When we render this basic <ItemTemplate> bound to a Contact object, it will look similar
to the following screenshot:

Binding Data

[1�2]

Notice in the <ItemTemplate> there is an <asp:Button ID="edit"> with
CommandName="Edit". The <asp:FormView> control will interpret these
"CommandName" attributes and switch modes accordingly.

For example, when I click the button with the CommandName "Edit" specified, the control
will display the <EditItemTemplate>, which we define as follows:

<EditItemTemplate>
 <fieldset>
 <legend>Edit Contact Detail</legend>

 <asp:Label ID="idLabel" Text="Id" runat="server" />
 <asp:Label ID="id" Text='<%# Bind("Id") %>' runat="server" />

 <asp:Label ID="lastNameLabel" Text='LastName'
 runat="server" />
 <asp:TextBox ID="lastName" Text='<%# Bind("LastName") %>'
 runat="server" />

 <asp:Label ID="firstNameLabel" Text='FirstName'
 runat="server" />
 <asp:TextBox ID="firstName" Text='<%# Bind("FirstName") %>'
 runat="server" />

 <asp:Label ID="emailLabel" Text='Email' runat="server" />
 <asp:TextBox ID="email" Text='<%# Bind("Email") %>'
 runat="server" />

 </fieldset>
 <asp:Button ID="submit" CommandName="Update" Text="Save"
 runat="server" />
</EditItemTemplate>

Chapter 9

[1��]

When we hit the Edit button, the browser will show something similar to the
following screenshot:

Similarly, when we hit the Add button, it will display the <InsertItemTemplate>, which is
identical to the <EditItemTemplate>, except we remove the label for the "Id" because it
is automatically assigned by NHibernate:

<InsertItemTemplate>
 <fieldset>
 <legend>New Contact Detail</legend>

 <asp:Label ID="lastNameLabel" Text='LastName'
 runat="server" />
 <asp:TextBox ID="lastName" Text='<%# Bind("LastName") %>'
 runat="server" />

 <asp:Label ID="firstNameLabel" Text='FirstName'
 runat="server" />
 <asp:TextBox ID="firstName" Text='<%# Bind("FirstName") %>'
 runat="server" />

Binding Data

[1��]

 <asp:Label ID="emailLabel" Text='Email' runat="server" />
 <asp:TextBox ID="email" Text='<%# Bind("Email") %>'
 runat="server" />

 </fieldset>
 <asp:Button ID="submit" CommandName="Insert" Text="Save"
 runat="server" />
</InsertItemTemplate>

The last template we need to view is the <EmptyDataTemplate>, which simply tells us that
there are no records and presents the "Add" button for us to insert a new record:

<EmptyDataTemplate>
 <fieldset>
 <legend>Contact Detail</legend>No Record Selected
 </fieldset>
 <asp:Button ID="add" CommandName="New" Text="Add" runat="server" />
</EmptyDataTemplate>

The only thing left is to define an <asp:ObjectDataSource> to populate and perform the
CRUD operations for us:

<asp:ObjectDataSource ID="contactDetailSource" SelectMethod="GetById"
 InsertMethod="Save" UpdateMethod="Save" DeleteMethod="Delete"
 DataObjectTypeName="Ordering.Data.Contact"
 TypeName="Ordering.Data.DataAccess.ContactDataControl"
 runat="server">
 <SelectParameters>
 <asp:QueryStringParameter Name="id" QueryStringField="ContactId"
 Type="Int32" />
 </SelectParameters>
 <InsertParameters>
 <asp:Parameter Name="contact" Type="Object" />
 <asp:Parameter Direction="Output" Name="id" Type="Object" />
 </InsertParameters>
 <UpdateParameters>
 <asp:Parameter Name="contact" Type="Object" />
 <asp:Parameter Direction="Output" Name="id" Type="Object" />
 </UpdateParameters>
 <DeleteParameters>
 <asp:Parameter Name="contact" Type="Object" />
 </DeleteParameters>
</asp:ObjectDataSource>

Chapter 9

[1��]

With no record specified, the control will look as shown in the following screenshot:

Have a go hero – creating an <asp:FormView>
Now that we have the basis for inserting and updating data, have a crack at creating an
<asp:FormView> to insert, update, edit, and delete Contacts. Try applying a little CSS to
make your blocks more visually appealing.

Summary
In this chapter, we learned a lot about data binding in ASP.NET and how to make both
templated and non-templated controls work with data binding.

Specifically, we covered:

Data Binding techniques in an ASP.NET project

Using the <asp:ListView> control

Performing CRUD operations using the <asp:ObjectDataSource> control

Directly Binding Data to ASP.NET controls

Using the <asp:GridView> control

Binding data to <asp:Repeater> and <asp:DataList> controls

Databinding with <asp:DropDownList> and <asp:CheckBoxList> controls

Using the <asp:FormView> control to manage data

Now that we've learned about data binding, we're ready to talk about the .NET Security
provider model, which is the topic of the next chapter.

10
.NET Security

ASP.NET has several controls and providers that make securing ASP.NET
applications much simpler. Using NHibernate, we can implement two of
these—the membership and role providers—and use all of the standard
security controls to secure access to some of our pages. We will also talk about
some basic Internet security items to help you protect yourself and your users.

In this chapter, we will discuss:

Built-in controls

<asp:Login>

<asp:LoginStatus>

<asp:LoginView>

Membership provider

Web.config location security

Role provider

Configuration

Let's jump right in.

Built-in controls
Two of the controls you will need to get familiar with, if you are going to do security on your
site, are the <asp:Login> and the <asp:LoginStatus> controls to show the login and
status to our users. These controls, along with the forms authentication model, provide a
basic foundation for security in a .NET application.

.NET Security

[1��]

The <asp:Login> control is a templated control like we discussed in Chapter 9, Binding
Data. To add a login box, including Login and Password, to the page, we just need to add
the <asp:Login> control to one of our pages.

<asp:Login ID="login" runat="server" />

With this simple line of code, our page will now render a login for us, ready to accept our
login credentials, as shown in the following screenshot:

If we want our users to be directed to another page once they log in, we can add the
DestinationPageURL property, which will redirect them once they log in:

DestinationPageURL="support.aspx"

I know what you're thinking: We said that this was a templated control, right? Well,
it is. It just has a default template built in. If we want to override the template for the
<asp:Login> control, all we have do is provide an alternate <LayoutTemplate> with
a few controls. We need to have two textboxes, one with an ID of "UserName" and the
second with an ID of "Password". We also need an <asp:Button> control with an ID
of "Login" and a CommandName of "Login". We can also specify additional controls,
such as a "RememberMe" checkbox, and so on.

<asp:Login ID="login" runat="server">
 <LayoutTemplate>
 Login:
 <asp:TextBox ID="UserName" runat="server" />

 Password:
 <asp:TextBox ID="Password" runat="server" />

Chapter 10

[1��]

 <asp:CheckBox ID="RememberMe" Text="Remember my login"
 runat="server" />

 <asp:Button ID="Login" CommandName="Login" Text="Login"
 runat="server" />
 </LayoutTemplate>
</asp:Login>

If we render this control, as specified here, it will look pretty similar to the original control
template. Using this custom template, we can now use CSS to skin the control any way we
want instead of having to use the default layout.

We should display the status of the user logged in somewhere, and give them a link to login
and a link to log off. We can do all of this with an <asp:LoginStatus> control.

<asp:LoginStatus ID="loginStatus" runat="server" />

I like to stick an <asp:LoginStatus> control into my master
page, so that I have a place for the user to log off on every page.

.NET Security

[200]

When it is rendered, the <asp:LoginStatus> control will just render a link, either Login or
Logout, as shown in the following screenshot:

Time for action – adding a login to our page
If we are going to control user logins to our application, we first need to add the controls to
our forms.

1.	 Open the Ordering.Web application we created earlier.

2.	 In the Default.aspx page, at the start inside the <div> tag, add the code for our
<asp:LoginStatus> control:

<asp:LoginStatus ID="loginStatus" runat="server" />

3.	 Let's add a break (
) tag after the <asp:LoginStatus> control to pretty it
up a little:

<asp:LoginStatus ID="loginStatus" runat="server" />

4.	 Now we can add the <asp:Login> control to show our User Name and
Password boxes:

<asp:Login ID="login" runat="server" />

Chapter 10

[201]

5.	 Pressing F5 will bring up the page and show us our controls. It should look similar to
the following screenshot:

What just happened?
We just created login and status controls for our web application, and now we're ready to
build the backend to actually make them work!

Membership providers
To make our login controls work with NHibernate, we need to implement the System.
Web.Security.MembershipProvider abstract class. This is an abstract class
specifically designed to allow us to implement the standard security model using our
own authentication logic.

When we implement the abstract class, there are about 30 methods and properties that we
can override to implement all of the features of the membership provider, but we really only
have to implement one method to get it to work. If we implement the ValidateUser()
method, we can have basic login functionality.

The ValidateUser() method has two parameters (both strings), UserName and
Password. In our method, we need to accept these two parameters, validate that they
match the credentials stored in the database, and return either true or false based on
that validation.

.NET Security

[202]

A very simple implementation of the ValidateUser() method using NHibernate would be
to simply hash the user-supplied password, retrieve the user record based on the UserName,
and compare the passwords.

public override bool ValidateUser(string UserName, string Password)
{
 Login login = LoginDataControl.Instance.GetByUserName(UserName);
 if (login == null)
 return false;
 HMACSHA256 hash = new
 HMACSHA256(ASCIIEncoding.UTF8.GetBytes(login.Salt));
 string encodedPassword = Convert.ToBase64String
 (hash.ComputeHash(Encoding.Unicode.GetBytes(Password)));

 if (encodedPassword == login.Password && login.Active == true)
 return true;

 return false;
}

Notice that we pass in a byte[] key into the HMACSHA256 hashing algorithm. This is called
a seed value, and it ensures that we will always get the same results back when we call
ComputeHash(). If we didn't specify this key, then we would get different results every
time because it would automatically generate a seed value.

