

.NET Domain-Driven
Design with C#

Problem – Design – Solution

Tim McCarthy

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 4/14/08 10:39:48 AM4/14/08 10:39:48 AM

ffirs.indd iiffirs.indd ii 4/14/08 10:39:48 AM4/14/08 10:39:48 AM

.NET Domain-Driven
Design with C#

Acknowledgments .. xv
Introduction ... xvii

Chapter 1: Introducing the Project: The SmartCA Application ...1

Chapter 2: Designing the Layered Architecture13

Chapter 3: Managing Projects ...55

Chapter 4: Companies and Contacts109

Chapter 5: Submittal Transmittals157

Chapter 6: Requests for Information199

Chapter 7: Proposal Requests ...233

Chapter 8: Change Orders ...265

Chapter 9: Construction Change Directives295

Chapter 10: Synchronizing With the Server327

Chapter 11: The Client Membership System357

Index ...391

ffirs.indd iffirs.indd i 4/14/08 10:39:48 AM4/14/08 10:39:48 AM

ffirs.indd iiffirs.indd ii 4/14/08 10:39:48 AM4/14/08 10:39:48 AM

.NET Domain-Driven
Design with C#

Problem – Design – Solution

Tim McCarthy

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 4/14/08 10:39:48 AM4/14/08 10:39:48 AM

.NET Domain-Driven Design with C#
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978–0–470–14756–6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
 warranties with respect to the accuracy or completeness of the contents of this work and specifically
 disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
 warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
 required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
 disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
 vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd ivffirs.indd iv 4/14/08 10:39:49 AM4/14/08 10:39:49 AM

www.wiley.com

 About the Author
 Tim McCarthy is a freelance consultant who architects, designs and builds highly scalable layered web
and smart client applications utilizing the latest Microsoft platforms and technologies. Tim is a Microsoft
MVP in Solutions Architecture, and his expertise covers a wide range of Microsoft technologies,
including, but not limited to, the following: .NET Framework (ASP.NET/Smart Clients/VSTO/
Workflow/Web Services, Windows Presentation Foundation), SQL Server, Active Directory, MS
Exchange development, UDDI, SharePoint, and Service Oriented Architecture (SOA) applications.
Tim has worked as both a project technical lead/member as well as being in a technical consulting role
for several Fortune 500 companies. He has held the Microsoft Certified Solution Developer (MCSD) and
Microsoft Certified Trainer (MCT) certifications for several years, and was one of the first wave of
developers to earn the Microsoft Certified Application Developer (MCAD) for .NET and MCSD for .NET
certifications. He also holds the Microsoft Certified Database Administrator certification for SQL Server
2000. Tim is also certified as an IEEE Certified Software Development Professional, and he is one of only
550 people to hold this certification in the world.

 Tim has been an author and technical reviewer for several books from Wrox Press. His other books
include being a lead author on Professional VB 2005 , several editions of Professional VB.NET , Professional
Commerce Server 2000 , and Professional ADO 2.5 Programming . He also has written and presented a DVD
titled SharePoint Portal Services Programming 2003 . Tim has written numerous articles for the Developer
.NET Update newsletter, developed packaged presentations for the Microsoft Developer Network
(MSDN), and wrote a whitepaper for Microsoft on using COM+ services in .NET. He has also written
articles for SQL Server Magazine and Windows & .NET Magazine .

 Tim has spoken at technical conferences around the world and several San Diego area user groups
(including both .NET and SQL Server groups, and several Code Camps), and he has been a regular
speaker at the Microsoft Developer Days conference in San Diego for the last several years. Tim has also
delivered various MSDN webcasts, many of which were repeat requests from Microsoft. He also teaches
custom .NET classes to companies in need of expert .NET mentoring and training.

 Tim holds a B.B.A. in Marketing from the Illinois Institute of Technology as well as an M.B.A. in
Marketing from National University. Before becoming an application developer, Tim was an officer in
the United States Marine Corps. Tim ’ s passion for .NET is only surpassed by his passion for Notre Dame
Athletics.

 Tim can be reached via email at tmccart1@san.rr.com .

ffirs.indd vffirs.indd v 4/14/08 10:39:49 AM4/14/08 10:39:49 AM

ffirs.indd viffirs.indd vi 4/14/08 10:39:49 AM4/14/08 10:39:49 AM

Acquisitions Editor
Katie Mohr

Development Editor
Christopher J. Rivera

Technical Editor
Doug Holland

Production Editor
Rachel McConlogue

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits
Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Standford

Proofreader
Jen Larsen, Word One

Indexer
Jack Lewis

Cover Image
Leandra Hosier

ffirs.indd viiffirs.indd vii 4/14/08 10:39:49 AM4/14/08 10:39:49 AM

ffirs.indd viiiffirs.indd viii 4/14/08 10:39:49 AM4/14/08 10:39:49 AM

Contents

Acknowledgments xv
Introduction xvii

Chapter 1: Introducing the Project: The SmartCA Application 1

The Problem 1
The Design 4

Reliability and Availability 4
Scalability 5
Maintainability 5
Rich Client Application Functionality 5
Offline Capable 5
Web Access 5
Intelligent Installation and Auto-Update Functionality 5
Additional Client Device Support 5

The Solution 6
Fulfilling the Reliability, Availability, Scalability, Offline Capable,
 and Additional Client Device Support Requirements 6
Fulfilling the Maintainability Requirement 7
Fulfilling the Rich Client Application Functionality Requirement 9
Fulfilling the Web Access Requirement 11
Fulfilling the Intelligent Installation and Auto-Update Functionality Requirement 11

Summary 11

Chapter 2: Designing the Layered Architecture 13

The Problem 13
The Design 13

Designing the Visual Studio Solution 13
Designing the Architectural Layers 14

The Solution 18
Implementing the Visual Studio Solution 19
Implementing the Architectural Layers 19

Summary 53

ftoc.indd ixftoc.indd ix 3/20/08 2:05:43 PM3/20/08 2:05:43 PM

Contents

x

Chapter 3: Managing Projects 55

The Problem 55
The Design 55

Designing the Domain Model 56
Defining the Project Aggregate 56
Defining the Aggregate Boundaries 57
Designing the Repositories 58
Writing the Unit Tests 60

The Solution 65
The Project Class 65
The Repository Implementations 77
The Service Class Implementations 90
The Project Information ViewModel Implementation 92
The Project Information View Implementation 102

Summary 107

Chapter 4: Companies and Contacts 109

The Problem 109
The Design 109

Designing the Domain Model 110
Defining the Company and Contact Aggregates 110
Defining the Aggregate Boundaries 111
Designing the Repositories 112
Writing the Unit Tests 114

The Solution 119
The Company Class 119
The Contact Class 121
The ProjectContact Class 123
The Repository Implementations 124
The Service Class Implementations 134
The Company ViewModel 137
The Company View 144
The Project Contact View Model 148
The Project Contact View 154

Summary 156

Chapter 5: Submittal Transmittals 157

The Problem 157
The Design 158

Designing the Domain Model 158
Defining the Submittal Aggregate 159

ftoc.indd xftoc.indd x 3/20/08 2:05:44 PM3/20/08 2:05:44 PM

Contents

xi

Defining the Aggregate Boundaries 159
Designing the Repository 160
Writing the Unit Tests 161

The Solution 164
The Submittal Repository Implementation 178
The Submittal Service Implementation 187
The Submittal View Model 188
The Submittal View 192

Summary 197

Chapter 6: Requests for Information 199

The Problem 199
The Design 200

Designing the Domain Model 200
Defining the RFI Aggregate 201
Defining the Aggregate Boundaries 202
Designing the Repository 203
Writing the Unit Tests 204

The Solution 207
The RFI Repository Implementation 213
The RFI Service Implementation 223
The RFI ViewModel Classes 224
The RFI View 231

Summary 232

Chapter 7: Proposal Requests 233

The Problem 233
The Design 234

Designing the Domain Model 234
Designing the Proposal Request Aggregate 235
Defining the Aggregate Boundaries 236
Designing the Repository 237
Writing the Unit Tests 239

The Solution 242
The Proposal Request Class Private Fields and Constructors 242
The ProposalRequest Properties 245
The Validate Method 248
The Proposal Request Repository Implementation 253
The Proposal Request Service Implementation 257
The Proposal Request View Model Class 258
The Proposal Request View 260

Summary 263

ftoc.indd xiftoc.indd xi 3/20/08 2:05:44 PM3/20/08 2:05:44 PM

Contents

xii

Chapter 8: Change Orders 265

The Problem 265
The Design 266

Designing the Domain Model 266
Designing the Change Order Aggregate 267
Defining the Aggregate Boundaries 268
Designing the Repository 268
Writing the Unit Tests 271

The Solution 271
The Change Order Repository Implementation 283
The Change Order Service Implementation 288
The Change Order View Model Class 289
The Change Order View 292

Summary 293

Chapter 9: Construction Change Directives 295

The Problem 295
The Design 295

Designing the Domain Model 296
Designing the Construction Change Directive Aggregate 297
Defining the Aggregate Boundaries 298
Designing the Repository 299
Writing the Unit Tests 300

The Solution 300
The Construction Change Directive Class Private Fields and Constructors 300
The Construction Change Directive Repository Implementation 307
The Construction Change Directive Service Implementation 313
The Construction Change Directive ViewModel Class 314
The Construction Change Directive View 324

Summary 325

Chapter 10: Synchronizing With the Server 327

The Problem 327
The Design 327

Redesigning the Unit of Work 328
Designing the Synchronization 330
Writing the Unit Tests 331

ftoc.indd xiiftoc.indd xii 3/20/08 2:05:44 PM3/20/08 2:05:44 PM

Contents

xiii

The Solution 333
Unit of Work Refactoring 333
Synchronizing with the Synchronizer Class 349

Summary 356

Chapter 11: The Client Membership System 357

The Problem 357
The Design 357

Password Security 358
Designing the Client Membership System 358

The Solution 359
The Client Membership System Domain Model Classes 360
Client Membership System Unit Tests 388

Summary 389

Index 391

ftoc.indd xiiiftoc.indd xiii 3/20/08 2:05:45 PM3/20/08 2:05:45 PM

ftoc.indd xivftoc.indd xiv 3/20/08 2:05:45 PM3/20/08 2:05:45 PM

 Acknowledgments

 First of all, I would like to thank my family. To my wife Miriam and my daughter Jasmine— thank you
for putting up with me the past year or so while I worked on this book. Everything I do is always with
you guys in mind! I love you both! Jasmine, I think you may be writing books someday, too! To my
Mom and Dad, who taught me the value of hard work, never giving up, and always believing in
myself—thank you and I love you!

 I also would like to thank my development editor, Christopher Rivera, who did a brilliant job of
shielding me from things that I did not need to be bothered with and always kept me on track and
kept on encouraging me the whole way. Thank you Christopher! To my technical reviewer, Doug
Holland — Doug you did awesome work and were a pleasure to work with. I hope to work with you on
another project some day, thank you! To my acquisitions editor, Katie Mohr — Katie, thank you for never
giving up on my idea for this book and pushing it through! Also, thank you for your always kind words
of encouragement; it always made me feel like I was appreciated.

 I also would like to thank some of my friends at InterKnowlogy. To Kevin Kennedy — Kevin, thank you
for taking the time to come up with a decent design for the layout of the WPF forms; you did more in
15 minutes with WPF than I would have done in hours! A big thank you to Dale Bastow and Staci
Lopez — thank you so much for being so patient with me, and for always taking your time to educate me
about the Architecture industry. To Dan Hanan and John Bowen — Guys, thank you for always taking
time out for me whenever I had a WPF question, I really appreciated it. P.S. Don ’ t forget to override
GetHashcode and Equals. To Tim Huckaby — Tim, thank you for always encouraging me to write about
whatever I was passionate about, and also for always being a good friend to me.

 — Tim

flast.indd xvflast.indd xv 3/17/08 2:57:29 PM3/17/08 2:57:29 PM

flast.indd xviflast.indd xvi 3/17/08 2:57:30 PM3/17/08 2:57:30 PM

 Introduction

 After reading Eric Evans ’ book Domain - Driven Design, Tackling Complexity in the Heart of Software , my way
of designing software systems completely changed. Before that, I used to design software object models
in a very data - centric way, and I did not really focus on how to combine behavior and data in objects.
I was so inspired with this new way of thinking that I started trying to find any code samples I could get
my hands on that demonstrated the concepts from Eric ’ s awesome book. I did the usual Googling for
answers to my Domain - Driven Design (DDD) questions, and I usually did find something that would
help me, but I still thirsted for more knowledge on the subject.

 I had to search for DDD answers in .NET because Eric ’ s book is technology - agnostic. The main point of
the book was the architectural concepts. There were code samples here and there in Java and Smalltalk,
but that was about it. Then along came Jimmy Nilsson ’ s book Applying Domain - Driven Design and
Patterns , and it was then that I started to see a lot more of the patterns that could be used in conjunction
with the DDD concepts. Jimmy tied together some of the concepts from Martin Fowler ’ s excellent book
 Patterns of Enterprise Application Architecture and showed how they could help with good DDD design
principles. Jimmy also did a great job providing lots of good .NET code examples in his book, as well as
leading the reader down several paths to accomplish things the DDD way. Right after I finished Jimmy ’ s
book, I started subscribing to the DDD RSS Group feed on Yahoo! Groups, and this also helped me
a great deal. One of the things I discovered while on the DDD group was that people kept asking for a
.NET reference application that would showcase the DDD principles. After reading these posts for
a while, I decided that I should write this book and give the developer community my take on how to
build .NET applications using DDD techniques. I guess I probably felt a little bit guilty because I read so
many other people ’ s posts on the group, and I never posted very often. So now, instead of posting, I have
written a book! Maybe this will be my catalyst to get more involved with the group.

 My main goal in writing this book was to take the ideas and patterns from Eric ’ s, Martin ’ s, and Jimmy ’ s
books and use the ideas and concepts from them to build an actual end - to - end .NET application. I really
wanted to show some of my ideas of how to build a domain model in .NET using DDD principles, but,
I did not want to build just any old .NET application; I also wanted to try out some of the latest
technologies from Microsoft in building the application, such as Visual Studio 2008 and the .NET 3.5
Framework.

 Who This Book Is For
 This book is targeted at experienced .NET developers who are looking to hone their object - oriented
design skills and learn about DDD. If you are not at that level, that is okay, but I recommend that you at
least have some experience writing .NET code or even Java code. If you have not written any .NET code
before, this book may be a little bit hard to follow.

 I also recommend that you read the books that I mentioned earlier from Eric Evans, Jimmy Nilsson, and
Martin Fowler. You do not have to do this, but I highly recommend it, as it will help you understand
better many of the designs and patterns in this book.

flast.indd xviiflast.indd xvii 3/17/08 2:57:30 PM3/17/08 2:57:30 PM

Introduction

xviii

 Since each chapter in this book builds upon the previous chapter, I recommend that you read the book in
chapter order.

 What This Book Covers
 Chapter 1 , “ Introducing the Project: The SmartCA Application ” — This chapter introduces you

to the application that I am building, the SmartCA application. I outline the problems of the
legacy application and the requirements for the new application, as well as what technologies
and designs I plan to use to satisfy all of the requirements.

 Chapter 2 , “ Designing the Layered Architecture ” — This chapter covers the architectural
foundations that will be used in the rest of the book. Several patterns are introduced in the
chapter, which include the Layered Supertype pattern, the Separated Interface pattern, and
the Model - View - ViewModel pattern. I also identify and explain several important DDD
concepts. This also is the first chapter where I start to write the application code, with a focus
on the infrastructure layer.

 Chapter 3 , “ Managing Projects ” — In this chapter, I start implementing the functionality for
managing Projects in the application. I also discuss the concept of Contractors and how they
relate to Projects as well as introducing the first iteration of code for the Model - View - ViewModel
pattern.

 Chapter 4 , “ Companies and Contacts ” — In this chapter, I define and model Companies,
Contacts, and Project Contacts. I also show how I deal with saving Entities that are not their
own Aggregate Root. This was demonstrated by the techniques I used to save Project Contacts
within the Project Aggregate. Last, I show a technique I came up with for displaying and editing
Value objects in the UI.

 Chapter 5 , “ Submittal Transmittals ” — In this chapter, I introduce the concept of a Submittal
Transmittal as used in the construction industry, and then I use the concept to model the
Submittal Aggregate. I add a new concept to both the domain layer and the infrastructure layer,
illustrating how to deal with saving child collections from the Entity Root repository. I also cover
building User Controls that use the Xceed Data Grid Control.

 Chapter 6 , “ Requests for Information ” — In this chapter, I introduce the construction industry
concept of a Request for Information (RFI). I also introduce a new pattern to the domain called
the Specification pattern. I also do some major refactoring in this chapter on the Repositories
and View Models for dealing with Transmittals.

 Chapter 7 , “ Proposal Requests ” — In this chapter, I introduce the concept of a Proposal Request
in the construction industry. In this chapter, I start adding more behavior to the domain model
and demonstrating richer Domain Model classes. I also cover handling broken business rules
inside of my Domain Model classes, and tie in the Specification functionality.

 Chapter 8 , “ Change Orders ” — In this chapter, I introduce the concept of a Change Order in the
construction industry. I continue to add more behavior to my Domain Model classes in this
chapter, and continue to develop richer Domain Model classes. Two important interfaces are
introduced in this chapter, the IEntity interface and the IAggregateRoot interface. This
causes quite a bit of good refactoring throughout the domain model. Last, I create some more
advanced Specification classes.

flast.indd xviiiflast.indd xviii 3/17/08 2:57:30 PM3/17/08 2:57:30 PM

Introduction

xix

 Chapter 9 , “ Construction Change Directives ” — In this chapter, I introduce the concept of a
Construction Change Directive in the construction industry. I do a lot of refactoring in this
chapter, mostly focused on the various ViewModel classes. In this chapter, I demonstrate the
power of combining interfaces with Generics.

 Chapter 10 , “ Synchronizing with the Server ” — In this chapter, I design and implement how to
synchronize the client ’ s offline data with the server. I show how to store transaction messages on
the client, and also show how to synchronize those messages on the client with the messages
on the server. I also show how to make sure that all of the synchronization logic is implemented
in the domain model.

 Chapter 11 , “ The Client Membership System ” — In this chapter, I show you how to allow
users to be able to perform membership - related tasks in an offline scenario by creating what
I call my Client Membership System. This involves a very rich domain model for representing
the Users and their membership data, as well as a new concept of using a Provider instead of a
Repository for interacting with the data store. I also show how to take advantage of the
Synchronization code from Chapter 10 .

 How This Book Is Structured
 This book is essentially a very large case study. Throughout the chapters, a complete application is built
from start to finish. The structure for each chapter is the same; it is generally a self - contained module
with a problem, design, and solution that adds some new aspect of functionality to the application that is
being built, followed by a summary at the end of the chapter.

 Most of the time, the Problem sections are fairly short, whereas the Design and Solution sections make
up most of the bulk of the chapters. The Solution section will always contain the code that implements
what was designed in the Design section.

 What You Need to Use This Book
 You will need Visual Studio 2008 (which includes the .NET 3.5 Framework in its installation) in order to
run all of the code samples in the book. I highly recommend using Visual Studio 2008 Professional
Edition so that you can run all of the unit tests I have written as part of the code base.

 In addition, you will need to install the following applications and components:

 SQL Server Compact 3.5 (SQL CE) — This is freely downloadable from the Microsoft SQL
Server web site (www.microsoft.com/sql/editions/compact/downloads.mspx).

 Version 1.3 of the Xceed DataGrid Control for WPF — This also freely downloadable from the
Xceed web site (http://xceed.com/Grid_WPF_New.html).

 One of the available versions of SQL Server 2008 — This is necessary if you want to be able to use
the SQL Server Management Studio to make changes to the SQL CE database. The Express Edition
is freely downloadable from www.microsoft.com/sql/2008/prodinfo/download.mspx .

❑

❑

❑

flast.indd xixflast.indd xix 3/17/08 2:57:31 PM3/17/08 2:57:31 PM

Introduction

xx

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for downloading at www.wrox.com . Once at the site, simply locate the book ’ s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book ’ s
detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 14756 - 6.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Also, if you are interested in seeing how the code continues to iterate and grow after you finish the book,
please visit my CodePlex site for this book ’ s code at www.codeplex.com/dddpds . Here you will find
new code that was written after the book was published.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. Nevertheless, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher -
 quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

flast.indd xxflast.indd xx 3/17/08 2:57:31 PM3/17/08 2:57:31 PM

Introduction

xxi

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxiflast.indd xxi 3/17/08 2:57:31 PM3/17/08 2:57:31 PM

flast.indd xxiiflast.indd xxii 3/17/08 2:57:31 PM3/17/08 2:57:31 PM

 Introducing the Project:
The SmartCA Application

 The project for this book is based on a real application for a real company. The names of the
company and the application have been changed for privacy reasons. The fictional company name
will be Smart Design, and the name of their new application will be called SmartCA. Smart Design
is a growing architectural, engineering, and interior design firm. One of its many service offerings is
construction administration, which in its case consists mostly of document management, cost
control, and project portfolio management.

 The Problem
 To manage its construction administration (CA) data and processes, Smart Design has been
getting by for 10 years on a home - grown Microsoft Access database application, called the
Construction Administration Database, which lives on its corporate network. The company has
grown accustomed to this application, both the good parts and the bad. When the application was
originally written, there were only a few users, the requirements were very simple, they
already had licenses for Microsoft Office, and they had a very small budget. All of this made
using Microsoft Access a good technology choice. Figure 1.1 shows the main screen of the
application.

c01.indd 1c01.indd 1 3/17/08 2:36:58 PM3/17/08 2:36:58 PM

Chapter 1: Introducing the Project: The SmartCA Application

2

Figure 1.1: Legacy Construction Administration application
main screen.

 As the years went by, the application became more and more important. It was modified many times,
both with code and tweaks to the design of the user interface (UI). This led to UI forms with lots of logic
embedded in them as well as some embedded logic in the database queries. The application is now,
essentially, a poster child for the Smart Client anti - pattern.

 The Smart Client anti - pattern is defined by Eric Evans as “ Put all the business logic
into the user interface. Chop the application into small functions and implement
them as separate user interfaces, embedding the business rules into them. Use a
relational database as a shared repository of the data. Use the most automated UI
building and visual programming tools available” (Evans, Domain - Driven Design:
Tackling Complexity in the Heart of Software [Addison - Wesley, 2004], 77).

c01.indd 2c01.indd 2 3/17/08 2:37:04 PM3/17/08 2:37:04 PM

Chapter 1: Introducing the Project: The SmartCA Application

3

Data Entry Forms

VBA Code-Behind

 Standalone VBA Modules Queries

Reports

VBA Code-Behind

Access Front End (.mdb)

Access Back End (.mdb)

- Primary Keys
- Foreign Keys
- Other Constraints

Data

Li
nk

ed
 T

ab
le

s

Figure 1.2: Legacy Construction Administration
application architecture.

 Figure 1.2 shows the architecture of the current application.

 Recently, Smart Design merged with another architectural design company, and as a result the CA
application became even more important. It is now being used more often than before by many more
users from several remote offices. The increased use has caused scalability and performance problems
with the application.

 The problem with the Access application is that it has so much logic embedded into its forms, queries,
and reports. This makes it very hard to maintain as well as very difficult to add new features to the
application.

c01.indd 3c01.indd 3 3/17/08 2:37:05 PM3/17/08 2:37:05 PM

Chapter 1: Introducing the Project: The SmartCA Application

4

 The Design
 As far as a Microsoft Access application goes, the architecture is really not that bad. As shown in
Figure 1.2 , it is a two - tier application, with all of the UI, business logic, and queries in the first tier
(which is a separate .mdb file), and all of the database tables in the second tier (also a separate .mdb file).
Although the current solution for construction administration might have been a good fit 10 years ago,
Smart Design has outgrown the application and needs a new solution that will support its new needs. Ten
years ago, their needs were fairly simple—they just needed an organized way to capture information and
be able to print reports on that information to send out to various people on various projects.

 Originally, the main requirement was for a very simple information tracking and reporting tool. The first
version of the application was made without any IT involvement, just a stakeholder and one Access
programmer. Many changes were made to the program over the years, both by the stakeholder, and by
the Access programmer. Several of the changes resulted in denormalized data structures, repetitious
code, and various other code smells. Often, changes were made to the application that the Access
programmer was not even aware of, and changing things to make them right would have taken a lot of
time and effort, so the application just kept on moving along. As the data being tracked started to get
larger, an archiving solution was put in place, which resulted in more Microsoft Access data files being
created. In the end, almost every attempt to enhance the application has resulted in some type of
“ one - off ” solution that has become very difficult to maintain over the years.