While we can default this method to use hashing as the default password protection
mechanism, the provider allows for many others. Some of the more common password
protection providers are "Hashed", "Encrypted", and "Clear".

You shouldn't use "Clear" to store passwords in your database. Should the data
ever be compromised, all of your users' passwords would be plainly visible to
the attacker. A better method is to use hashed passwords and use a different key
(salt) value for each user. You can store this salt value in the same record as the
user because even if it is compromised, it would take an attacker a large amount
of time to recompute each of the values.

Location security
One way to use our membership provider to control security is to add some configuration
elements in the Web.config file. We can use the <location> element to specify the name
of a directory or a page, and then use an <authorization> block to control access.

Chapter 10

[20�]

The <location> element is specified in the Web.config file, usually right after the
</system.web> element as part of the <configuration> block. To control security, we
have two major options, namely, "allow" and "deny". We can also specify if we want the
security to apply to everyone (*), only anonymous users (?), or to specific users or roles.

If you look at the following <location> element, you will see that we are denying access
to all unauthenticated (anonymous) users, that is, we only allow logged-in users to visit the
SecurePage.aspx page.

<location path="/SecurePage.aspx">
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</location>

If you look at the following <location> element, you will see that we are denying access to
all users except those with Administrator and DataAdmin roles.

<location path="/SecurePage.aspx">
 <system.web>
 <authorization>
 <allow roles="Administrator"/>
 <allow roles="DataAdmin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
</location>

More information on ASP.NET Authorization is available on the MSDN site at
http://msdn.microsoft.com/en-us/library/aa719554%28VS.71%29.aspx.

Pop quiz – doing the thing
1. Which of the following means "All Users"?

a. ?

b. *

c. &

d. None of the above

.NET Security

[20�]

2. Which of these allows us to control authentication?

a. <location>

b. Users, roles

c. allow, deny

d. All of the above

3. In the following block, who will have access to the Default.aspx page in the
root folder?

<location path=".">
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</location>

a. No one

b. All logged-in users

c. Only anonymous users

d. Impossible to tell

Configuring our provider
Once our providers are written, we need to let ASP.NET know that we are going to use them.
The first thing we need to do is go into the Web.config and change the authentication
method in the system.web section from Windows to Forms. To do this, we literally just
change the value to Forms as follows:

<authentication mode="Forms"/>

One thing we should also specify here is the URL of the login page in case our user tries
to go to a secure page without being logged in (that is, from a bookmark). We can use the
loginUrl property of the forms tag to handle this as follows:

<authentication mode="Forms">
 <forms loginUrl="~/Login.aspx"/>
</authentication>

Next, we need to add a configuration block to define the membership provider. This is
done using the <membership> block and a <providers> block to actually define the
provider itself.

Chapter 10

[20�]

The <membership> block has a parameter defaultProvider where you can provide the
name of the default provider for it to use. A sample configuration would look something
as follows:

<membership defaultProvider="OrderingMembershipProvider">
 <providers>
 <add name="OrderingMembershipProvider"
 type="Ordering.Data.OrderingMembershipProvider,
 Ordering.Data" />
 </providers>
</membership>

You will notice that the provider construct is very similar to the <connection strings>
or the <app settings> blocks within the web.config or app.config file. It simply uses
the add notation, with a name (for use with the defaultProvider name, and so on) and a
type parameter denoting where .NET should look for the code.

There are numerous settings for this provider block such as encryption, validation keys (salt
values), whether or not password resets are enabled, and so on, but this is all that is needed
to get it up and running.

Time for action – create a membership provider
Let's add the membership provider to our code and configure our application to use it.

1.	 Before we get started, we will need a place to store our new logins in the database.
Execute the following SQL to create the "Login" table in our "Ordering" database
with SQL Server Management Studio (SSMS):

CREATE TABLE [dbo].[Login](
 [Id] [int] IDENTITY(1,1) NOT NULL,
 [Active] [bit] NOT NULL,
 [Email] [varchar](255) NULL,
 [FirstName] [varchar](255) NULL,
 [LastName] [varchar](255) NULL,
 [UserName] [varchar](255) NOT NULL,
 [Password] [varchar](255) NOT NULL,
 [PasswordQuestion] [varchar](255) NULL,
 [PasswordAnswer] [varchar](255) NULL,
 [Salt] [varchar](255) NOT NULL,
 CONSTRAINT [PK_Login] PRIMARY KEY CLUSTERED
 (
 [Id] ASC
)
)

.NET Security

[20�]

2.	 Now you will need to create a Login POCO, a Login Data Control (DAO), and add the
XML mapping files. Refer to the previous chapters if you need a little help.

3.	 Add a new class to the Ordering.Data project called
OrderingMembershipProvider.

4.	 Add a reference to System.Configuration and System.Web as shown in the
following screenshot:

5.	 Next we need to add some using statements to the top of the class. Add the
following code:

using System.Configuration.Provider;
using System.Security.Cryptography;
using System.Web.Security;
using Ordering.Data.DataAccess;

In VB.Net, we will replace using with Imports and get rid of the semicolon
as follows:

Imports System.Configuration.Provider
Imports System.Security.Cryptography
Imports System.Web.Security

Chapter 10

[207]

6.	 Now we need to tell our class to implement the MembershipProvider abstract
class. After your class declaration, add the following code:

: System.Web.Security.MembershipProvider

Or in VB.NET:

Inherits System.Web.Security.MembershipProvider

7.	 Add the following ValidateUser() method to your class:

public override bool ValidateUser(string UserName, string
 Password)
{
 Login login = LoginDataControl.Instance.GetByUserName(UserName);
 if (login == null)
 return false;

 HMACSHA256 hash = new
 HMACSHA256(ASCIIEncoding.UTF8.GetBytes(login.Salt));
 string encodedPassword = Convert.ToBase64String
 (hash.ComputeHash(Encoding.Unicode.GetBytes(Password)));

 if (encodedPassword == login.Password && login.Active == true)
 return true;

 return false;
}

In VB.NET, it is as follows:

Public Overloads Overrides Function ValidateUser(ByVal UserName _
 As String, ByVal Password As String) As Boolean
 Dim login As Login = LoginDataControl.Instance._
 GetByUserName(UserName)
 If login Is Nothing Then
 Return False
 End If

 Dim hash As New _
 HMACSHA256(ASCIIEncoding.UTF8.GetBytes(login.Salt))
 Dim encodedPassword As String = Convert.ToBase64String _
 (hash.ComputeHash(Encoding.Unicode.GetBytes(Password)))

 If encodedPassword = login.Password AndAlso _
 login.Active = True Then
 Return True
 End If

 Return False
End Function

.NET Security

[20�]

8.	 If you are using C#, right-click on the MembershipProvider definition, and select
Implement Abstract Class to let Visual Studio "stub out" the rest of our class
(VB.NET should automatically do this for us). This will create the other methods and
properties required to implement the MembershipProvider class, with a default
to throw an exception if the method is called.

9.	 In the Web.config file, find the <authentication> section in the <system.
web> block and change the authentication method from Windows to Forms.

<authentication mode="Forms"/>

10.	Add a block under this to define our membership provider, giving it a type and
name.

<membership defaultProvider="OrderingMembershipProvider">
 <providers>
 <add name="OrderingMembershipProvider"
 type="Ordering.Data.OrderingMembershipProvider,
 Ordering.Data" />
 </providers>
</membership>

11.	That's it. Now if you start the application, you should be able to put in a username
and password, and if you stop the application in Debug mode, you should be able to
view the values and step through the code!

What just happened?
Now we have a working membership provider and Login controls, so let's move on to
restricting what a user can see by role.

Chapter 10

[20�]

User roles
Now that we have the ability to log a user in, we can filter data based on whether or not
they are logged in, and even allow access to pages based on the same. But what if we
need more granular control? What if we need to only allow access to certain controls to
"Administrators", or "DataManagers"? Using the System.Web.Security.RoleProvider
abstract classes, we can extend our control to a much tighter level.

A number of controls allow restricting access to roles, but my particular favorite is the <asp:
LoginView> control. Not only does it let us restrict a user, whether logged in or not, but it
can also restrict them by role. Have a look at the following code snippet:

<asp:LoginView ID="loginView" runat="server">
 <AnonymousTemplate>
 <asp:Login ID="login" runat="server" />
 </AnonymousTemplate>
 <LoggedInTemplate>
 Thanks for Logging In
 </LoggedInTemplate>
</asp:LoginView>

Now, when you navigate to the page, if you are logged in, you will see Thanks for Logging In
and if not, you will get an <asp:Login> control. This is great functionality, but not the level
of control we are seeking. Lucky for us, there is another template, called <RoleGroups>.
By defining one or more <asp:RoleGroup> blocks, we can restrict the data in any way we
want. For example, if we want to add a new button for "Administrators" only, we can add an
<asp:RoleGroup> block as follows:

<asp:LoginView ID="adminLogin" runat="server">
 <RoleGroups>
 <asp:RoleGroup Roles="Administrator">
 <ContentTemplate>
 <asp:Button ID="adminOnly" runat="server"/>
 </ContentTemplate>
 </asp:RoleGroup Roles="Administrator">
 </RoleGroups>
</asp:LoginView>

If we want more than one role to have access to a block, we just put the role names together,
separated by a comma, into the Roles parameter. If we wanted to allow "Administrators"
and "Data Managers" access to our button, we would just change our <asp:RoleGroup>
statement to read as follows:

<asp:RoleGroup Roles="Administrator,DataManager">

If we needed to provide different content to different groups, we can just keep adding
<asp:RoleGroup> blocks as necessary.

.NET Security

[210]

Role providers
To make our role-based controls work with NHibernate, we need to implement the
System.Web.Security.RoleProvider abstract class. This abstract class is specifically
designed to allow us to implement the ASP.NET role model using our own logic.

Just like the membership provider, the role provider has about 15 methods and properties
that we can override, if we need to. However, just like the other provider, we really only need
to focus on one method to implement the base class—GetRolesForUser().

GetRolesForUser() is passed one variable, the UserName as a string, and returns an array
of strings (string[]) containing the names of the roles to which the user belongs.