 Now that the CA application has been deemed critical to Smart Design ’ s business by their chief
operating officer, it has become very apparent that it has greatly outgrown its original design. Smart
Design has decided that they do not want to buy an off - the - shelf product; instead they want to rewrite
the current application onto a different platform that will meet their growing needs.

 Here are their most prevalent needs, in order of importance:

 ❑ Reliability and Availability

❑ Scalability

❑ Maintainability

❑ Rich client application functionality

❑ Offline capable

❑ Web access

❑ Intelligent installation and auto - update functionality

❑ Additional client device support

 Reliability and Availability
 One of the problems with the current application is that the database sometimes becomes corrupt and
must be compacted or repaired regularly, which causes the application to be down for periods of time.
The new system ’ s database should be able to be backed up while the system is still in use, and should
not be prone to data corruption issues.

c01.indd 4c01.indd 4 3/17/08 2:37:05 PM3/17/08 2:37:05 PM

Chapter 1: Introducing the Project: The SmartCA Application

5

 Scalability
 The system should be able to handle demands from a growing number of users and processes.

 Maintainability
 Because the code for the application is not correctly partitioned, updating the current application
sometimes requires updating the same code and logic in several different places. The new application
must be designed it such a way that the domain logic is centralized and is never duplicated.

 Rich Client Application Functionality
 Users are used to the current Microsoft Access application ’ s rich controls and responsiveness, and they
would like to continue to improve upon this type of user experience.

 Offline Capable
 The new application must be able to work even when the user is not connected to the network. For those
users running the application with occasional or intermittent connectivity — such as those used by
on - site construction managers, where connectivity cannot be guaranteed at all times — being able to
work while disconnected is very important.

 Web Access
 The firm would like some parts of the application exposed to the web, such as reporting. Also, in the
future, some parts of the application may need to be exposed to outside contractors. Another nice - to -
 have would be the ability to extend the application to support some type of an executive dashboard for
showing key performance indicators (KPIs) or similar information to management.

 Intelligent Installation and Auto - Update Functionality
 Currently, the Smart Design IT department is challenged with making sure that users of the application
have the right version on their desktops. IT has also had a tough time getting the application pushed out
when new changes have been made to the application. IT would definitely prefer a deployment method
similar to that of web applications, and would like SmartCA to be easily installed by clicking on a URL
from their intranet. The application must be able to be updated while it is still running, and the updates
should guarantee the integrity of the application and its related files.

 Additional Client Device Support
 The new application should be designed in such a way as to be able to reuse a good part of its core logic
modules for different UI devices, such as personal digital assistants (PDAs), smart phones, and the like.

 The current application and platform will not easily support these requirements. Therefore, Smart
Design has decided to start from scratch and completely reengineer the new application to be able to
meet the new requirements. The old Access application has served the company well for more than
10 years. Actually, it can still serve the company well by being the basis for the new design. There are lots

c01.indd 5c01.indd 5 3/17/08 2:37:05 PM3/17/08 2:37:05 PM

Chapter 1: Introducing the Project: The SmartCA Application

6

of business rules captured in the old application that are not documented anywhere else, so the old
application will be used as a guide in fleshing out some of the requirements for the new system.

 The Solution
 The new application, SmartCA, will be written using Microsoft Visual Studio 2008 (which includes the
Microsoft .NET Framework 3.5) technologies for both the client - side and server - side partitions.

 Fulfilling the Reliability, Availability, Scalability,
Offline Capable, and Additional Client Device
Support Requirements

 Most of the current problems in the areas of reliability, availability, and scalability lie in the fact that the
legacy application was implemented in Microsoft Access and used Access for its data store. The new
solution going forward will be using both a database on the server as well as a database on the client.

 On the Server
 In order to support the Reliability and Availability requirements, the database server will be a
SQL Server instance. All of the data from the legacy application will need to be migrated to the new SQL
Server database. A SQL migration script or .NET program will be written that will facilitate this data
transfer. This will allow the old application to continue working while the new application is still being
built, since the script or migration tool will make it easier to refresh data on a regular basis from the
production Access database into the development, testing, and staging database environments. Moving
to a server - based relational database (SQL Server) will also lend itself well to the Scalability requirement,
although the application design has just as much to do with that as the idea of using a database server
instead an Access .mdb file for a data store.

 On the Client
 Yes, that ’ s right, you see it correctly, a database on the client. You are probably saying to yourself, “ That
is worse than the original Access application ’ s two - tier architecture, where at least the database lived on
a network share! ” Not so fast, my friend. One of the requirements of the application is to be able to
support users who are not always connected to the network, such as those construction managers who
may be inside of a construction trailer with no available connectivity, a.k.a. the Offline Capable
requirement. The database used on the client will be a SQL Server Compact Edition 3.5 (SQL CE)
database. Although SQL CE was originally only targeted for mobile platforms, such as PDAs and Tablet
PCs, it now runs on all client platforms. According to Microsoft, SQL CE is a “ low maintenance, compact
embedded database for single - user client applications for all Windows platforms including tablet PCs,
pocket PCs, smart phones and desktops. Just as with SQL Server Mobile, SQL Server Compact is a free,
easy - to - use, lightweight, and embeddable version of SQL Server 2005 for developing desktop and
mobile applications. ”

 Another benefit of having a database on the client is the fact that it can help take some of the load off the
database server, thus helping with the Scalability requirement.

c01.indd 6c01.indd 6 3/17/08 2:37:06 PM3/17/08 2:37:06 PM

Chapter 1: Introducing the Project: The SmartCA Application

7

 At this point, you may be asking yourself, “ Why not use SQL Server Express? At least with SQL Server
Express I can use stored procedures! ” While it is true that SQL Server Express supports stored
procedures, while SQL CE does not, the real reason for using SQL CE is that I want to support multiple
devices, not just Windows machines. With SQL CE I can reuse the same database on both a PC and a
mobile device, and this functionality maps directly to the Additional Client Device Support requirement.
I can live without stored procedures on the client.

 Instead of using traditional replication to keep the schema and data between the database on the client
and the database server in sync, the application will use Microsoft Synchronization Services for ADO
.NET. The Synchronization Services application programming interface (API) provides a set of
components to synchronize data between data services and a local store. Equally important is the need
to synchronize the local copy of the data with a central server when a network connection is available.
The Synchronization Services API, which is modeled after ADO.NET data access APIs, is a much more
intelligent, service - based way of synchronizing the data. It makes building applications for occasionally
connected environments a logical extension of building applications for which you can count on a
consistent network connection. Think about how Microsoft Outlook works, and you will get the picture
of the online/offline functionality that the Synchronization Services API will enable.

 It should be noted that I will not be talking much about databases in this book, since the focus of this
book is on Domain - Driven Design. One of the main tenants of Domain - Driven Design is persistence
ignorance, and therefore, while the application is being designed, as far as you and I are concerned, the
data could be coming from a text file. Therefore, from this point on, I will only talk about the 10,000 foot
view when it comes to the database.

 Fulfilling the Maintainability Requirement
 In order to avoid embedding business logic in the behavior of the UI elements, such as the various
forms, controls, and reports, or even embedded inside of database queries, a layered architecture (ibid.,
69) will be used. Because the legacy application was implemented with such a Smart UI anti - pattern, the
domain - related code became very difficult to decipher and track down. Unit testing was impossible, and
sometimes trying to change one business rule meant tracing of UI code, Visual Basic for Applications
(VBA) module code, and embedded SQL code. The layered architecture ’ s main principle is that any
element of a layer depends only on other elements in the same layer, or on elements of the layers beneath
it. Using a layered architecture will make the code for this application much more maintainable, which
maps directly to the Maintainability requirement. The layers that will be used in the SmartCA
application will be:

❑ UI (presentation layer) — Probably the easiest to understand, this layer is responsible for
showing information to the user and interpreting the user ’ s commands. Sometimes, instead of a
human, the user could be another system.

❑ Application layer — This layer is meant to be very thin and is used for coordinating the actions
of the domain model objects. It is not supposed to contain business rules or domain knowledge,
or even maintain state — that is what the domain model is for. The application layer is very
useful for coordinating tasks and delegating actions to the domain model. Although it is not to
be used to maintain state of a business entity, it can maintain the state that tracks the current
task being performed by the user or system. It is very important that the application layer does
not interfere or get in the way of the domain model representing the important parts of the
business model (http://weblogs.asp.net)

c01.indd 7c01.indd 7 3/17/08 2:37:06 PM3/17/08 2:37:06 PM

Chapter 1: Introducing the Project: The SmartCA Application

8

❑ Domain layer — This is where the business logic and rules of an application live, and it is the
heart of the software. The domain layer controls and uses the state of a particular business
concept or situation, but how it is stored is actually delegated to the infrastructure layer. It is
absolutely critical in Domain - Driven Design that the domain layer contains the business model,
and that the domain logic is not scattered across any other layers.

❑ Infrastructure layer — This is where general technical, plumbing - related code happens, such as
persisting objects to a database, sending messages, logging, and other general cross - cutting
concerns. It can also serve as a place for an architectural framework for the pattern of interactions
between the four layers. In the next chapter, you will see an example of a framework for the
SmartCA domain model that is contained in the infrastructure layer.

 Generically, Figure 1.3 shows what the SmartCA layered application architecture looks like.

User Interface

Application

Domain

Infrastructure

Figure 1.3: The layered architecture (adapted from Evans, 68).

 Figure 1.4 shows what the application architecture looks like with all of the technologies and patterns
layered on top of the layered architecture model.

c01.indd 8c01.indd 8 3/17/08 2:37:07 PM3/17/08 2:37:07 PM

Chapter 1: Introducing the Project: The SmartCA Application

9

SmartCA Client

User Interface

WPF

Application

Application Services

Domain

Domain Classes

.NET Framework 3.5

Infrastructure

ADO.NET Entity
Framework

Synchronization
Services for

ADO.NET
WCF

SQL Server
Compact
Edition

Figure 1.4: The SmartCA application architecture.

 Fulfilling the Rich Client Application
Functionality Requirement

 Since the users of the current application have become used to a Windows application, the new application
will also be Windows - based, but it will be much more than just a traditional Windows application. The
SmartCA application will be a smart client application implemented using the Windows Presentation
Foundation (WPF). You might be asking yourself, OK, what exactly do you mean by smart client?

 A smart client is a type of application that combines the best of both Windows applications and web
applications.

c01.indd 9c01.indd 9 3/17/08 2:37:07 PM3/17/08 2:37:07 PM

Chapter 1: Introducing the Project: The SmartCA Application

10

 Windows Application Benefits
 The advantages of Windows applications are that they are able to provide a rich user experience, they
are not too complex to develop, and they can use local resources. Using local resources allows Windows
applications to be responsive, interact with connected devices, and do other things that web applications
cannot do (at least not very easily).

 Web Application Benefits
 The positive aspects of a web application are that it is easy to deploy and manage, since you deploy it
to a server not to the client computer, and it has a very broad reach — even PDAs and cell phones can
access a web application!

 Smart Client Definition
 The term “ smart client ” means different things to different people. For the purposes of this book, I will
classify a smart client application (note this is adapted from the MSDN Smart Client FAQ) as follows:

❑ It uses local resources and provides a rich user experience. This satisfies the rich client applica-
tion functionality requirement.

❑ It is a connected application that can exchange data on the Internet or on an enterprise network.

❑ Even though it is a connected application, it is offline capable so that it can be used even if it is
not currently connected. This satisfies the Offline Capable requirement.

❑ It has an intelligent deployment and update story, maintaining relatively the same ease of
deployment and management as web applications, thus satisfying the Intelligent Installation
and Auto - Update Functionality requirement.

 Intelligent deployment means that the smart client application is deployed to an application server, and
from there it is deployed onto the local client system. Intelligent update means that the application on
the client system is able to receive updates that are deployed to the server.