The following code snippet shows a simple NHibernate implementation of
GetRolesForUser():

public override string[] GetRolesForUser(string UserName)
{
 ArrayList roleList = new ArrayList();
 IList<Role> roles =
 RoleDataControl.Instance.GetRolesByUserName(UserName);
 foreach (Role role in roles)
 {
 roleList.Add(role.Name);
 }
 return (string[])roleList.ToArray(typeof(string));
}

Provider configuration
Once again, now that we have the provider written, we just need to let ASP.NET know how to
use it. In the Web.config, under our <membership> block, we will add a <roleManager>
block, once again giving it a defaultProvider name and telling ASP.NET to enable it:

<roleManager defaultProvider="OrderingRoleProvider" enabled="true">
 <providers>
 <clear/>
 <add name="OrderingRoleProvider"
 type="Ordering.Data.OrderingRoleProvider, Ordering.Data"/>
 </providers>
</roleManager>

Just like when we configured our membership provider, we simply have to provide a name
and a type so ASP.NET can locate our custom code, and we can use all of the controls that
make use of roles.

Chapter 10

[211]

Have a go hero – using some roles
As you already have a working membership provider, why not integrate a role provider?
Follow the same instructions for integrating your membership provider, but substitute the
role provider instead. You will need two additional database tables, Role and Login_Role.
Login_Role is a many-to-many (MTM) table between Login and Role. If you forgot how to
map an MTM table, take a look at Phone and Contact. Here is the SQL for the two tables:

The Role table:

CREATE TABLE [dbo].[Role](
 [Id] [int] IDENTITY(1,1) NOT NULL,
 [Name] [varchar](255) NOT NULL,
 [Description] [text] NULL,
 CONSTRAINT [PK_Role] PRIMARY KEY CLUSTERED
 (
 [Id] ASC
)
)

The Login_Role MTM table:

CREATE TABLE [dbo].[Login_Role](
 [LoginId] [int] NOT NULL,
 [RoleId] [int] NOT NULL,
 CONSTRAINT [PK_Login_Role] PRIMARY KEY CLUSTERED
 (
 [LoginId] ASC,
 [RoleId] ASC
)
)
GO
ALTER TABLE [dbo].[Login_Role] WITH CHECK ADD CONSTRAINT [FK_Login_
Role_Login] FOREIGN KEY([LoginId]) REFERENCES [dbo].[Login] ([Id])
GO
ALTER TABLE [dbo].[Login_Role] WITH CHECK ADD CONSTRAINT [FK_Login_
Role_Role] FOREIGN KEY([RoleId]) REFERENCES [dbo].[Role] ([Id])
GO

Once you map your classes, add a role with the name of "Administrator" to the database,
and add some logins. Don't forget to populate the Login_Role table so your users have
roles, and test the whole thing out!

.NET Security

[212]

Summary
Now, you should have a fairly good understanding of how membership and role providers
interact within ASP.NET to provide authentication and authorization as well as some of the
controls you can use to interact with them.

Specifically, we talked about:

Using the built-in membership controls:

The <asp:Login> control for user login.

Using the <asp:LoginStatus> control to display user
login status.

Controlling viewable content with the <asp:LoginView> control.

Creating and implementing a custom membership provider.

Specifying location security using the Web.config file. Implementing and
configuring a custom role provider.

Now that we've learned about ASP.NET Security, we're ready to talk about Code Generation,
which is the topic of the next chapter.

11
It's a Generation Thing

One of the major complaints people have with using NHibernate or any ORM
is all of the repetitive code they have to write. In an effort to alleviate this pain,
several groups have developed code generation tools that interact with various
items (the database, mapping files, or other artifacts) to generate the code
required for NHibernate to operate. This can include classes, web services,
data access, mapping files, and so on.

In this chapter, we'll discuss:

Judging requirements

CodeSmith

nhib-gen

AjGenesis

Visual NHibernate

MyGeneration

NGen

NHModeller

Microsoft T4

hbm2net

So let's get on with it.

It’s a Generation Thing

[21�]

Judging requirementsrequirements
The following tools represent a sampling of the NHibernate code generation tools "in the
wild" that are commonly used. This is by no means a complete list. Each product has a basic
presentation of the code generation it does and a chart covering some basic requirements
for an NHibernate operation. The judging criteria are as follows:

Editable: Can the template, used to generate the NHibernate code, be modified?

Partial Classes: Can the tool use partial classes for generating the Data Access and
POCO layers?

N-tier: Does the generator separate the Data Access, POCO, and Presentation layers
into discrete, usable layers?

Data Access: Does the generator create basic queries such as GetByID, GetAll,
GetBy(index field), GetCount, and so on?

MTM: Does the generator correctly map and handle many-to-many relationships?

Visual Studio plugin: Can the generator be executed from within Visual Studio?

Build Process add-in: Can the generator be integrated as part of a build process?

Open Source: Is the source code available for customization?

Each item will be scored on a scale of 0 to 5—0 being "No Support" and 5 meaning
"Completely Supported". A sample chart is shown as follows:

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 0 3 0 5 0 3 3

This table shows a tool that has a completely customizable template but does not support
partial classes out of the box. It separates some of the data into separate tiers, does not
generate a data access layer, correctly handles MTM tables, but doesn't have a Visual Studio
plugin. The score of 3 for the Build process means that the process can be spawned from
a command line, but it requires manual intervention to kick off the generation. The source
code for the tool is available, but it relies on a third-party DLL that the source is not available.

Chapter 11

[21�]

All of the examples shown were generated from the Ordering database model (either
imported, created manually, or from the hbm.xml mapping files). The model is shown
in the following screenshot:

CodeSmith
One of the better known code generators on the market is CodeSmith. This tool started out
as an open source tool and then went to a commercial license a few years back. You can
download a trial version from http://www.codesmithtools.com/. Various licensing
models are also available.

It’s a Generation Thing

[21�]

CodeSmith comes with a collection of NHibernate templates in the samples directory that
you are free to customize to your liking. They are primarily designed to use the Visual Studio
plugin to integrate into your IDE, but they work fine from either the CodeSmith Studio
(a template design, compilation, and execution tool) or from the CodeSmith Explorer
(a template execution tool).

The CodeSmith templates allow you to modify many of the settings for the templates such as
the AssemblyName, Base Class Namespaces, Business (POCO), Manager (DataAccess),
and Unit Test namespaces.

These templates are database driven, so your model is the database and the rest of the data
layer is generated from it. However, you could develop your own templates to generate from
another model if you desired.

Once you get the hang of it, CodeSmith is easy to use, quick to modify, and you can tweak it
to do exactly what you want.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 5 5 3 5 5 5 0

Chapter 11

[217]

nhib-gen
The NHibernate Data Layer Generation (nhib-gen) project on SourceForge
(http://sourceforge.net/projects/nhib-gen) is an open source project, which
includes a set of base classes and templates to implement an entire NHibernate solution.

These templates are database-driven, so your model is the database and the rest of the data
layer is generated from it.

One caveat of nhib-gen is that you will need a CodeSmith license. Work is underway to
implement the templates in other code generation tools such as MyGeneration.

The nhib-gen project templates are the ones that I use in my development, and they have
been used by several companies for large and small projects. They combine a set of base
classes designed from "Best Practice" NHibernate documents and websites with generated
code to provide the best possible combination of performance and ease of use.

Once the basic configuration is done, nhib-gen will create a full set of common
objects (POCOs), business objects (wrappers for POCOs where you can add additional
customization), Data Access Objects, mapping files, sample ASP.NET data-bound forms,
and a full set of unit tests to exercise your data layer.

It’s a Generation Thing

[21�]

nhib-gen is extremely configurable, allowing you to generate all your files into a single DLL,
separate DLLs for each layer, and so on. It will automatically add your generated files to your
Visual Studio project and mark the mapping files as embedded resources.

When I use these templates, I can have a new working data tier in as little as
five minutes. I simply create a new DLL and web application project, copy the
saved CodeSmith settings from another project, and search/replace the old
project name with the new one to move the namespaces into the proper places.
I generate the database, copy the configuration into the Web.config, and the
application is talking to the database.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 5 5 5 5 5 5 5

AjGenesis
The AjGenesis Code Generation project is hosted on CodePlex (http://ajgenesis.
codeplex.com/), and according to its author:

AjGenesis is an open software project that generates any text artifact, starting
from free Models and Templates.

These templates are model-driven from XML, so your model is stored in a well-formed XML
file and the rest of the data layer (including the SQL for the database) is generated.

Simply put, this generator lets you define your own models and templates, so you can
generate from any XML document you want.

There is an example of generating an NHibernate data layer (including the project) using
your hbm.xml mapping files at http://ajlopez.wordpress.com/2009/11/22/
generating-code-with-ajgenesis-using-nhibernate-hbm-files/.

The templates included in the example follow a very basic construction, much like the
CodeSmith or MyGeneration style templates. Anything that needs to be rendered directly,
such as the using statement, is simply entered in the template directly. Any variables that
need to be added in, follow the ${name} format, while code that should be executed in
the template is enclosed in <# #> blocks.

Chapter 11

[21�]

If you look at the following template, you can see that the entire template to generate an
entity from an hbm.xml file is only 45 lines long.

using System;
using System.Collections.Generic;
using Iesi.Collections.Generic;

namespace ${Entity.Namespace}
{
 public class ${Entity.ClassName} {
 <#
 for each Property in Entity.Properties where not Property.IsSet
 and not Property.IsList
 #>
 public ${Property.Type} ${Property.Name} { get; set; }
 <#
 end for

 for each Property in Entity.Properties where Property.IsSet
 #>
 public ISet<${Property.Type}> ${Property.Name} { get; set; }
 <#
 end for

 for each Property in Entity.Properties where Property.IsList
 #>
 public IList<${Property.Type}> ${Property.Name} { get; set; }
 <#
 end for
 #>

 public ${Entity.ClassName}()
 {
 <#
 for each Property in Entity.Properties where Property.IsSet
 #>
 this.${Property.Name} = new HashedSet<${Property.Type}>();
 <#
 end for

 for each Property in Entity.Properties where Property.IsList
 #>
 this.${Property.Name} = new List<${Property.Type}>();
 <#
 end for
 #>
 }
 }
}

It’s a Generation Thing

[220]

Using the templates located at the previous link will generate a set of classes. I added the
partial keyword because I prefer to be able to add code into my generated classes
without modifying the generated code.

A sample Contact class generated from our ordering.hbm.xml mapping classes is
as follows:

using System;
using System.Collections.Generic;
using Iesi.Collections.Generic;

namespace Ordering.Data
{
 public partial class Contact {
 public string Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public IList<Ordering.Address> Addresses { get; set; }
 public IList<Ordering.OrderHeader> BillToOrderHeaders
 { get; set; }
 public IList<Ordering.OrderHeader> ShipToOrderHeaders
 { get; set; }
 public IList<Ordering.Phone> Phones { get; set; }

 public Contact()
 {
 this.Addresses = new List<Ordering.Address>();
 this.BillToOrderHeaders = new List<Ordering.OrderHeader>();
 this.ShipToOrderHeaders = new List<Ordering.OrderHeader>();
 this.Phones = new List<Ordering.Phone>();
 }
 }
}

Overall, this is a very simple-to-use, flexible code generation engine.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 4 11 01 5 22 5 5

1. The sample templates only generate POCOs, but other templates could be
quickly added.

2. The console application can be integrated with Visual Studio as a pre-build step.

Chapter 11

[221]

Visual NHibernate
Another way to look at your NHibernate project is to use a visual modeler, such as Visual
NHibernate from Slyce Software (http://www.slyce.com/VisualNHibernate/).

This generator is model-driven, so your model is created and stored inside your project,
and the data layer and scripts for the database are generated. Models can be created from
existing databases, existing NHibernate projects (source code), or from scratch.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 3 4 5 5 5 0 0

MyGeneration
One of the best code generators out there is MyGeneration. It is open source and free (as in
zero cost). You can get the latest version from http://www.mygenerationsoftware.com
or from the SourceForge project page at http://sourceforge.net/projects/
mygeneration.

It’s a Generation Thing

[222]

According to their SourceForge page:

MyGeneration is an extremely flexible template-based code generator written in
Microsoft.NET. MyGeneration is great at generating code for ORM architectures.
The metadata from your database is made available to the templates through the
MyMeta API.

The MyGeneration templates are typically database-driven, so your model is stored in the
database and the rest of the data layer is generated.

MyGeneration has a very clean, simple interface, and is very user-friendly. As an added
bonus, if you don't like the way a feature works, remember, it's open source, so you can
download the source code and change it!

Much like CodeSmith, MyGeneration uses templates to render the code it generates.
Therefore, you can create your own templates or modify one that someone else has shared.
MyGeneration has a large set of templates for you to use and more are available at
http://www.mygenerationsoftware.com/templatelibrary/default.aspx.

One of my favorite NHibernate templates was uploaded by Daniel Lujan (lujan99 on the
MyGeneration site). This template is called "NHibernate lujan99 – 1.0.6" and can be
downloaded from http://www.mygenerationsoftware.com/TemplateLibrary/
Download/?templateid=20584a7d-cad9-4e84-86eb-2da504d64781.

I would only make two small changes to this excellent template. The first is to add the
keyword partial on line 4751.

The original code at line 4751 is as follows:

str.AppendLine(" public class <xsl:value-of select=\"$classname\"/>
 <xsl:if test=\"string-length($inheritFrom)>0\"> :
 <xsl:value-of select=\"$inheritFrom\"/> </xsl:if>");

Chapter 11

[22�]

After making the changes, the new code at line 4751 is as follows:

str.AppendLine(" public partial class
 <xsl:value-of select=\"$classname\"/>
 <xsl:if test=\"string-length($inheritFrom)>0\"> :
 <xsl:value-of select=\"$inheritFrom\"/> </xsl:if>");

The other change would be to modify the generated class filename to end with
.generated.cs instead of .cs. This needs to happen on lines 3674 and 3696.

The original code at line 3696 is as follows:

nx.Attributes["name"].Value.Replace(" ", ""))+ ".cs"),

The updated code at line 3696 is as follows:

 nx.Attributes["name"].Value.Replace(" ", ""))+ ".generated.cs"),

The original code at line 3674 is as follows:

Path.Combine(_path2Src,name+".cs"),

The updated code at line 3674 is as follows:

 Path.Combine(_path2Src,name+".generated.cs"),

These changes will allow us to create another partial class to contain our own custom
properties that wouldn't get overwritten the next time we generate by creating a new partial
class with the same name, such as Address.cs, to go along with Address.generated.cs.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 3 5 0 5 0 5 5

Time for action – using MyGeneration
Let's see how much time using MyGeneration and the L99-NHibernate template would have
saved us by generating our POCOs and mapping files.

1.	 If you haven't already done so, download MyGeneration from
http://sourceforge.net/projects/mygeneration/ and install it.

2.	 Download the L99-NHibernate template from http://www.
mygenerationsoftware.com/TemplateLibrary/Download/
?templateid=20584a7d-cad9-4e84-86eb-2da504d64781 and place it into
the Templates folder of the MyGeneration installation (usually c:\Program
Files\MyGeneration13\Templates).

It’s a Generation Thing

[22�]

3.	 Start MyGeneration from either the Start menu or by directly running
MyGeneration.exe.

4. The first time you run it, MyGeneration will present the Default Settings window. In
this window, under Connection String, add the following connection string:

Provider=SQLOLEDB.1;Integrated Security=SSPI;Initial
Catalog=ordering;Data Source=.\sqlexpress

Chapter 11

[22�]

5.	 In the Saved Connections box, type the name local, and click on the Save button.

6.	 Load the L99-NHibernate template (l99_nhibernate.csgen) using the File |
Open menu.

7.	 Once the template has loaded, start the template by pressing F5, selecting Template
| Execute, or hitting the green arrow in the toolbar. The template will compile and
show a window with three tabs: Tables, Options, and Help.

It’s a Generation Thing

[22�]

8.	 Click on the Options tab, change the Class Assembly and Class Namespace to
Ordering.Data, and change the Output path to your code directory.

9.	 Click on the Generate button and MyGeneration will generate your classes. When
it is complete, you should get a confirmation box similar to the one shown in the
following screenshot:

Chapter 11

[227]

10.	Your target directory will now have two new folders, Entities and Mappings,
which contain the POCOs and hbm.xml mapping files, as shown in the
following screenshot:

What just happened?
With a few simple clicks, we have created the basis for our NHibernate database
interaction. All we need to do now is put together some data access classes and
we are ready to use them!

NGen NHibernate Code Generator
Another open source NHibernate code generator that you can use is the NGen NHibernate
Code Generator, hosted on SourceForge at http://sourceforge.net/projects/
ngennhibernatec/.

This project does a basic generation of POCOs (DAO classes) and mapping files, as well as
creating data access classes (Services). This tool is also open source, written in C#, so you
can download it and make any changes to it that you like.

It doesn't appear to have any command-line options for generation or have a Visual Studio
plugin, but you could integrate them pretty easily.

It’s a Generation Thing

[22�]

Edit Partials N-Tier DataAccess MTM VS Build Open Src

4 1 4 5 0 0 0 5

NHModeller
Another interesting project is the NHModeller tool. While I generally use the database to
represent my model, this tool decouples the model from the data structure in a very slick
manner. All we need to do is define our model in a text file and use either the command-line
application or a plugin for the free Intellipad tool from Microsoft to generate POCO's, HBM.
XML files, and SQL Scripts.

More information on this product is available at http://nhmodeller.selfip.com/.

This tool generates data from a model. However, instead of using a visual representation
(such as Visual NHibernate), it uses a text-based Domain Specific Language (DSL) to describe
the entities.

A simple Contact object model would look something as follows:

NHModel
{
 Entity Contact
 {
 LastName:string(255)
 FirstName:string(255)
 Email:string(255)
 } in Contact
}

Chapter 11

[22�]

One nice feature of this product is the Intellipad plugin. This plugin provides basic
IntelliSense and syntax highlighting, as well as the option to run the generation from
within the editing environment.

It’s a Generation Thing

[2�0]

Once we have created the model, we can generate the code from the NHModeller plugin,
which prompts us for some parameters, such as the Assembly name, the Prefix for
generated code files, database connection information, and so on, as shown in the
following screenshot:

Chapter 11

[2�1]

Once we have entered all of the generation parameters, the product will generate all of the
POCOs, mapping classes, and SQL scripts.

Overall, I think this is an interesting tool, and while still in its infancy, it has a lot of potential
for developers who want to decouple their model from their data storage mechanism.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

0 5 11 01 5 22 5 0

1. NHModeller only generates POCOs, SQL scripts, and Mapping files.

2. The console application can be integrated with Visual Studio as a pre-build step.

It’s a Generation Thing

[2�2]

Microsoft T� templates
Another emerging code generation engine is the one Microsoft included in the Visual Studio
IDE to autogenerate the behind-the-scene classes for their LINQ and Entity Framework
frameworks. These templates integrate with the IDE or can be hosted outside the IDE
with custom code. There doesn't seem to be a lot of NHibernate-specific templates at the
moment, but they are starting to emerge and should be better supported in the future.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

4 0 1 3 0 5 5 0

T� hbm2net
Officially part of the NHibernate project (in the NHibernate-Contrib section), the
T4 hbm2net project will generate .NET classes from hbm.xml mapping files. Running the
console application hbm2net.exe and passing in the name of the hbm.xml mapping files
(*.hbm.xml), the application will generate partial classes with all of the mapped fields. As
this is a templated generator, you can "tweak" the template to output the generated classes
in any way that you would like them.

This generator creates classes using the hbm.xml mapping files as a model for the POCOs.
It can be coupled with the hbm2ddl project to generate database scripts, or you can use the
ddl2hbm tool to generate the hbm.xml files.

Chapter 11

[2��]

In the previous screenshot, you can see the results of generating classes from the mapping
files from the Ordering.Data (in the Mapping folder) being generated into a folder
named Generated.