 Windows Presentation Foundation (WPF)
 WPF is intended to be the next - generation graphics API for Windows applications on the desktop.
Applications written in WPF are visually of a higher quality than Windows Forms applications. Some of
the relevant highlights of WPF for the SmartCA application are:

❑ Resolution independence — Because of WPF ’ s use of vector graphics, unlike most Windows -
 based applications of today, graphics and text that are viewed in a higher resolution do not get
smaller; they actually get better! This means that a user can literally shrink or enlarge elements
on the screen independently of the screen ’ s resolution.

❑ Declarative programming — Windows Forms do not have built - in support for declarative UI
definitions. The .NET Framework as a whole has allowed developers to use declarative custom
attributes classes, methods, and assemblies, as well as XML - based resource and configuration
files. WPF takes this declarative - based model to a new level with Extensible Application
Markup Language (XAML). Using XAML in WPF is very similar to using HTML to define a UI
for a web page, yet it is much better than that analogy. Not only does XAML give a great range
of expressiveness for the look and feel of a UI, but it also allows for parts of the behavior of the
UI to be declarative.

c01.indd 10c01.indd 10 3/17/08 2:37:08 PM3/17/08 2:37:08 PM

Chapter 1: Introducing the Project: The SmartCA Application

11

❑ Rich composition and customization — It is very easy to customize controls in WPF with little
or no code. Almost any type of control can be composed with another control. There literally are
no boundaries here; for example, you could bind a media clip to a text box if you wanted to, or
make it spin around, and so on. It is also very easy to “ skin ” applications with very different
looks, without requiring any code. These advantages help satisfy the Rich Client Application
Functionality requirement.

❑ Easy deployment — Using the .NET Framework ’ s ClickOnce technology will provide a way to
install and run SmartCA on the client machines simply by clicking on a URL. ClickOnce ensures
that installation will not affect other applications because all files required for the application are
placed in an isolated area and it also prevents any custom registration.

 Fulfilling the Web Access Requirement
 Although I have not talked much about the server - side partition of this application, the mere fact that
there will be a server - side implementation means that it is possible for the application ’ s data and
behavior to be exposed to the web via a web application or even via web services. In fact, I will show
later in the book how each SmartCA client application instance will be using web services to synchronize
its transactions with the server.

 Fulfilling the Intelligent Installation and Auto - Update
Functionality Requirement

 The SmartCA application will take advantage of the Visual Studio 2008 ’ s ClickOnce deployment tools
and .NET Framework technology to satisfy the Intelligent Installation requirement. Since the .NET
Framework also has built - in support for automatic updates and for rolling back to previous versions, the
Auto - Update requirement will also be satisfied.

 Since SQL CE is so lightweight (it only eats up about 1.5 MB worth of hard disk space), it will be very
easy to deploy, which will also help support the Intelligent Installation requirement.

 Summary
 In this chapter, I introduced you to the fictitious company Smart Design, and more importantly, the new
application that I am building for them, the SmartCA application. I also outlined the problems of the
legacy application, the requirements for the new application, as well as what technologies and designs
I plan to use to satisfy all of the requirements. In the next chapter, I will delve into the details of the
layered architecture model and implementation for the SmartCA application.

c01.indd 11c01.indd 11 3/17/08 2:37:08 PM3/17/08 2:37:08 PM

c01.indd 12c01.indd 12 3/17/08 2:37:08 PM3/17/08 2:37:08 PM

 Designing the Layered
Architecture

 Since I have decided that the application architecture will use a layered approach, it is time to
create the Visual Studio solution to host these layers.

 The Problem
 In order to implement the layered approach correctly, there are some steps that I will need to
follow:

 1. The Visual Studio solution must be organized make it very obvious where the layers have
been implemented in the code modules.

 2. Each individual layer needs to be designed as well, and needs to include the design
patterns and technologies for each layer.

 3. I need to decide what functionality belongs in each of the layers.

 4. An application framework needs to be built that will simplify coding the application.

 The Design
 In this chapter, there are two main items that need to be designed, and those items are the Visual
Studio solution and the actual architectural layers of the SmartCA application.

 Designing the Visual Studio Solution
 As stated earlier, the first step in implementing the layered architecture is to create a Visual Studio
solution that will support the approach.

c02.indd 13c02.indd 13 3/17/08 2:37:58 PM3/17/08 2:37:58 PM

Chapter 2: Designing the Layered Architecture

14

 The initial skeleton for the solution will hold four projects, one for each layer of the application. Figure
 2.1 below shows this initial design.

 Figure 2.1: Initial code skeleton design.

 The first three projects in the solution are basic C# Class Library projects, and the last project, SmartCA.
Presentation, is actually a WPF project.

 As can be seen from the names of the projects in the solution, the namespace pattern that will be used is
always SmartCA.<Layer Name> . There will be cases where an extra project may be required even
though it still belongs in one of the four layers. Usually, this happens in the infrastructure layer, where
you may be implementing some functionality that needs to be separated from the rest of the
Infrastructure project. In that particular case, the naming standard that I will follow is SmartCA. < Layer
Name > . < Some other functionality name > . An example is a project with a name and namespace
combination of SmartCA.Infrastructure.Caching . These types of projects can be added later if and
when they are needed.

 Designing the Architectural Layers
 Now that the namespace naming pattern has been established for the layers, it is time to start the layers.
Just to refresh your memory from Chapter 1 , the layers I will be building are the application, domain,
infrastructure, and presentation (a.k.a. UI) layers.

 Designing the Application Layer
 I would like to approach the application layer as an application programming interface (API), or almost
a fa ç ade, to the domain model. The reason I say almost a fa ç ade is because the application will be doing a
little bit more than just making it simple to use the domain model; it will also be coordinating actions
between different domain objects as well as maintaining the state of a particular task. The classes in this
layer will be composed of mostly static methods, thus making it easy for a class in the presentation
layer to do some work. An example is having a ProjectService class in the application layer that has
very simple methods to load and save a Project, such as Project.GetProject(1) and Project
.Save(project) . This could also be the layer that web service methods would call to get or save their
data. Another example is using the application layer to coordinate actions between domain objects and
infrastructure objects, such as saving a project and then sending an email to all of the interested parties
in management.

c02.indd 14c02.indd 14 3/17/08 2:37:59 PM3/17/08 2:37:59 PM

Chapter 2: Designing the Layered Architecture

15

 Designing the Domain Layer
 The domain layer will be designed using the POCO approach (POCO stands for Plain - Old CLR Objects).
It is my intent to make the domain model as free from any distractions as possible, including having to
implement several persistence - related interfaces or inherit from classes that have nothing to do with the
business model. The idea is for the classes in the domain layer to be as persistent - ignorant as possible.

 Important Domain - Driven Design Concepts
 Before getting too deep into the design of the SmartCA application, there are some common Domain -
 Driven Design terms and concepts that must be discussed. Although I am not going to go into great
detail about them here, they still need to be talked about before moving forward. In order to get a deeper
understanding of these concepts I highly recommend reading Domain - Driven Design: Tackling Complexity
in the Heart of Software (Addison - Wesley, 2004) by Eric Evans; Applying Domain - Driven Design and
Patterns, With Examples in C# and .NET (Addison - Wesley, 2006) by Jimmy Nilsson; and Patterns of
Enterprise Application Architecture (Addison - Wesley, 2003) by Martin Fowler. The main point of this book
is to adhere to these concepts as much as possible while building the SmartCA application.

 Entities

 One of the most important fundamental concepts to understand is the definition of Entity in Domain -
 Driven Design. According to Evans “ An object primarily defined by its identity is called an Entity. ”
Entities are very important in the domain model, and need to be designed carefully. Sometimes what
people think of as an entity in one system is not an entity in another system; for example, an address. In
some systems, an address may not have an identity at all; it may only represent attributes of a person or
company. In other systems, such as a cable television company or a utility company, the address could be
very important. In those systems, the address is important as an identity because the billing may be tied
directly to the address. In that case, the address would definitely be classified as an entity. In other
systems, such as an e - commerce web site, the address may only be used for determining where to send
an order, and the identity of the address may not really matter much, just the attributes of the address so
that the order can be fulfilled. In those types of cases, the address becomes what is called in Domain - Driven
Design a Value object.

Value Objects

 Unlike Entity objects, Value objects have no identity. There is no need to track the object ’ s identity, and it
is very easy to create and discard. Most of the time, Value objects usually contain either just data or just
behavior. The ones that contain only data are also known as Data Transfer Objects (DTOs) (Fowler,
 Patterns of Enterprise Application Architecture , 401). A very common scenario is for an Entity to contain
other Value objects. There are also times where Value objects can contain other Value objects, even other
Entity objects. Most of the time, as in the case of the address example used earlier, they are a group of
attributes that make up a conceptual whole but without an identity.

 It is recommended that Value objects be immutable, that is, they are created with a constructor, with all
properties being read - only. To get a different value for the object, a new one must be created. A perfect
example of this is the System.String class. Value objects do not always have to be immutable, but the
main rule to follow is that if the object is going to be shared, then it needs to be immutable.

 In distinguishing between Entity objects and Value objects, if the object does not have an identity that I
care about, then I classify it as a Value object.

c02.indd 15c02.indd 15 3/17/08 2:38:00 PM3/17/08 2:38:00 PM

Chapter 2: Designing the Layered Architecture

16

Services

 Sometimes, when designing a domain model, you will have certain types of behavior that do not fit into
any one class. Trying to tack on the behavior to a class to which it really does not belong will only cloud
the domain model, but .NET, and all other object - oriented languages, requires the behavior to live in
some type of object, so it cannot be a separate function on its own (as you might find in JavaScript or
other scripting languages). The type of class that becomes the home for this behavior is known in
Domain - Driven Design as a Service.

 A Service class has no internal state and can simply act as an interface implementation that provides
operations. This concept is very similar to web services. Services typically coordinate the work of one or
more domain objects, and present the coordination as a well - known operation. It is also important to
note that some services may live in the application layer, some may live in the domain layer, and others
may live in the infrastructure layer.

Application Layer Services

 The services that live in the application layer typically coordinate the work of other services in other
layers. Consider an order fulfillment service. This service probably takes in an order message in the
format of XML data, calls a factory to transform the XML into an object, and then sends the object to
the domain layer for processing. After processing has been completed, the service may need to send out
a notification to a user, and it may delegate that to an infrastructure layer service.

Domain Layer Services

 In keeping with the order fulfillment example, the domain layer service would be responsible for
interacting with the right Entity objects, Value objects, and other domain layer objects necessary to
process the order in the domain. Ultimately, the service would return some type of result from the
operation so that the calling service could take the necessary actions.

 Infrastructure Layer Services

 In the same order fulfillment scenario, the infrastructure layer service may need to do things like sending
the user an order confirmation email letting them know that their order is being processed. These types
of activities belong in the infrastructure layer.

 Aggregates

 In Domain - Driven Design speak, an Aggregate is a term used to define object ownership and the
boundaries between objects and their relationships. It is used to define a group of associated objects that
are to be treated as one unit in regard to data changes. For example, an Order class and its associated
line items can be considered to be part of the same Order Aggregate, with the Order class being the root
of the Aggregate. That brings me to a very important rule, and that is each Aggregate can only have one
root object, and that object is an Entity object. The root of an Aggregate can hold references to the roots of
other Aggregates, and objects inside of an Aggregate can hold references to one another, but nothing
outside of the Aggregate boundary can access the objects inside of the Aggregate without going through
that Aggregate ’ s root object.

 It is easier to understand this concept with an example. The example I always use is the canonical Order
Aggregate. An Order object is the root of its own Aggregate, and it contains objects such as Line Items
(which can contain Products) and Customers. To get to a Line Item object, I would have to go through

c02.indd 16c02.indd 16 3/17/08 2:38:00 PM3/17/08 2:38:00 PM

Chapter 2: Designing the Layered Architecture

17

the Order Aggregate root object, the Order object. If I only wanted get some data about a Customer, and
not the Order, I might choose to start from the Customer Aggregate. I could move from the Order
Aggregate to the Customer Aggregate, since the Order Aggregate contains an instance of a Customer
object. On the other hand, I could get to a Customer ’ s Order by going through the Customer Aggregate
first, and then traversing the relationship between a Customer and his Orders. In this case, the
relationship is bidirectional, and I could choose to start from the Customer Aggregate or from the Order
Aggregate, depending on the use case. The key to remember is that both the Customer and the Order are
the roots of their own Aggregate, and can also hold references to other Aggregate roots. I could not go
directly from a Customer to a Line Item; I would first need to go to the Customer ’ s Order, and then
travel from there to the Line Item.