You can find out more about this generator at http://nhforge.org/blogs/
nhibernate/archive/2009/12/12/t4-hbm2net-alpha-2.aspx.

Edit Partials N-Tier DataAccess MTM VS Build Open Src

5 5 11 3 5 22 5 5

1. The application only generates POCOs.

2. The console application can be integrated with Visual Studio as a pre-build step.

Summary
In this chapter, we discussed some of the benefits of NHibernate code generators and the
ways to reduce the overhead of creating classes and manually mapping our database to
our POCOs.

Specifically, we covered the judging requirements for each of the generation engines,
and how they were compared. We also discussed each of the following NHibernate code
generation/modeling engines: CodeSmith, NHib-GenAj, Genesis, Visual NHibernate,
MyGeneration, NGen, NHModeller, Microsoft T4, and hbm2net.

We also talked about the pros and cons of each of these generation engines, and hopefully
you have enough information to start looking at some of these to figure out which one is the
best for you.

Now that we know about some of the template engines, we're ready to talk about some
general .NET Tools, Best Practices, and methodologies, which is the topic of the next chapter.

12
Odds and Ends

This section could have been called "Little Bits", "Random Thoughts", or
anything else to convey the idea that, even though they may not be very
cohesive, they are the pieces I use all the time, which may not have had a
perfect place anywhere else.

In this chapter, we'll talk about:

Unit of Work and Burrow

maxRequestLength

Blog.Net

Converting CSS Templates

XML Documentation and GhostDoc

Let's dive right in.

Unit of Work and Burrow
In Martin Fowler's Patterns of Enterprise Application Architecture, he describes the
concept of Unit of Work. A basic description of the Unit of Work pattern can be found
at http://www.martinfowler.com/eaaCatalog/unitOfWork.html.

When you're pulling data in and out of a database, it's important to keep track
of what you've changed. Otherwise, that data won't be written back into the
database. Similarly, you have to insert the new objects you create and remove any
objects you delete.

Odds and Ends

[2��]

One way to think of this is to think back to our order. In our traditional model, creating an
order would involve something like this:

1. Create Bill/Ship Contact.

2. Create Order Header | associate Contact(s).

3. Create Order Items | associate to Order Header.

4. Total Order Items, Update Order Header.

Each of these actions would most likely be performed in a discrete database transaction.

In a Unit of Work pattern, "Insert a new Order" would be a single unit of work. Each of the
items required to create or modify the order would be gathered and the Save or Update
actions would take place only when that particular Unit of Work needs to be persisted.

In order to implement this pattern using the NHibernate session, we need to decouple
ourselves from the ASP.NET stateless postback model because, to create an order,
we might need to retrieve data from several pages in order to construct our order.

One of the frameworks you can use to help implement this pattern is the Burrow framework,
which helps to provide stateful NHibernate session management in ASP.NET.

You can find out more information about this framework and how to use it at
http://nhforge.org/wikis/burrow/home.aspx.

The major change between our previous implementations and the Burrow framework is that
we need to allow Burrow to manage our sessions, as shown by the following code.

ISession session = new BurrowFramework().GetSession();

Burrow implements the Conversation concept. For conversations that can be handled in a
single transaction (a single web page post), Burrow will handle the transaction automatically.
For more involved conversations, Burrow provides the long conversation. You can read more
about the long conversation at http://nhforge.org/wikis/burrow/conversation-
explained.aspx.

Pop quiz – doing the thing
1. What is the core concept of the Unit of Work pattern?

a. Small, discrete updates

b. Business Transactions

c. Database Layout Optimization

d. None of the above.

Chapter 12

[2�7]

2. What does the Burrow framework provide?

a. Unit of Work Business Logic

b. Advance e-mail capabilities

c. NHibernate session management

How does this relate to NHibernate?
As you read through the rest of this chapter, you might be asking yourself that exact
question, and I don't blame you. Several of these topics have NOTHING (or at least very
little) to do with NHibernate directly.

They are included because they are things that I use, day in and day out, to make my
NHibernate projects easier, faster, more maintainable, or simply better.

Blog.Net blogging components
Most developers have a website and most of us have a blog. The primary issue with most
blogging software is that it is a standalone product, either requiring you to completely
revamp your website to integrate it, let IT manage your website, or worse, run on a totally
separate server and not be integrated with your current website at all.

The Blog.Net project aims to correct that issue by providing simple-to-use, server-side
ASP.NET components that you can "drop" onto a page and forget about. There are
controls for "Top X" entries, "Latest X" entries, and so on.

This project uses NHibernate as the data-retrieval mechanism and will work against any
data source that NHibernate can access, allowing YOU to specify how your blog works for
YOU, and not vice-versa.

The Blog.Net project can be accessed on CodePlex at http://blogdotnet.codeplex.com/

maxRequestLength
One of the ways an attacker can get into your site is by attempting to cause a "buffer
overflow" or by creating a denial of service by sending large amounts of data to your server.
This can also be a problem if you have an <asp:FileUpload> control on one of your pages
because the attacker could upload large files one after another until the disk space is filled,
possibly causing your server to error out.

Odds and Ends

[2��]

One way to help protect yourself from these types of attacks is to set a maxRequestLength.
The maxRequestLength is a filter, rejecting user requests that are larger than the threshold
set. For instance, the default setting in your Machine.config file is set to 4096 KB or 4 MB.
Ninety-nine percent of all your pages will be well below that, probably more likely in the 512
KB or less range.

To protect yourself, add an <httpRuntime> directive in the <system.web> section of the
Web.config, and set the maxRequestLength to a reasonable value.

<system.web>
 <httpRuntime maxRequestLength="512" />

</system.web>

If you do need a larger value for something such as a <asp:FileUpload> control on a
page, then change the value for that particular page only. You can do this easily by using a
<location> tag.

The following code snippet shows the use of the <location> tag to allow uploads of up to
2 MB to the UploadFile.aspx page:

<location path="~/UploadFile.aspx">
 <system.web>
 <httpRuntime maxRequestLength="2048" />
 </system.web>
</location>

By using this simple tag, you can really restrict the types of attacks that can be executed
against your web application.

Converting CSS templates
One thing I do ALL THE TIME is use master pages and themes to provide constant theming
to my websites. One thing I am NOT, however, is a graphic designer. I have great respect for
someone that can take a blank canvas and turn it into something great to look at, but I know
I am not that person.

Several of the folks that are quite good at creating these types of products have opened
them up to the world to use freely on the websites they create. Many of these templates use
Cascading Style Sheets (CSS) to effectively lay out the images and data they want to display.
A quick search for "Free CSS Templates" will return a number of places to download these
templates that are generally free to use. You can use them anywhere you want. In exchange,
you'll have to leave an attribution on the page, usually in the footer.

Chapter 12

[2��]

One of my favorite sites to find these templates is http://www.freecsstemplates.org.
This site has literally hundreds of templates that can be converted into master page and theme
with a few simple keystrokes. The basic concept is as follows:

Create a master page

Create an ASP.NET theme

Migrate the CSS information from the template into the theme

Copy the HTML from the template into the master page

Replace the default content of the template with <asp:ContentPlaceHolder>
regions

As you will see in the following Time for action, this is a really simple process to make the
creating our websites both quicker and more visually pleasing.

Time for action – converting a CSS template
For this example, I am going to use the "Clean Type" CSS template from freeCSStemplates.
org (on the Internet).

1.	 Download the "Clean Type" template from http://www.freecsstemplates.
org/download/zip/cleantype. Save this ZIP file somewhere on your local
machine. The "Clean Type" template looks as shown in the following screenshot:

Odds and Ends

[2�0]

2.	 Extract the files from the cleantype.zip archive using WinZip, WinRAR,
or your favorite ZIP extraction tool by right-clicking on the file and then clicking
on Extract All.

3.	 Once you unzip it, inside two nested directories, you will find all the files. There are
three files and a directory of five images. If you double-click on the index.html
file, it should open in your browser and look as shown in the previous screenshot.

4.	 Open Visual Studio and create a new Web Application project from File | New |
Project, and select ASP.NET Web Application. Use any project name and solution
name you like such as CSSTestApp.Web and CSSTestApp.

Chapter 12

[2�1]

5.	 Next, we will delete the Default.aspx page and the App_Data folders, as we
won't need either of these.

6.	 Right-click on the CSSTestApp.Web project, and click Add | New Folder. Name the
folder App_MasterPages.

7.	 Right-click on the App_MasterPages folder, and select Add | New Item.

8.	 From the Add New Item dialog box, select Master Page, and name it CleanType.
Master, as shown in the following screenshot:

9.	 Inside the CleanType.Master page, remove the <asp:ContentPlaceholder>
with the ID of "head" from the <head> section.

10.	 Inside the body section, remove everything inside the <form> tags. When you are
done, your file should look as follows:

<%@ Master Language="C#" AutoEventWireup="true"
 CodeBehind="CleanType.master.cs"
 Inherits="CSSTestApp.Web.App_MasterPages.CleanType" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">
 <title></title>

Odds and Ends

[2�2]

 </head>
 <body>
 <form id="form1" runat="server">
 </form>
 </body>
</html>

11.	Now, we need to convert our index.html file into a master page. Drag the
index.html file from the folder into Visual Studio, and drop it into the large
editing space in the middle. This will open the file without adding it to our project.

12.	Next, we copy everything between the <body> and </body> tags from the
index.html file and paste it inside our <form> and </form> tags in the
CleanType.Master file. You can close the index.html file now, as we are
done with it.

13.	Now all we need to do is stick in a few <asp:ContentPlaceHolder> sections so
we can specify our own content in our pages. Search in the file for a <div> with the
id of "content". It should be followed by a <div class="post">. Insert a new
line under the <div id="content"> line and add:

<asp:ContentPlaceHolder ID="main" runat="server" />

14.	Now find a <div> with the id of "sidebar". It should be followed by a . Insert a
new line under the <div id="sidebar"> line, and add:

<asp:ContentPlaceHolder ID="sideBar" runat="server" />

15.	Save our new master page, then right-click on the CSSTestApp.Web project, and add
another new item—this time a Web Content Form. Name this form Default.aspx
and click on Add.

16.	Visual Studio will prompt us to Select a Master Page. Select the App_MasterPages
folder, and select the CleanType.Master page.

Chapter 12

[2��]

17.	Open our new Default.aspx page, and you should have two pre-defined
<asp:Content> tags. Let's copy the sample information out of the
CleanType.Master page into these regions.

In the CleanType.Master, find the <asp:ContentPlaceHolder> with the ID
of "main" that we just created. Under this line, there is a <div class="post">.
Select the "-" on the left of the line to collapse this section. Underneath it, there is
another <div class="post"> section. Collapse it as well.

18.	Select both of these sections, and press Ctrl + X to remove them.

19.	Now, go back to our Default.aspx page, and inside the <asp:Content> tag with
the ContentPlaceHolderID of "main", paste the two sections we just cut out of
the CleanType.Master with Ctrl + V.

20.	Cut the entire section from the CleanType.Master under the <asp:
ContentPlaceHolder> tag with the Id of "sideBar", and paste it into the
Default.aspx in the <asp:Content> section with the ContentPlaceHolderID
of "sideBar".

21.	Right-click on the CSSTEstApp.Web project again, and click Add | Add ASP.NET
Folder | Theme, as shown in the following screenshot. Visual Studio will add a new
folder called App_Themes with a child folder named Theme1.

22.	Change the theme folder name from Theme1 to CleanType.

23.	 In the cleantype directory that contains our CSS template files, copy the
default.css and images folder, and paste them into our CleanType
theme in our CSSTestApp.Web application.

Odds and Ends

[2��]

You can just press Ctrl + C on the file and the folder, then select
the CleanType theme folder in Visual Studio and press
Ctrl + V or right-click and select Paste.

24.	Rename the images folder to Images (just capitalize the "I").

25.	Rename the default.css file to CleanType.css.

26.	Open the CleanType.css file and search for url(images/ and replace it with
url(Images/.

While this step is not critical for applications hosted in IIS, we
definitely need to do it for Mono or other systems where the
filesystem is case sensitive.

27.	Open the Web.config file, and search for the <pages> tag. This is where we need
to tell ASP.NET to use our theme files.

<pages theme="CleanType">

28.	 In this particular template, the images img02.jpg and img03.jpg are actually
content images.

We can handle these images by either creating a Skin file
inside the CleanType theme folder and creating SkinID
aliases for these images in our folder, or by just moving them
to a new root folder called Images.

As the second method is simpler, let's do that. Right-click on the CSSTestApp.Web
project again, and click Add | New Folder and name it Images.

29.	Open the Images folder inside the CleanType theme folder, and select
img02.jpg and img03.jpg. Drag them to the new Images folder we
created to move them there.

30.	Press F5 or select Debug | Start Debugging and our new CSS Templated Web
Application using Master Pages and Themes should appear, looking just like
the original.

Chapter 12

[2��]

What just happened?
Within a few minutes time, we were able to convert a simple ASP.NET web application into
something aesthetically pleasing. From here, all we need to do is create our content. To
create new pages, we just create a new page using Add New Item | Web Content Form and
add new content using the CSS classes such as "post", "title", "byline", "entry", and so on.

Have a go hero – .NETing the master page
Another thing we could do is convert the menu section in the <div id="menu"> to
an <asp:Menu Orientation="Horizontal"> menu control and convert the <image>
tags to <asp:Image> tags. We should also modify the CSS file to support our new <asp:
Menu> control instead of the old and tags.

In the CSS file, there is an element "#menu ul". This is the menu wrapper. Replace the
"#menu ul" with "#menu .header" to turn this into a CSS class name that we can use in
our menu control.

Odds and Ends

[2��]

A simple replacement for this menu control would look as follows:

<div id="menu">
 <asp:Menu Orientation="Horizontal" SkipLinkText="" runat="server">
 <StaticMenuStyle CssClass="header" />
 <StaticSelectedStyle CssClass="active" />
 <Items>
 <asp:MenuItem Text="Home" NavigateUrl="~/Default.aspx"
 Selected="true" />
 <asp:MenuItem Text="Products" NavigateUrl="~/Products.aspx" />
 <asp:MenuItem Text="About" NavigateUrl="~/About.aspx" />
 <asp:MenuItem Text="Contact" NavigateUrl="~/Contact.aspx" />
 </Items>
 </asp:Menu>
</div>

XML documentation & GhostDoc
GhostDoc is a great little tool, originally written by Roland Weigelt, which helps you to
maintain the XML documents in your code. You can download it from its new home at
SubMain, the Developer Tools Division of vbCity.com, LLC.

I'm sure you've seen those great-looking comments preceded by the /// in C# or the '''
in VB.NET, that once written, will provide not only us but anyone else that uses our
code IntelliSense information.

Take, for instance, our method to get the roles for a user:

public override string[] GetRolesForUser(string UserName)

Taken out of context, this doesn't really tell us much about what the method does. However,
if we add some XML documentation to it, it can be much more informative:

/// <summary>
/// Retrieves a string[] of Roles for a user with given UserName
/// </summary>
/// <param name="UserName">The login name of the user</param>
/// <returns>string[] of role names</returns>
public override string[] GetRolesForUser(string UserName)

Chapter 12

[2�7]

Now we know a lot more about the method just by reading the comments, but in the words
of the illustrious Ginsu knife commercials, "But wait! There's more!". If we actually use
this method, we will now get IntelliSense information about our method, as shown in the
following screenshot:

Probably, the main reason most people don't use these comments is the sheer volume of
work it takes to write them. When you hit /// in C#, it will insert a default comment, but
unfortunately it doesn't provide any useful information.

/// <summary>
///
/// </summary>
/// <param name="UserName"></param>
/// <returns></returns>
public override string[] GetRolesForUser(string UserName)

However, by using GhostDoc instead of using ///, we press the default key combination of
CTRL + Shift + D (for document) and it inserts the comment as follows:.

/// <summary>
/// Gets the roles for user.
/// </summary>
/// <param name="UserName">Name of the user.</param>
/// <returns></returns>
public override string[] GetRolesForUser(string UserName)

It works just as neatly in VB.NET:

''' <summary>
''' Gets the roles for user.
''' </summary>
''' <param name="UserName">Name of the user.</param>
''' <returns></returns>
Public Overloads Overrides Function GetRolesForUser _
 (ByVal UserName As String) As String()

This comment is nearly identical to the one that I created by hand earlier, and all it took was
a quick three-finger key chord. We can run through the document pressing CTRL + Shift + D
on each of our methods and have usable documentation in minutes.

Odds and Ends

[2��]

Summary
We learned a lot in this chapter about a few random topics to help you implement
NHibernate, ASP.NET web applications, and .NET applications in general.

Specifically, we talked about:

Implementing the Unit of Work patterns by using the Burrow framework

Using the maxRequestLength parameter to help protect us from buffer overflow
and other security issues

Accessing controls from the Blog.Net project to integrate our blog directly into our
ASP.NET website

Converting CSS templates into ASP.NET master pages and themes to directly
integrate them with our website and give them a more ASP.NET "feel"

Writing XML documentation to make our code more readable, usable, and
maintainable, and using GhostDoc to automate much of that process, so that
it isn't such a burden

Pop Quiz Answers

Chapter 2 – Database Layout and Design

Relationships
Question number Answer

1 D	–	OTS	is	not	a	relational	database	relationship	type.
2 A	–	A	many-to-many	(MTM)	database	relationship	is	modeled	in	an	

additional	table.
3 D	–	Left,	right,	and	inner	joins	are	all	valid.

Chapter � – A Touch of Class

Mapping
Question number Answer

1 B	–	We	use	Nullable	types	(int?	or	Nullable(of Integer)	to		
map nullable fields when a native type like int	or	DateTime	doesn't	
allow nulls.

2 Parent-child relationship properties are mapped using lists of objects
(IList<> or IList(of t)) where the actual name of the object is
placed between the <> in C# or in place of the t in VB.

3 A or B – This is a kind of a trick question, as you don't technicallytechnically
have to have a default constructor �.��T will �enerate one behind the to have a default constructor �.��T will �enerate one behind the
scenes), but you really should have at least one constructor

Pop Quiz Answers

[2�0]

Chapter � – Data Cartography

Class mapping
Question number Answer

1 B – �ame is the only required attribute, butrequired attribute, but,	but	name	and	type	are	the	
most commonly used.

2 D	–	The	class property needs the name of the class and the table
name to correctly map it.

Chapter � – The Session Procession

Creating and updating records
Question number Answer

1 C – The Session Factory is used to create new sessions.
2 D – All of the listed methods will commit a record to the database,

with different permutations. A will insert the record as a new
record. B will attempt to update the record, assumin� that it exists. C
will save it if it is new, or update it if it exists.

3 C	–	The	Delete() command removes a record from the database.

Chapter � – I'm Logger

Logging
Question number Answer

1 A – We use appenders to dequeue messa�es from lo�4net and make
them	visible	to	us.

2 D – All of these are technically correct. Priority and Level are
interchan�eable level filters and the Filter ta� on an appender can
perform this function also.

3 D – That's ri�ht, we have S�V�RAL ways to confi�ure lo�4net. We
can confi�ure it usin� XML in the App.config	or	Web.config file,
in a separate XML file, or in code inside our application.

Appendix

[2�1]

Chapter 7 – Configuration

Basic configuration
Question number Answer

1 A– By usin� the connection strin� name from the
<connectionStrings> section we can encrypt that section andsection we can encrypt that section and
protect our connection strin�s settin�s.

2 C – The driver class is automatically set by the dialect	property	
and	doesn't	usually	need	to	be	set.

3 A	–	The	proxyfactory.factory_class	is	used	to	lazily	load	
records.

Chapter � – Writing Queries

Fieldnames and ICriteria
Question number Answer

1 B – We use the Field�ames structure to provide a consistent
property name to our criteria queries.

2 C	–	We	use	the	criteria.List<T>()	to	return	a	strongly	typed	
List	of	type	<T> containin� the objects that matched our filterin�
criteria.