 Defining the Aggregates in a domain model is one of the hardest activities to get right in Domain - Driven
Design, and this is where you really need the help of an expert in the business domain that you are
dealing with to determine the right boundaries and associations. It is also an area that I end up
refactoring a lot as I begin to understand more about the business model of an application.

Repositories

 According to Eric Evans, a repository “ represents all objects of a certain type as a conceptual set (usually
emulated) ” (Evans, Domain - Driven Design: Tackling Complexity in the Heart of Software , 151). He also goes
on to say that for every object that is an Aggregate, create a repository for the object and give it the look
and feel of an in - memory collection of objects of that particular type. The access to the repository must
be through a well - known interface. The main point of repositories is to keep the developer focused on
the domain model logic, and hide the plumbing of data access behind well - known repository interfaces.
This concept is also known as persistence ignorance , meaning that the domain model is ignorant of how its
data is saved or retrieved from its underlying data store or stores.

 Factories

 As the Entities and their associated Aggregates start to grow in the domain layer, it becomes increasingly
more difficult to build up objects consistently just using constructors. Lots of times there is intimate
knowledge needed to construct an Aggregate and all of its relationships, constraints, rules, and the like.
Instead of making the Entity objects themselves responsible for this creation, it is better to have a Factory
that knows how to build these types of objects, and thus avoid clouding up the code of an Entity object.

 In Domain - Driven Design, there are two types of Factories, those for building the root Entity of an
Aggregate (usually from some type of resultset data) and those for building Value objects (usually from
some type of configuration data).

Using Repositories in the Domain Layer
 If I can get away with it, I will try not to let any of my domain model classes know about any of the
repositories. This goes a long way towards persistence ignorance, but it is not always an easy thing to
accomplish. I would like to restrict repositories so that only their interfaces will live in the domain layer.
If I am successful, a domain model class can talk to a repository interface if it really needs to, yet the
implementation of the actual repositories will be in the infrastructure layer. This is better known as
the Separated Interface pattern (Fowler, Patterns of Enterprise Application Architecture , 476 – 479), where the
interface is defined in a separate assembly from its implementation. My goal can also be aided by having

c02.indd 17c02.indd 17 3/17/08 2:38:00 PM3/17/08 2:38:00 PM

Chapter 2: Designing the Layered Architecture

18

a factory provide the implementation of the interface requested, and therefore the domain model classes
may need to have an extra dependency on the Repository Factory if they need to create and use the
repository implementation classes.

Using the Layered Supertype Pattern
 Since Evans defines an Entity as “ an object that is distinguished by identity, rather than its attributes ”
(Evans, Domain - Driven Design: Tackling Complexity in the Heart of Software , 92), we know that all of our
entity classes are going to need some type of data type to distinguish their identities. This would be a
good opportunity to use Fowler ’ s Layered Supertype pattern, which is defined as “ a type that acts as the
supertype for all types in its layer ” (Fowler, Patterns of Enterprise Application Architecture , 475). Having all
entities inherit from an entity base class type will help eliminate some duplicate properties and behavior
in the domain entity classes. The use of this base class is purely for convenience, and I feel that it will not
distract our model at all; in fact, it will be easier to distinguish between which classes are entities and
which ones are value objects.

 Designing the Infrastructure Layer
 The infrastructure layer is where all of the SmartCA application ’ s plumbing lives. Any type of framework,
data access code, calls to web service calls, and so forth will live in this layer. A perfect example of this is
the SmartCA application ’ s Repository Framework implementation, which I will dive into in the Solution
section of this chapter, that lives inside of the infrastructure layer. Not only can the infrastructure layer
hold infrastructure for the domain layer, but it can also hold infrastructure code and logic for any of the
other layers, including those that meet its own needs.

 Designing the Presentation Layer
 The goal in designing the presentation layer is to keep it as thin as possible, very similarly to the
application layer. One of the main pitfalls to avoid is embedding any business logic in the presentation
layer. The presentation layer has two main responsibilities:

 1. Interpret the user ’ s commands and send the user ’ s requests down to the application layer or
domain layer.

 2. Show information to the user.

 In order to help the presentation layer carry out its responsibilities, I will be using a new pattern
developed by John Gossman of the Microsoft WPF team, called the Model - View - ViewModel pattern. The
implementation of this pattern will be discussed in the Solution section.

 The Solution
 Now that I have detailed how the Visual Studio solution and all of the architectural layers should be
designed, it is time to start implementing these designs. That means I finally get to do my favorite thing,
which is writing code!

c02.indd 18c02.indd 18 3/17/08 2:38:00 PM3/17/08 2:38:00 PM

Chapter 2: Designing the Layered Architecture

19

 Implementing the Visual Studio Solution
 In keeping with the layered architecture diagram in Figure 1.2 , the dependencies of the layers can only
go down from higher levels to lower levels, that is, the presentation layer can depend on the application
layer, but the application layer cannot have a dependency on the presentation layer. Figure 2.2 illustrates
the dependencies by showing the references between the projects.

Figure 2.2: Initial code skeleton design
with dependencies.

 The project that is really the root of dependencies is the SmartCA.Infrastructure project, as it is
referred to by all of the other assemblies and it does not refer to any of the other assemblies.

 Implementing the Architectural Layers
 This section may sound a little bit misleading, because if I were to implement all of the architectural
layers here, then the application would be finished and the book would be over! What I am going to
show you in this section is a lot of Infrastructure code that the other layers of the application will be
using. I will first start with the Layered Supertype implementation, followed by the Repository
Framework, and lastly I will conclude with the Model - View - ViewModel pattern implementation that
will be used in the presentation layer.

c02.indd 19c02.indd 19 3/17/08 2:38:01 PM3/17/08 2:38:01 PM

Chapter 2: Designing the Layered Architecture

20

 Layered Supertype
 The layered supertype I will use is an abstract class named EntityBase , with the intention that all
Entity classes in the domain model will need to inherit from this class to gain their identity. This class
will live in the SmartCA.Infrastructure project, as it is not really part of the domain logic, but it is
providing necessary functionality to the domain model. Here is the code for this class:

using System;

namespace SmartCA.Infrastructure.DomainBase
{
 public abstract class EntityBase
 {
 private object key;

 /// < summary >
 /// Default Constructor.
 /// < /summary >
 protected EntityBase()
 : this(null)
 {
 }

 /// < summary >
 /// Overloaded constructor.
 /// < /summary >
 /// < param name=”key” > An < see cref=”System.Object”/ > that
 /// represents the primary identifier value for the
 /// class. < /param >
 protected EntityBase(object key)
 {
 this.key = key;
 }

 /// < summary >
 /// An < see cref=”System.Object”/ > that represents the
 /// primary identifier value for the class.
 /// < /summary >
 public object Key
 {
 get
 {
 return this.key;
 }
 }

 The first part of the class contains a default constructor and an overloaded constructor that allow a key
value to be passed in. The key that was passed in is also exposed as a read - only property. Currently, I am
leaving the Key property ’ s type as a System.Object , because I am not really sure yet if the keys to the
entities will be Guids, Integers, an so on. Also, some key data types on entity objects may be different
from others, and so for right now this gives me the most flexibility.

c02.indd 20c02.indd 20 3/17/08 2:38:01 PM3/17/08 2:38:01 PM

Chapter 2: Designing the Layered Architecture

21

 The next part of the code implements all of the necessary equality tests to determine whether two entity
objects are equal to each other. These come in very handy later when comparing entity values in
collections, trying to find matches, and so forth.

 #region Equality Tests

 /// < summary >
 /// Determines whether the specified entity is equal to the
 /// current instance.
 /// < /summary >
 /// < param name=”entity” > An < see cref=”System.Object”/ > that
 /// will be compared to the current instance. < /param >
 /// < returns > True if the passed in entity is equal to the
 /// current instance. < /returns >
 public override bool Equals(object entity)
 {
 if (entity == null || !(entity is EntityBase))
 {
 return false;
 }
 return (this == (EntityBase)entity);
 }

 /// < summary >
 /// Operator overload for determining equality.
 /// < /summary >
 /// < param name=”base1” > The first instance of an
 /// < see cref=”EntityBase”/ > . < /param >
 /// < param name=”base2” > The second instance of an
 /// < see cref=”EntityBase”/ > . < /param >
 /// < returns > True if equal. < /returns >
 public static bool operator ==(EntityBase base1,
 EntityBase base2)
 {
 // check for both null (cast to object or recursive loop)
 if ((object)base1 == null & & (object)base2 == null)
 {
 return true;
 }

 // check for either of them == to null
 if ((object)base1 == null || (object)base2 == null)
 {
 return false;
 }

 if (base1.Key != base2.Key)

(continued)

c02.indd 21c02.indd 21 3/17/08 2:38:01 PM3/17/08 2:38:01 PM

Chapter 2: Designing the Layered Architecture

22

 {
 return false;
 }

 return true;
 }

 /// < summary >
 /// Operator overload for determining inequality.
 /// < /summary >
 /// < param name=”base1” > The first instance of an
 /// < see cref=”EntityBase”/ > . < /param >
 /// < param name=”base2” > The second instance of an
 /// < see cref=”EntityBase”/ > . < /param >
 /// < returns > True if not equal. < /returns >
 public static bool operator !=(EntityBase base1,
 EntityBase base2)
 {
 return (!(base1 == base2));
 }

 /// < summary >
 /// Serves as a hash function for this type.
 /// < /summary >
 /// < returns > A hash code for the current Key
 /// property. < /returns >
 public override int GetHashCode()
 {
 return this.key.GetHashCode();
 }

 #endregion
 }
}

 This behavior is necessary for comparing, sorting, and matching entity objects. This is nice because this
 plumbing type of code is encapsulated in the infrastructure layer and keeps the domain layer ’ s entity
objects free from these distractions.

 Repository Framework
 For the SmartCA application, I have decided to implement a hybrid Repository Framework. By hybrid,
I mean a cross between a pure Repository Framework, where all repositories have the same interface,
and a custom repository implementation for each aggregate root.

 The Interfaces
 The hybrid framework will contain a generic IRepository < T > interface, which will live in the
 SmartCA.Infrastructure.RepositoryFramework namespace in the SmartCA.Infrastructure
assembly, which has the following signature:

(continued)

c02.indd 22c02.indd 22 3/17/08 2:38:02 PM3/17/08 2:38:02 PM

Chapter 2: Designing the Layered Architecture

23

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public interface IRepository < T > where T : EntityBase
 {
 T FindBy(object key);
 void Add(T item);
 T this[object key] { get; set; }
 void Remove(T item);
 }
}

 Using .NET Generics helps a great deal here, as it allows for the IRepository < T > interface to be reused
in many places of the application, and because of the where clause on T , it restricts the data type to being
a class that derives from EntityBase , the domain model ’ s layered supertype. An interesting note about
this interface is that there is actually an indexer (T this[object key] { get; set; }). I added this
to emphasize the concept that a repository should emulate a collection of objects in memory.

 You may have noticed that I did not put a Find or FindBy method on this interface that takes some type
of generic predicate or expression. I did this intentionally. Based on my previous experience, this can get
pretty complicated, and so I have decided to put all of the Find type of methods in Aggregate - specific
types of repositories, an example of which would look like the IProjectRepository interface shown
below:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Projects
{
 public interface IProjectRepository : IRepository < Project >
 {
 IList < Project > FindBy(object sector, object segment,
 bool completed);
 }
}

 This way, if you want to program against the general interface (IRepository < T >) you can, but you can
also program against a more specific interface if you need to add more specialized methods to your
repository, such as more granular Find methods. It essentially gives you the option to refactor things
later without too much pain.

The Repository Factory
 Earlier in the Design section of this chapter I talked about the importance of the domain model classes
being able to use a particular Repository interface without needing a reference to the associated
repository implementation in the infrastructure layer. This concept was defined as the Separated
Interface pattern, and I mentioned that I would need a Factory to provide the implementation of the
 Repository interface that was requested. That Factory is called the Repository Factory and is exactly
what I going to implement in this section.

c02.indd 23c02.indd 23 3/17/08 2:38:03 PM3/17/08 2:38:03 PM

Chapter 2: Designing the Layered Architecture

24

 Configuration Section

 In order to eliminate any hard - coding of repository class names in the Repository Factory, I have chosen
to use configuration along with the Factory to make it very easy to change what repositories get created
at runtime by changing a few configuration settings. Not only does this make use of the previously
mentioned Separated Interface pattern, but it also very closely resembles the ASP.NET Provider pattern,
in that the provider ’ s Factory creates its objects based upon configuration settings.