3 C	–	The	UniqueResult<T>() method will return exactly one
record, or null. �o more, no less.

Chapter � – Binding Data

Basic data binding
Question number Answer

1 A – Templated controls provide the most flexibility because they
can be composed of any other controls, HTML, script, and so on.

2 A, B, and C – We can either use the DataSource	property	and	
bind records directory to the control or use the DataSourceID	
property to specify the name of the control that will provide 	
the	data.

3 A	–	The	Eval()	(or	DataBinder.Eval()) method can be used to
bind data to a templated control.

Pop Quiz Answers

[2�2]

Chapter 10 – .NET Security

Access configuration
Question number Answer

1 B – The asterisk �*) is used to denote all users.
2 D – We can use any or all of these to control authorization within

our	Web.config file.
3 B – Only authenticated users will be allowed into the website

because we are denyin� all anonymous users.

Chapter 12 – Odds and Ends

Burrowing in
Question number Answer

1 B – The main point of the Unit of Work pattern is to apply updates
to the core business idea, not the individual objects. By usin� this
pattern, we reduce the number of small database transactions,
which can slow down an application.

2 C – Burrow provides advances �Hibernate session mana�ement in
the form of a conversation, which helps us to make business idea
chan�es and not just individual record chan�es.

Index
Symbols
.Commit()

need for 95
.NET types

SQL database types, conversion 50
<asp:BoundField> control 173
<asp:Button> control 198
<asp:FormView> control

about 190-195
creating 195
DataKeyNames property 190

<asp:Image> control 174
<asp:ListView> control

about 179
code 180
features, <EmptyDataTemplate> 179
features, <LayoutTemplate> block 179

<asp:Login> control 197, 198
<asp:LoginStatus> control 199, 200
<asp:ObjectDataSource> control

about 180
CRUD method (Select, Insert, Update, and

Delete) 180
data bound control, adding 182-184
DataObjectTypeName (POCO) 180
ID 180
requisites 180
Type Name (Data Access Object) 180

<asp:Repeater> control, templated control 176
<asp:RoleGroup> blocks 209
<asp:XParameter> control 181
<EmptyDataTemplate>, <asp-ListView> control

179
<hibernate:configuration> block 133, 168

<LayoutTemplate> block, <asp:ListView> control
179

<location> element 203
<membership> block 205
<providers> block 205
<roleManager> block 210
1NF 25
3NF 25

A
Address.cs class 91
Address class 58
AjGenesis

about 218
templates 218-220

AjGenesis Code Generation project 219
Anti-Cross Site Scripting Library methods 175
AntiXss.JavascriptEncode method 175
appenders

about 115
defining 115
logging level, removing 117
rolling file appender, activating 116
Rolling File appender, defining 116

Application_EndRequest method 104
ASP.NET

sessions 102-104
ASP.NET 3.5

<asp-ListView> control 179, 180
ASP.NET Authorization

URL 203
ASP.NET project

adding, in data binding 164-170

[254]

B
bag element 74
Blog.Net blogging components

about 237
accessing on CodePlex, URL 237

built-in controls
<asp-Button> control 198
<asp-Login> control 198
<asp-LoginStatus> control 197-200
DestinationPageURL property 198
login, adding to page 200

Burrow
about 236
long conversation, URL 236

C
cascade attribute 74
Cascading Style Sheets (CSS) 177, 238
cfg.BuildSessionFactory() 132
cfg.Properties.Add(..) construction 126
class element 70
class tag, XML mapping

name attribute 57
schema attribute 58
table attribute 58

code generation tools, NHibernate
AjGenesis 218-220
CodeSmith 215
Microsoft T4 templates 232
MyGeneration 221, 222
NGen NHibernate Code Generator 227
nhib-gen 217, 218
NHModeller 228-231
T4 hbm2net 232, 233
Visual NHibernate 221

CodeSmith
about 215
templates 216

column child element 76
column tag, XML mapping

length attribute 60
name attribute 60
not-null attribute 60
sql-type attribute 60

Command object 83

Commit() 144
ComputeHash() 202
configuration, NHibernate

about 126
connection.driver_class property 126
connection.provider property 127
connection_string property 127
converting 132, 133, 134
dialect property 127

Configuration object 132
Configure() method 132
connection.driver_class property 126
connection.provider property 127
constructors 38
Contact class 94
ContactDataControl.Instance.GetAll() method

159
ContactDataControl class 141
contactId variable 149
Contact object 73
control instance

creating 177, 178
Cross-site Scripting. See XSS
CRUD method

about 11, 180
adding 146-149

CSS classes 245
CSS templates

Clean Type downloading, URL 239
converting 238-244
URL 239

D
DAO. See also Data Access Object
data access, NHibernate 11, 12
Data Access Object. See also DAO

about 14, 138, 139
ContactDataControl class 141
creating 139-142
Delete() method 144, 145
GetAll() method, creating 155, 156
GetCountOfAll() method, creating 156
Instance property, adding 138, 139
Instance property, creating 138
local ISession variable, adding 138
methods 143

[255]

Refresh() method 145
Save() method, adding 143, 144
Session.Refresh() method 145
using 137

Data Access Object, methods
CRUD methods, adding 146-148
Delete() method 143
GetX() method 143
Refresh() method 145
Save() method 143
Session.Refresh() method 145

database session
versus NHibernate session 96

database table, NHibernate
about 9
creating, rules 16
ordering system database, creating 16-19

data binding
Anti-Cross Site Scripting Library 175
ASP.NET project, adding 164-170
controls 171
Data Item property 171
Data Items 171
Data Source 170
directly bound control 173
Eval("PropertyName") method 174
Eval() method 174
guidelines 175
items, requisites 170
methods 173, 174
need for 164
string.Format() method 174
techniques 170
templated control 174

Data Item property 171
DataSourceID property 180
DataSource property 171
Delete() method 143, 144, 145
DestinationPageURL property 198
direct data binding

about 188, 189
issues 189

directly bound control
example, <asp-CheckBoxList> 173
example, <asp-DropDownList> 173
examples 173

E
Eval("PropertyName") method 174
Eval() method 174

F
FieldNames structure

about 150, 151
capabilities, expanding 152-154
issues 150

First Normal Form. See 1NF
fluent mapping

advantages over XML mapping 79, 82
pop quiz 82

Foreign Key fields
properties 51-53
properties, adding 53

Format() method 119

G
GA 8
Generally Available. See GA
generator class 70
GetAll() method

about 11
creating 155
paging 157-159
Projections.RowCount() 157
sorting 157-159

GetById() method 149
example 149

GetById(int id) function 11
GetCountOfAll() method

creating 156
GetRolesForUser() 210
GetX() methods

about 143
coding 149

GhostDoc
and XML documentation 246, 247

I
ICriteria object 99

"Greater Than or Equal To" (Restrictions.Ge)
160

[256]

"Greater Than" (Restrictions.Gt) 160
"In" (Restrictions.In) 160
"Not" (Restrictions.Not) 160
about 154
creating, sessions used 154
criteria.List(Of T)() 154
criteria.List<T>() 154
filtering 159, 160
inline code, replacing 161, 162
UniqueResult<type>() 155

id tag, XML mapping 58, 59
ImageUrl property 174
Info() method 118
InfoFormat() method 119
inverse attribute 74
ISession variable

adding 138

K
KEY tag 57

L
lazy attribute 74
length attribute 60
location security

<location> element 203
Web.config file 203

log
need for 105

log4net
appenders 107
configuring 108, 109
loggers 107
logging, adding 108-113
LogManager 107
need for 106
NHibernate Log messages 113-115
objects 107
sample 106
URL 106
uses 106

logger
creating 118, 119
custom logging, adding 120-122

logging
adding 108

Login.cs class 11
Login class 11
loginUrl property 204

M
Main() method 107
many-to-many. See MTM
many-to-one. See MTO
mapping

about 55
fields, mapping to class 60-71
types 56, 60-71
XML mapping 56

maxRequestLength 237, 238
membership providers

<membership> block 205
<providers> block 204
ComputeHash() 202
configuring 204
creating 205-208
password protection providers 202
System.Web.Security.MembershipProvider

abstract class 201
ValidateUser() method 201

Microsoft T4 templates 232
Module1.vb class 139
MTM 21, 24, 74, 76
MTO 21
MyGeneration

about 221, 222
generate button 226
L99-NHibernate template, downloading 223
L99-NHibernate template, loading 225
modifications 223
templates 222
URL, for downloading 223
using 223-227

N
name attribute 57, 60
name element 74
NGen NHibernate Code Generator 227
nhib-gen 217, 218
NHibernate

.Commit(), need for 95
2.1.2.GA-bin version, URL 8

[257]

about 8
assigned ID’s 20
benefits 8
class, creating 38-44
code, URL 8
configuration 126, 127
configuration, abstracting 130-132
configuration, converting 132-134
configuration, to SQL Server 126
data access 11, 12
database table 9
judging criteria 214
location 8
log4net 106
mapping 55
NHibernate Forge 9
objects, creating 37, 38
Plain Old CLR Object (POCO) 11
private variables, creating 47
project, URL 8
properties, adding 46-50
proxy factories 128
public properties 45, 46
queries writing, ICriteria object used 154
sample files 9
sessions 125
SourceForge, URL 8
Spring proxy factory 128
uses 8, 9
using 12, 14
XML configuration 135, 136
XML configuration file, using 136
XML mapping file (hbm.xml) 10

NHibernate, judging criteria
build process add-in 214
data access 214
editable 214
MTM 214
N-tier 214
open source 214
partial classes 214
Visual Studio plugin 214

nhibernate-mapping element 69
NHibernate Data Layer Generation.