 Here is what the configuration section for the Repository Factory looks like:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < configSections >
 < section name=”repositoryMappingsConfiguration”

type=”SmartCA.Infrastructure.RepositoryFramework.Configuration.RepositorySettings,
SmartCA.Infrastructure, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null”/ >
 < /configSections >
 < repositoryMappingsConfiguration >
 < repositoryMappings >
 < repositoryMapping interfaceShortTypeName=”IProjectRepository”

repositoryFullTypeName=”SmartCA.Infrastructure.Repositories.ProjectRepository,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < /repositoryMappings >
 < /repositoryMappingsConfiguration >
 < /configuration >

 The configuration section is really just storing the mappings of interface types to their implementations,
as can be seen in the repositoryMapping element in the configuration file. What this means is that a
repository implementation could be changed in the application ’ s configuration file without having to
recompile the application.

Configuration Section Handling

 In order to support this functionality, I have added a Configuration folder under the
 RepositoryFramework folder of the SmartCA.Infrastructure project (see Figure 2.3).

Figure 2.3: RepositoryFramework
Configuration folder.

c02.indd 24c02.indd 24 3/17/08 2:38:05 PM3/17/08 2:38:05 PM

Chapter 2: Designing the Layered Architecture

25

 The job of the classes in the Configuration folder is to read and copy the settings from the
 repositoryMappingsConfiguration configuration section into a nice object model that the
 RepositoryFactory can consume in order to do its job. The root class for this configuration - section -
 handling functionality is the RepositorySettings class, which inherits from the .NET Framework
 ConfigurationSection class.

using System;
using System.Configuration;

namespace SmartCA.Infrastructure.RepositoryFramework.Configuration
{
 public class RepositorySettings : ConfigurationSection
 {

[ConfigurationProperty(RepositoryMappingConstants.ConfigurationPropertyName,
 IsDefaultCollection = true)]
 public RepositoryMappingCollection RepositoryMappings
 {
 get { return
(RepositoryMappingCollection)base[RepositoryMappingConstants.ConfigurationProperty
Name]; }
 }
 }
}

 The class is very simple, since the .NET Framework ’ s ConfigurationSection class does most of the
work. Its main purpose is to return the collection of repositories defined in configuration into a
 RepositoryMappingCollection data type. I have defined the name of the configuration element that
represents the collection of repositories in a separate class named RepositoryMappingConstants .

using System;

namespace SmartCA.Infrastructure.RepositoryFramework.Configuration
{
 internal static class RepositoryMappingConstants
 {
 public const string ConfigurationPropertyName = “repositoryMappings”;
 public const string ConfigurationElementName = “repositoryMapping”;
 public const string InterfaceShortTypeNameAttributeName =
“interfaceShortTypeName”;
 public const string RepositoryFullTypeNameAttributeName =
“repositoryFullTypeName”;
 public const string RepositoryMappingsConfigurationSectionName =
“repository
MappingsConfiguration”;
 }
}

 Since I have to refer to these string values more than once in the Repository Framework configuration
code, it ’ s a lot easier to define them with a static constants class. Note that the
 RepositoryMappingConstants class is marked internal , as the only code needing to know about
these constants is in the SmartCA.Infrastructure assembly.

c02.indd 25c02.indd 25 3/17/08 2:38:07 PM3/17/08 2:38:07 PM

Chapter 2: Designing the Layered Architecture

26

 The RepositoryMappingCollection is a little bit more complicated than the RepositorySettings
class. Its job is to wrap the repositoryMappings element from the configuration section, and expose it
as a strongly typed collection.

using System;
using System.Configuration;

namespace SmartCA.Infrastructure.RepositoryFramework.Configuration
{
 public sealed class RepositoryMappingCollection :
ConfigurationElementCollection
 {
 protected override ConfigurationElement CreateNewElement()
 {
 return new RepositoryMappingElement();
 }

 protected override object GetElementKey(ConfigurationElement element)
 {
 return ((RepositoryMappingElement)element).InterfaceShortTypeName;
 }

 public override ConfigurationElementCollectionType CollectionType
 {
 get { return ConfigurationElementCollectionType.BasicMap; }
 }

 protected override string ElementName
 {
 get { return RepositoryMappingConstants.ConfigurationElementName; }
 }

 public RepositoryMappingElement this[int index]
 {
 get { return (RepositoryMappingElement)this.BaseGet(index); }
 set
 {
 if (this.BaseGet(index) != null)
 {
 this.BaseRemoveAt(index);
 }
 this.BaseAdd(index, value);
 }
 }

 public new RepositoryMappingElement this[string interfaceShortTypeName]
 {
 get { return
(RepositoryMappingElement)this.BaseGet(interfaceShortTypeName); }
 }

 public bool ContainsKey(string keyName)

c02.indd 26c02.indd 26 3/17/08 2:38:07 PM3/17/08 2:38:07 PM

Chapter 2: Designing the Layered Architecture

27

 {
 bool result = false;
 object[] keys = this.BaseGetAllKeys();
 foreach (object key in keys)
 {
 if ((string)key == keyName)
 {
 result = true;
 break;

 }
 }
 return result;
 }
 }
}

 Like the RepositorySettings class, it too inherits from one of the Sytem.Configuration classes, this
time the ConfigurationElementCollection class. There is really nothing very special about this class;
it is basically just overriding various methods and properties on its base class. One thing that might look
a little bit odd is the indexer property for the class.

public new RepositoryMappingElement this[string interfaceShortTypeName]
 {
 get { return
(RepositoryMappingElement)this.BaseGet(interfaceShortTypeName); }
 }

 It is actually hiding the base class indexer (by using the new keyword) in order to make it strongly typed
instead of exposing the collection item as a System.Object .

 The child members that the RepositoryMappingCollection contains are
 RepositoryMappingElement instances. The RepositoryMappingElement class is what actually holds
the mapping between an interface type name and a concrete repository type name.

using System;
using System.Configuration;

namespace SmartCA.Infrastructure.RepositoryFramework.Configuration
{
 public sealed class RepositoryMappingElement : ConfigurationElement
 {
[ConfigurationProperty(RepositoryMappingConstants.InterfaceShortTypeName
AttributeName,
 IsKey = true, IsRequired = true)]
 public string InterfaceShortTypeName
 {
 get
 {
 return (string)this[RepositoryMappingConstants.Interface
ShortTypeNameAttributeName];
 }
 set

(continued)

c02.indd 27c02.indd 27 3/17/08 2:38:07 PM3/17/08 2:38:07 PM

Chapter 2: Designing the Layered Architecture

28

 {

this[RepositoryMappingConstants.InterfaceShortTypeNameAttributeName] = value;
 }
 }

[ConfigurationProperty(RepositoryMappingConstants.RepositoryFullTypeName
AttributeName,
 IsRequired = true)]
 public string RepositoryFullTypeName
 {
 get
 {
 return
(string)this[RepositoryMappingConstants.RepositoryFullTypeNameAttributeName];
 }
 set
 {

this[RepositoryMappingConstants.RepositoryFullTypeNameAttributeName] = value;
 }
 }
 }
}

 Like the other repository mapping configuration classes, this class also inherits from one of the
System.Configuration classes, the ConfigurationElement class. With the help of some System
.Configuration attributes decorating it, the RepositoryMappingElement class exposes two
properties, InterfaceShortTypeName and RepositoryFullTypeName .

The RepositoryFactory Class

 Now that the configuration is finished, the RepositoryFactory can use it to create repositories. The
 RepositoryFactory uses Generic type parameters combined with the mappings from the
configuration in order to determine what kind of repository to create. The RepositoryFactory is a
static class with one static method, GetRepository .

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.RepositoryFramework.Configuration;
using System.Configuration;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public static class RepositoryFactory
 {
 // Dictionary to enforce the singleton pattern
 private static Dictionary < string, object > repositories = new
Dictionary < string, object > ();

(continued)

c02.indd 28c02.indd 28 3/17/08 2:38:08 PM3/17/08 2:38:08 PM

Chapter 2: Designing the Layered Architecture

29

 /// < summary >
 /// Gets or creates an instance of the requested interface. Once a
 /// repository is created and initialized, it is cached, and all
 /// future requests for the repository will come from the cache.
 /// < /summary >
 /// < typeparam name=”TRepository” > The interface of the repository
 /// to create. < /typeparam >
 /// < typeparam name=”TEntity” > The type of the EntityBase that the
 /// repository is for. < /typeparam >
 /// < returns > An instance of the interface requested. < /returns >
 public static TRepository GetRepository < TRepository, TEntity > ()
 where TRepository : class, IRepository < TEntity >
 where TEntity : EntityBase
 {
 // Initialize the provider’s default value
 TRepository repository = default(TRepository);

 string interfaceShortName = typeof(TRepository).Name;

 // See if the provider was already created and is in the cache
 if (!RepositoryFactory.repositories.ContainsKey(interfaceShortName))
 {
 // Not there, so create it

 // Get the repositoryMappingsConfiguration config section
 RepositorySettings settings =
(RepositorySettings)ConfigurationManager.GetSection(RepositoryMappingConstants
.RepositoryMappingsConfigurationSectionName);

 // Create the repository, and cast it to the interface specified
 repository =
Activator.CreateInstance(Type.GetType(settings.RepositoryMappings[interfaceShortName]
.RepositoryFullTypeName)) as TRepository;

 // Add the new provider instance to the cache
 RepositoryFactory.repositories.Add(interfaceShortName, repository);
 }
 else
 {
 // The provider was in the cache, so retrieve it
 repository =
(TRepository)RepositoryFactory.repositories[interfaceShortName];
 }
 return repository;
 }
 }
}

 The signature of this method is interesting because it uses two Generic type parameters, TRepository and
 TEntity , with the restrictions that TRepository is a class and implements the IRepository < TEntity >
interface, and that TEntity derives from the EntityBase class. Because the Repository Framework is
supporting interfaces other than just IRepository < T > , the method cannot just return a type of
 IRepository < T > for the Repository instance. It must also support returning any interface that
implements IRepository < T > , since the repository interface being used can also have additional methods

c02.indd 29c02.indd 29 3/17/08 2:38:08 PM3/17/08 2:38:08 PM

Chapter 2: Designing the Layered Architecture

30

defined in it; that is why TRepository has been declared as a Generic type, so that the factory can support
the Repository Framework requirements of being able to pass in a valid Repository interface type and get
an instance of the interface (as long as it has been properly defined in the application ’ s configuration file).

 The code for the method first uses reflection to get the short type name of the interface type passed in via
the Generic TRepository parameter. It then does a lookup in its static dictionary of repositories that
have already been created to see if it can pull it out of memory. If it cannot, it then begins the process of
using the custom repository configuration objects to find the right repository type to create based on the
values in the mappings configuration. When the type is found, the method then uses the reflection
capabilities of the Activator object to create an instance of the correct repository based on the mapped
type from configuration. Then, after the repository has been created, it is put into the static dictionary of
repositories so that it will be available the next time it is requested. Once the repository has been
retrieved from memory or created, the instance is returned to the caller.

 I decided to use a static dictionary to hold the repositories in order to make them behave like singletons. This
is very important for performance reasons, since it can be expensive to build a Repository Factory using
reflection every time you need one, especially in Domain - Driven Design architectures, where repositories are
used quite frequently. Also, because the repositories are guaranteed to have only one instance per type, I can
now do other interesting things, such as enable domain model objects to be cached, refresh the cache when I
choose to, and so on. This functionality can have a very positive impact on the performance of the application.

Unit of Work
 Since I will be using several repositories to pull data in and out of the database (and possibly other
resources), I need a way to keep track of what has been changed. I also need a way to define what
sequences of events define a transaction and to be able to commit those sequences of events as a single
transaction. One way of doing this is simply to avoid the problem altogether and every time an object
changes, just write the change to the data store; however, this pattern usually does not work very well,
especially when you need to group actions together into a single transaction.

 The answer to this requirement that I am going to use is the Unit of Work pattern, as defined by Martin
Fowler (Fowler, Patterns of Enterprise Application Architecture , 184). According to Martin, the Unit of Work
 “ maintains a list of objects affected by a business transaction and coordinates the writing out of changes
and the resolution of concurrency problems. ” The Unit of Work needs to know what objects it should
keep track of, and Martin goes on to describe two basic ways this can be accomplished:

 Caller registration — The user of the object has to remember to register with the Unit of Work.

 Object registration — The objects register themselves with the Unit of Work.

 Jimmy Nilsson describes a different approach to the Unit of Work, and that is to let the repositories
delegate all of their work to a Unit of Work, and then the Unit of Work then makes all necessary database
calls (or other types of resource calls) on behalf of the repositories (Nilsson, Applying Domain - Driven
Design and Patterns, With Examples in C# and .NET , 200). One major benefit of this approach is that the
messages sent to the Unit of Work are invisible to the consumer of the repositories, since the repositories
are reporting what has been asked of them to the Unit of Work. This also helps promote persistence
ignorance in the domain objects, which is what I am striving for.

 In his solution, Jimmy implemented object persistence outside of the repository in his Unit of Work
implementation. The reasoning for not letting the repositories completely hide the Unit of Work was that he
wanted to synchronize changes across several Aggregates (and their respective repositories) in a single logical
unit. In order for this to work, the repositories need to have a Unit of Work injected into them at creation time.

❑

❑

c02.indd 30c02.indd 30 3/17/08 2:38:09 PM3/17/08 2:38:09 PM

Chapter 2: Designing the Layered Architecture

31

 I really like Jimmy ’ s idea of hiding the Unit of Work calls in the repositories because it eliminates lots of
plumbing calls inside of domain objects or from application - level code. This way, the plumbing stays
inside the repository, which itself represents plumbing, and shields the domain object from having to
deal with the noise. With that being said, I also would like to have my cake and eat it too. What I mean
by that is that I would like to keep the spirit of Jimmy ’ s solution but also still have the repositories be
responsible for the data persistence. In order to do that, I have created a few interfaces to help out. The
first one being the obvious one, the IUnitOfWork interface:

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Infrastructure
{
 public interface IUnitOfWork
 {
 void RegisterAdded(EntityBase entity, IUnitOfWorkRepository repository);
 void RegisterChanged(EntityBase entity, IUnitOfWorkRepository repository);
 void RegisterRemoved(EntityBase entity, IUnitOfWorkRepository repository);
 void Commit();
 }
}

 The IUnitOfWork interface identifies for use the entities that have been added, changed, or removed
from the repositories. An instance of this interface must be passed to all repositories that are to
participate in a Unit of Work. Then, once all work is completed, I simply call Commit on the interface to
commit all of my changes to the appropriate data stores. You may be asking yourself, how in the world
can the Unit of Work implementation commit the changes if the repositories are supposed to do the
work? The answer is to have the repositories implement a second interface to which the Unit of Work
refers. That interface is the IUnitOfWorkRepository interface:

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public interface IUnitOfWorkRepository
 {
 void PersistNewItem(EntityBase item);
 void PersistUpdatedItem(EntityBase item);
 void PersistDeletedItem(EntityBase item);
 }
}

 Because the repositories will implement the IUnitOfWorkRepository interface, the Unit of Work
implementation will now be able to call back in to the repositories to make changes to the data store
(or stores).

 I have created a Unit of Work implementation class called UnitofWork (I know, very creative). It
essentially keeps a list of the three types of changes, and then cycles through each of them during
commit time and talks to the right repository to persist the changes.

c02.indd 31c02.indd 31 3/17/08 2:38:09 PM3/17/08 2:38:09 PM

Chapter 2: Designing the Layered Architecture

32

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.RepositoryFramework;
using System.Transactions;

namespace SmartCA.Infrastructure
{
 public class UnitOfWork : IUnitOfWork
 {
 private Dictionary < EntityBase, IUnitOfWorkRepository > addedEntities;
 private Dictionary < EntityBase, IUnitOfWorkRepository > changedEntities;
 private Dictionary < EntityBase, IUnitOfWorkRepository > deletedEntities;

 public UnitOfWork()
 {
 this.addedEntities = new Dictionary < EntityBase,
 IUnitOfWorkRepository > ();
 this.changedEntities = new Dictionary < EntityBase,
 IUnitOfWorkRepository > ();
 this.deletedEntities = new Dictionary < EntityBase,
 IUnitOfWorkRepository > ();
 }

 #region IUnitOfWork Members

 public void RegisterAdded(EntityBase entity,
 IUnitOfWorkRepository repository)
 {
 this.addedEntities.Add(entity, repository);
 }

 public void RegisterChanged(EntityBase entity,
 IUnitOfWorkRepository repository)
 {
 this.changedEntities.Add(entity, repository);
 }

 public void RegisterRemoved(EntityBase entity,
 IUnitOfWorkRepository repository)
 {
 this.deletedEntities.Add(entity, repository);
 }

 public void Commit()
 {
 using (TransactionScope scope = new TransactionScope())
 {
 foreach (EntityBase entity in this.deletedEntities.Keys)
 {
 this.deletedEntities[entity].PersistDeletedItem(entity);
 }

 foreach (EntityBase entity in this.addedEntities.Keys)
 {

c02.indd 32c02.indd 32 3/17/08 2:38:09 PM3/17/08 2:38:09 PM

Chapter 2: Designing the Layered Architecture

33

 this.addedEntities[entity].PersistDeletedItem(entity);
 }

 foreach (EntityBase entity in this.changedEntities.Keys)
 {
 this.changedEntities[entity].PersistDeletedItem(entity);
 }

 scope.Complete();
 }

 this.deletedEntities.Clear();
 this.addedEntities.Clear();
 this.changedEntities.Clear();
 }

 #endregion
 }
}

 The methods in the IUnitOfWork Members region of the class will get called by the repositories,
and the repositories actually pass in their own instances to the UnitOfWork class when they call these
methods. When these methods are called, the entity and its associated IUnitOfWorkRepository
instance are added to their respective dictionary object, depending whether the call was an add, change,
or remove registration.

 Then, in the Commit method, the UnitOfWork cycles through all of the deletions, additions, and updates,
respectively, and calls back on the associated IUnitOfWorkRepository instance to persist the changes
to the correct data store. The entire operation is wrapped up in a transaction using the .NET
Framework ’ s TransactionScope class, which knows how to enlist the right type of transaction
properly, be it just a local transaction or a distributed transaction. Once everything has been committed,
the entity - repository dictionaries are then reset to empty.

The Repository Base Classes
 In order to eliminate a lot of duplicate code, I have decided to put in some abstract base classes from
which the repositories will inherit common code. This should make it easier to code the concrete
repository classes.

The RepositoryBase < T > Class

 This is the first repository base class and its main job is to lend a helping hand to its derived repositories
in regard to implementing the Unit of Work pattern. It also helps out with the indexer implementation of
the IRepository < T > interface.

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public abstract class RepositoryBase < T >
 : IRepository < T > , IUnitOfWorkRepository where T : EntityBase

(continued)

c02.indd 33c02.indd 33 3/17/08 2:38:10 PM3/17/08 2:38:10 PM

Chapter 2: Designing the Layered Architecture

34

 {
 private IUnitOfWork unitOfWork;

 protected RepositoryBase()
 : this(null)
 {
 }

 protected RepositoryBase(IUnitOfWork unitOfWork)
 {
 this.unitOfWork = unitOfWork;
 }

 #region IRepository < T > Members

 public abstract T FindBy(object key);

 public void Add(T item)
 {
 if (this.unitOfWork != null)
 {
 this.unitOfWork.RegisterAdded(item, this);
 }
 }

 public void Remove(T item)
 {
 if (this.unitOfWork != null)
 {
 this.unitOfWork.RegisterRemoved(item, this);
 }
 }

 public T this[object key]
 {
 get
 {
 return this.FindBy(key);
 }
 set
 {
 if (this.FindBy(key) == null)
 {
 this.Add(value);
 }
 else
 {
 this.unitOfWork.RegisterChanged(value, this);
 }
 }
 }

(continued)

c02.indd 34c02.indd 34 3/17/08 2:38:11 PM3/17/08 2:38:11 PM

Chapter 2: Designing the Layered Architecture

35

 #endregion

 #region IUnitOfWorkRepository Members

 public void PersistNewItem(EntityBase item)
 {
 this.PersistNewItem((T)item);
 }

 public void PersistUpdatedItem(EntityBase item)
 {
 this.PersistUpdatedItem((T)item);
 }

 public void PersistDeletedItem(EntityBase item)
 {
 this.PersistDeletedItem((T)item);
 }

 #endregion

 protected abstract void PersistNewItem(T item);
 protected abstract void PersistUpdatedItem(T item);
 protected abstract void PersistDeletedItem(T item);
 }
}

 This class implements both the IRepository < T > interface and the IUnitOfWorkRepository interface,
and it is optionally injected with the IUnitOfWork interface in its constructor. Its main job in
implementing the IRepository < T > interface is mainly to call back into the IUnitOfWork interface
instance to let it know when something has been added, removed, or changed. The other
 IRepository < T > method without an implementation in this class, T FindBy(object key) , is actually
declared as an abstract method to be implemented by one of the derived repository classes.

 All of the methods on the IUnitOfWorkRepository interface are implemented in this class, but really
as a pass - through to some more abstract methods that the derived repositories have to implement. I did
this to avoid having to cast from EntityBase to the types being used inside all of the repository
implementations. Instead, the casting is performed in this class and then delegated to the more strongly
typed, Generic - enabled abstract methods (protected abstract void PersistNewItem(T item) ,
 protected abstract void PersistUpdatedItem(T item) , and protected abstract void
PersistDeletedItem(T item)). This way, the code for the casting is centralized, and the concrete
repositories can deal with the strongly typed entities that they know and represent.

The SqlCeRepositoryBase < T > Class

 Since the architecture of this application dictates that we write and read all data to and from a local SQL
Server CE database, a lot of duplicate SQL data access type of code can be eliminated in the Repository
classes by building a base class to handle these types of operations. I decided to name this class

c02.indd 35c02.indd 35 3/17/08 2:38:11 PM3/17/08 2:38:11 PM

Chapter 2: Designing the Layered Architecture

36

 SqlCeRepositoryBase , in order to make its purpose obvious. This class makes it very easy for its
derived Repository classes to talk to the local SQL CE database.

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Infrastructure.DomainBase;
using Microsoft.Practices.EnterpriseLibrary.Data.SqlCe;
using Microsoft.Practices.EnterpriseLibrary.Data;
using System.Data;
using System.Data.Common;
using SmartCA.Infrastructure.EntityFactoryFramework;

namespace SmartCA.Infrastructure.Repositories
{
 public abstract class SqlCeRepositoryBase < T > : RepositoryBase < T >
 where T : EntityBase
 {
 #region AppendChildData Delegate

 /// < summary >
 /// The delegate signature required for callback methods
 /// < /summary >
 /// < param name=”entityAggregate” > < /param >
 /// < param name=”childEntityKey” > < /param >
 public delegate void AppendChildData(T entityAggregate,
 object childEntityKeyValue);

 #endregion

 #region Private Members

 private Database database;
 private IEntityFactory < T > entityFactory;
 private Dictionary < string, AppendChildData > childCallbacks;

 #endregion

 #region Constructors

 protected SqlCeRepositoryBase()
 : this(null)
 {
 }

 protected SqlCeRepositoryBase(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 this.database = DatabaseFactory.CreateDatabase();
 this.entityFactory = EntityFactoryBuilder.BuildFactory < T > ();
 this.childCallbacks = new Dictionary < string, AppendChildData > ();
 this.BuildChildCallbacks();
 }

c02.indd 36c02.indd 36 3/17/08 2:38:11 PM3/17/08 2:38:11 PM

Chapter 2: Designing the Layered Architecture

37

 #endregion

 #region Abstract Methods

 protected abstract void BuildChildCallbacks();
 public abstract override T FindBy(object key);
 protected abstract override void PersistNewItem(T item);
 protected abstract override void PersistUpdatedItem(T item);
 protected abstract override void PersistDeletedItem(T item);

 #endregion

 #region Properties

 protected Database Database
 {
 get { return this.database; }
 }

 protected Dictionary < string, AppendChildData > ChildCallbacks
 {
 get { return this.childCallbacks; }
 }