See nhib-gen
NHibernate Forge

URL 9

NHibernate session
about 83
creating 94, 95
new project, creating 84
project, testing 89
references, adding 85, 86
troubleshooting 90-93
versus database session 96

NHModeller
about 228-231
Intellipad plugin, feature 229

normal form
about 25
First Normal Form (1NF) 25
Third Normal Form (3NF) 25

not-null attribute 60, 73

O
ObjectDataSource control 171
objects

creating 37, 38
one-to-many. See OTM
one-to-one. See OTO
OrderHeader class 38, 42, 60, 61
OrderHeader object 101
OrderHeader property 52
Ordering.OrderHeader class 128
ordering system database

creating 16-19
tables, adding 26-34

OTM 21-23, 72-74
OTO 21

P
paging functions 12
Persistent Object ID. See POID
Plain Old CLR Object. See POCO
POCO 11
POID 10
private variables

creating 47
projections

Projections.Distinct() 157
Projections.RowCount() 157
RowCount() projection 157

[258]

Projections class 156
property 45
property tag, XML mapping 58, 59

attributes 71
proxyfactory.factory_class 128
public properties

about 45
and private variables 45

Q
queries, writing 137

R
ReadOnly property 45
Refresh() method 145
relationships

about 21, 72
many-to-many (MTM) 21-24, 74-76
many-to-one (MTO) 21
mapping 77, 78
one-to-many (OTM) 21-23, 72-74
one-to-one (OTO) 21
pop quiz 25

retContact variable 154
role providers

about 210
GetRolesForUser() 210
GetRolesForUser() method 210
Login_Role MTM table 211
provider configuration 210
roles, using 211
Role table 211

Rolling File appender
about 116
activating 116
defining 116

S
Save() method 143
schema attribute 58
session

creating 96-101
in ASP.NET 102-104
project, testing 96, 98
records, creating 101, 102

records, updating 101, 102
Session.CreateCriteria(Of T)() 154
Session.CreateCriteria<T>() 154
Session.Delete() 144
Session.Refresh() method 145
Session.SaveOrUpdate() 144
session factory 93, 94
SessionFactory property 102
Session object 83
SessionProvider class 102
Software Development Lifecycle (SDLC) 126
SQL

about 129
connection string name, using 130

sql-type attribute 60
SQL database types

converting, to .NET types 50
stateContacts variable 162
string.Format() method 119, 174
string variable 161
System.Web.Security.MembershipProvider

abstract class 201
System.Web.Security.RoleProvider abstract class

210
System.Web.Security.RoleProvider abstract

classes 209

T
T4 hbm2net 232, 233
table attribute 58, 76
table layouts

about 16
creating 19
primary key, attributes 20

templated control
<asp-Repeater> control 176
about 174

Third Normal Form. See 3NF
type attribute 59

U
UniqueResult<type>() 155
Unit of Work

about 235, 236
URL 235

[259]

user roles
about 209
System.Web.Security.RoleProvider abstract

classes 209

V
ValidateUser() method 207
Visual NHibernate 221

X
XML configuration 135
XML documentation

and GhostDoc 246, 247
XML mapping

about 56
advantages 56

class tag 57
column tag, attributes 60
disadvantages 56
document 57
ID columns 59
id tag 58, 59
name attribute, class tag 57
property tag 58, 59
schema attribute 58
table attribute, class tag 58

XML mapping file (hbm.xml), NHibernate 10
XSS 175

Thank you for buying
NHibernate 2 Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishin�
hi�hly focused books on specific technolo�ies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adaptin�
and customizin� today's systems, applications, and frameworks. Our solution based books
�ive you the knowled�e and power to customize the software and technolo�ies you're usin�
to �et the job done. Packt books are more specific and less �eneral than the IT books you have
seen in the past. Our unique business model allows us to brin� you more focused information,
�ivin� you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishin� company, which focuses on producin� quality,
cuttin�-ed�e books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt �nterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offerin� information
to anybody from advanced developers to buddin� web desi�ners. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt �ives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authorin�. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early sta�e and you
would like to discuss it first before writin� a formal book proposal, contact us; one of our
commissionin� editors will �et in touch with you.
We're not just lookin� for published authors; if you have stron� technical skills but no writin�
experience, our experienced editors can help you develop a writin� career, or simply �et some
additional reward for your expertise.

Spring Persistence with Hibernate
ISB�: 978-1-849510-56-1 Paperback: 460 pa�es

Build robust and reliable persistence solutions for
your enterprise Java application

1. Get to �rips with Hibernate and its
confi�uration mana�er, mappin�s, types,
session APIs, queries, and much more

2. Inte�rate Hibernate and Sprin� as part of your
enterprise Java stack development

3. Work with Sprin� IoC �Inversion of Control),
Sprin� AOP, transaction mana�ement, web
development, and unit testin� considerations
and	features

4. Covers advanced and useful features of
Hibernate in a practical way

ASP.NET 3.5 Application
Architecture and Design
ISB�: 978-1-847195-50-0 Paperback: 300 pa�es

Build solid, scalable ASP.��T applications quickly
and	easily

1. Master the architectural options in ASP.��T to
enhance your applications

2. Develop and implement n-tier architecture
to allow you to modify a component without
disturbin� the next one

3. Desi�n scalable and maintainable web
applications rapidly

4. Implement ASP.��T MVC framework to
mana�e various components independently

Please check www.PacktPub.com for information on our titles

Entity Framework Tutorial
ISB�: 978-1-847195-22-7 Paperback: 228 pa�es

Learn to build a better data access layer with the
ADO.��T �ntity Framework and ADO.��T Data
Services

1. Clear and concise �uide to the ADO.��T �ntity
Framework with plentiful code examples

2. Create �ntity Data Models from your database
and use them in your applications

3. Learn about the �ntity Client data provider and
create statements in �ntity SQL

4. Learn about ADO.��T Data Services and how
they work with the �ntity Framework

Apache CXF Web Service
Development
ISB�: 978-1-847195-40-1 Paperback: 268 pa�es

Develop and deploy SOAP and R�STful Web Services

1. Desi�n and develop web services usin�
contract-first and code-first approaches

2. Publish web services usin� various CXF
frontends such as JAX-WS and Simple frontend

3. Invoke services by confi�urin� CXF transportss

4. Create custom interceptors by implementin�
advanced features such as CXF Interceptors,
CXF Invokers, and CXF Features

5. The first practical �uide on Apache CXF with
real-world examples

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1 : First Look
	What is NHibernate?
	Why would I use it?
	Where do I get it?
	Can I get help using NHibernate?
	Database table
	The XML mapping file (hbm.xml)
	Plain Old CLR Object (POCO)
	Data access
	Look how easy it is to use!
	Summary

	Chapter 2: Database Layout and Design
	Before you get started
	Laying the foundation—table layouts
	Time for action – creating an ordering system database
	Table layouts
	NHibernate assigned IDs
	Relationships
	Normal Form
	Putting it all together
	Time for action – adding some tables to our Ordering system
	database
	Summary

	Chapter 3: A Touch of Class
	Start up our applications
	Creating objects
	Time for action – creating our first class
	Public properties and private variables
	Time for action – adding a few properties
	Converting SQL database types to .NET types
	Properties for Foreign Keys
	Summary

	Chapter 4: Data Cartography
	What is mapping?
	Types of mapping
	XML mapping
	Getting started
	Classes
	Properties
	ID columns

	Mapping our types
	Time for action – mapping basic types
	Relationships
	One-to-many relationships
	Many-to-many relationships
	Getting started

	Time for action – mapping relationships
	Fluent mapping
	Summary

	Chapter 5: The Session Procession
	What is an NHibernate session?
	Time for action – getting ready
	What is a session factory?
	Creating your first session
	Why do we call .Commit()?
	NHibernate session versus database session?
	Time for action – creating a session and doing some CRUD
	Sessions in ASP.NET
	Summary

	Chapter 6: I'm a Logger
	Why do we need to log?
	Why log4net?
	Getting started
	Configuration
	Time for action – adding some logging
	NHibernate log messages
	Appenders
	Creating a logger
	Time for action – adding some custom logging
	Summary

	Chapter 7: Configuration
	Looking back
	The basics of configuration
	Taking a look at the SQL
	Abstracting the configuration
	Time for action – moving our configuration
	XML configuration
	Summary

	Chapter 8: Writing Queries
	Using Data Access Objects
	The basic Data Access Object
	Time for action – creating our basic Data Access Object
	Data Access Object methods
	Time for action – adding some CRUD methods
	Coding some GetX() methods
	The FieldNames structure
	Time for action – expanding our capabilities
	The ICriteria object
	Creating a GetAll() method
	Paging and Sorting GetAll() methods
	Filtering ICriteria
	Time for action – replacing our inline code
	Summary

	Chapter 9: Binding Data
	Why should we use data binding?
	Time for action – adding an ASP.NET project
	Basic data binding techniques
	Common data binding methods
	A simple templated control
	Creating a control instance
	The <asp:ListView> control
	The <asp:ObjectDataSource> control
	Time for action – adding our first data bound control
	Direct data binding
	One last control—the <asp:FormView>
	Summary

	Chapter 10: .NET Security
	Built-in controls
	Time for action – adding a login to our page
	Membership providers
	Location security
	Configuring our provider
	Time for action – create a membership provider
	User roles
	Role providers
	Provider configuration
	Summary

	Chapter 11: It's a Generation Thing
	Judging requirements
	CodeSmith
	nhib-gen
	AjGenesis
	Visual NHibernate
	MyGeneration
	Time for action – using MyGeneration
	NGen NHibernate Code Generator
	NHModeller
	Microsoft T4 templates
	T4 hbm2net
	Summary

	Chapter 12: Odds and Ends
	Unit of Work and Burrow
	How does this relate to NHibernate?
	Blog.Net blogging components
	maxRequestLength
	Converting CSS templates
	Time for action – converting a CSS template
	XML documentation & GhostDoc
	Summary

	Appendix: Pop Quiz Answers
	Chapter 2 – Database Layout and Design
	Relationships

	Chapter 3 – A Touch of Class
	Mapping

	Chapter 4 – Data cartography
	Class Mapping

	Chapter 5 – The Session Procession
	Creating and Updating Records

	Chapter 6 – I'm Logger
	Logging

	Chapter 7 – Configuration
	Basic Configuration

	Chapter 8 – Writing Queries
	Fieldnames and ICriteria

	Chapter 9 – Binding Data
	Basic Data Binding

	Chapter 10 – .NET Security
	Access Configuration

	Chapter 12 – Odds and Ends
	Burrowing In

	Index