 #endregion

 #region Protected Methods

 protected IDataReader ExecuteReader(string sql)
 {
 DbCommand command = this.database.GetSqlStringCommand(sql);
 return this.database.ExecuteReader(command);
 }

 protected virtual T BuildEntityFromSql(string sql)
 {
 T entity = default(T);
 using (IDataReader reader = this.ExecuteReader(sql))
 {
 if (reader.Read())
 {
 entity = this.BuildEntityFromReader(reader);
 }
 }
 return entity;
 }

 protected virtual T BuildEntityFromReader(IDataReader reader)
 {
 T entity = this.entityFactory.BuildEntity(reader);
 if (this.childCallbacks != null & & this.childCallbacks.Count > 0)
 {
 object childKeyValue = null;
 DataTable columnData = reader.GetSchemaTable();
 foreach (string childKeyName in this.childCallbacks.Keys)

(continued)

c02.indd 37c02.indd 37 3/17/08 2:38:12 PM3/17/08 2:38:12 PM

Chapter 2: Designing the Layered Architecture

38

 {
 if (DataHelper.ReaderContainsColumnName(columnData,
 childKeyName))
 {
 childKeyValue = reader[childKeyName];
 }
 else
 {
 childKeyValue = null;
 }
 this.childCallbacks[childKeyName](entity, childKeyValue);
 }
 }
 return entity;
 }

 protected virtual List < T > BuildEntitiesFromSql(string sql)
 {
 List < T > entities = new List < T > ();
 using (IDataReader reader = this.ExecuteReader(sql))
 {
 while (reader.Read())
 {
 entities.Add(this.BuildEntityFromReader(reader));
 }
 }
 return entities;
 }

 #endregion
 }
}

 The class inherits from RepositoryBase < T > and does not implement any of its abstract methods; it
simply overrides them and passes them on as abstract again. The real value it adds is in all of its
protected methods to get data in and out of the local SQL CE database. One of the most interesting
things about this class is that it is delegating out to a factory for building domain entity objects
(EntityBase) from IDataReader instances.

 When looking at the constructors, the first thing to notice is that I am using the Microsoft Enterprise
Library 3.0 for data access, hence the use of the library ’ s abstract Database class and its
 DatabaseFactory to create the Database class instance from configuration.

 #region Constructors

 protected SqlCeRepositoryBase()
 : this(null)
 {
 }

 protected SqlCeRepositoryBase(IUnitOfWork unitOfWork)
 : base(unitOfWork)

(continued)

c02.indd 38c02.indd 38 3/17/08 2:38:12 PM3/17/08 2:38:12 PM

Chapter 2: Designing the Layered Architecture

39

 {
 this.database = DatabaseFactory.CreateDatabase();
 this.entityFactory = EntityFactoryBuilder.BuildFactory < T > ();
 this.childCallbacks = new Dictionary < string,
 SqlCeRepositoryBase < T > .AppendChildData > ();
 this.BuildChildCallbacks();
 }

 #endregion

 When doing this I actually get a SqlCeDatabase instance, which is the Enterprise Library ’ s nice
encapsulation of common actions with a SQL Server CE database. The next item of interest is the
instantiation of the IEntityFactory < T > interface instance; I will discuss the purpose of that interface in
the next section of this chapter. The last thing the constructor does is delegate to its derived class and call
its abstract method BuildChildCallbacks . This method initializes the private Dictionary < string,
AppendChildData > childCallbacks member and represents a key - value pair of the name of a field in
an IDataReader instance and a delegate of type AppendChildData(T entityAggregate, object
childEntityKeyValue) . This will be talked about later, but it is used for allowing the
 SqlCeRepository < T > base class to call the method encapsulated in the delegate in order to help
populate an aggregate object with data from another query in addition to the main query ’ s results. It is
very flexible in that it allows the derived class to use the base class ’ s code for retrieving an entity, yet still
leaves the door open for the derived class to append data on to the entity created by the base class.

 The next section of code defines all of the abstract methods of the class:

 #region Abstract Methods

 protected abstract void BuildChildCallbacks();
 public abstract override T FindBy(object key);
 protected abstract override void PersistNewItem(T item);
 protected abstract override void PersistUpdatedItem(T item);
 protected abstract override void PersistDeletedItem(T item);

 #endregion

 The BuildChildCallbacks method was just discussed, and it really is optional for the derived classes
to put working code into it. What I mean by that is that the derived classes must implement the method
signature, but they may decide to leave the body of the method blank if the derived class does not have a
need for any methods to be called back when building its entities. The rest of the methods are just
passing on the strongly typed Unit of Work methods defined on the RepositoryBase < T > class.

 The two read - only protected properties on the class, Database and ChildCallbacks , are simply just
encapsulating their respective private members. The next four protected methods are really the heart of
the class. The first method, ExecuteReader , shown below, simply takes a SQL string and executes
against the SQL CE database and returns an IDataReader instance.

 protected IDataReader ExecuteReader (string sql)
 {
 DbCommand command = this.database.GetSqlStringCommand(sql);
 return this.database.ExecuteReader(command);
 }

c02.indd 39c02.indd 39 3/17/08 2:38:12 PM3/17/08 2:38:12 PM

Chapter 2: Designing the Layered Architecture

40

 The next method, BuildEntityFromSql , uses the ExecuteReader method to help build an entity
instance from a SQL statement.

 protected virtual T BuildEntityFromSql(string sql)
 {
 T entity = default(T);
 using (IDataReader reader = this.ExecuteReader(sql))
 {
 if (reader.Read())
 {
 entity = this.BuildEntityFromReader(reader);
 }
 }
 return entity;
 }

 It starts off by first getting an IDataReader from the ExecuteReader method, and then uses that
 IDataReader and passes it to the main method, BuildEntityFromReader , to build the entity. The
Generic entity instance that is returned is a derivative of the EntityBase type.

 The BuildEntityFromReader method is a little bit more complicated than the other methods in the class.

 protected virtual T BuildEntityFromReader(IDataReader reader)
 {
 T entity = this.entityFactory.BuildEntity(reader);
 if (this.childCallbacks != null & & this.childCallbacks.Count > 0)
 {
 object childKeyValue = null;
 DataTable columnData = reader.GetSchemaTable();
 foreach (string childKeyName in this.childCallbacks.Keys)
 {
 if (DataHelper.ReaderContainsColumnName(columnData,
 childKeyName))
 {
 childKeyValue = reader[childKeyName];
 }
 else
 {
 childKeyValue = null;
 }
 this.childCallbacks[childKeyName](entity, childKeyValue);
 }
 }
 return entity;
 }

 It starts by delegating to the class ’ s IEntityFactory < T > instance to build and map an entity from an
 IDataReader . I will discuss this Entity Factory Framework in the next section. It then checks the
dictionary of child callback delegates (Dictionary < string, AppendChildData > childCallbacks)
defined in the derived class to see whether any callback delegates have been defined. If there are some
entries present in the dictionary, it iterates through the keys of the collection, which are really database
foreign key field names from the derived class ’ s main query. While iterating, it uses the DataHelper
class to check to see whether the field name actually exists in the IDataReader ’ s set of fields (I will

c02.indd 40c02.indd 40 3/17/08 2:38:13 PM3/17/08 2:38:13 PM

Chapter 2: Designing the Layered Architecture

41

discuss the DataHelper class in the next paragraph). If it does exist, it then retrieves the value of the
field name from the IDataReader instance. Once that foreign key value has been extracted, it then
passes the value back to the callback method, along with the partially populated entity object, and
executes the method, thus filling another part of the entity object. This is particularly useful for
populating aggregate objects with many child objects attached to them.

 The DataHelper class is used by the various Repositories and Factories to get data to and from ADO
.NET objects, such as the IDataReader . In the code example above, I was using the DataHelper ’ s
 ReaderContainsColumnName method to determine whether a particular column name (or field name)
existed in the DataReader ’ s set of data. Here is the method:

 public static bool ReaderContainsColumnName(DataTable schemaTable,
 string columnName)
 {
 bool containsColumnName = false;
 foreach (DataRow row in schemaTable.Rows)
 {
 if (row[“ColumnName”].ToString() == columnName)
 {
 containsColumnName = true;
 break;
 }
 }
 return containsColumnName;
 }

 The next method, BuildEntitiesFromSql , is very similar to BuildEntityFromSql , except that
instead of just returning a single entity instance, it returns a generic list (IList < T >) of them.

 protected virtual List < T > BuildEntitiesFromSql(string sql)
 {
 List < T > entities = new List < T > ();
 using (IDataReader reader = this.ExecuteReader(sql))
 {
 while (reader . Read())
 {
 entities.Add(this.BuildEntityFromReader(reader));
 }
 }
 return entities;
 }

 The method starts by initializing the list of entities to be returned, and then similarly to
 BuildEntityFromSql , it calls the class ’ s ExecuteReader method to get an IDataReader instance
from the SQL statement passed in. It then iterates over the IDataReader instance and uses the
 BuildEntityFromReader method to build the entity and add it to its list.

The Entity Factory Framework
 When I was originally building this application, I had hoped to be using the ADO.NET Entity
Framework as my object - relational (OR) mapping solution. Since it was pulled from the Visual Studio
2008 release, I have decided to roll my own pseudo - mapping factory type of framework.

c02.indd 41c02.indd 41 3/17/08 2:38:13 PM3/17/08 2:38:13 PM

Chapter 2: Designing the Layered Architecture

42

 The IEntityFactory < T > Interface

 The main concept of what I need the framework to do is extremely simple: to map field names contained
in an instance of an IDataReader to fields of an object instance. Actually, it ’ s really just mapping field
names to class property names. To promote the simplicity of what I wanted, I created an interface,
 IEntityFactory < T > , to show my intent.

using System;
using SmartCA.Infrastructure.DomainBase;
using System.Data;

namespace SmartCA.Infrastructure.EntityFactoryFramework
{
 public interface IEntityFactory < T > where T : EntityBase
 {
 T BuildEntity(IDataReader reader);
 }
}

 This interface is extremely simple, its one method, BuildEntity , takes an IDataReader and returns an
object that derives from EntityBase . Now, since I have this interface in place, I need to have a way of
figuring out how to get the right object instances of this interface. I will use a factory class to do this,
named EntityFactoryBuilder .

Configuration Section

 Just like the RepositoryFactory , I have chosen to use configuration along with my
EntityFactoryBuilder. This keeps things very flexible.

 Here is what the application configuration file with added support for the Entity Factory Framework
looks like:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < configSections >
 < section name=”dataConfiguration” type=”Microsoft.Practices.EnterpriseLibrary
.Data.Configuration.DatabaseSettings, Microsoft.Practices.EnterpriseLibrary.Data,
Version=3.0.0.0, Culture=neutral, PublicKeyToken=null”/ >
 < section name=”repositoryMappingsConfiguration”

type=”SmartCA.Infrastructure.RepositoryFramework.Configuration
.RepositorySettings, SmartCA.Infrastructure, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null”/ >
 < section name=”entityMappingsConfiguration”

type=”SmartCA.Infrastructure.EntityFactoryFramework.Configuration
.EntitySettings,
SmartCA.Infrastructure, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null”/ >
 < /configSections >

 < dataConfiguration defaultDatabase=”SmartCA”/ >

 < connectionStrings >

c02.indd 42c02.indd 42 3/17/08 2:38:14 PM3/17/08 2:38:14 PM

Chapter 2: Designing the Layered Architecture

43

 < add name=”SmartCA” connectionString=”Data Source=|DataDirectory|\SmartCA.sdf”
 providerName=”System.Data.SqlServerCe.3.5”/ >
 < /connectionStrings >

 < repositoryMappingsConfiguration >
 < repositoryMappings >
 < repositoryMapping interfaceShortTypeName=”IProjectRepository”

repositoryFullTypeName=”SmartCA.Infrastructure.Repositories.ProjectRepository,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < repositoryMapping interfaceShortTypeName=”IEmployeeRepository”

repositoryFullTypeName=”SmartCA.Infrastructure.Repositories.EmployeeRepository,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < repositoryMapping interfaceShortTypeName=”ICompanyRepository”

repositoryFullTypeName=”SmartCA.Infrastructure.Repositories.CompanyRepository,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < repositoryMapping interfaceShortTypeName=”IContactRepository”

repositoryFullTypeName=”SmartCA.Infrastructure.Repositories.ContactRepository,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < /repositoryMappings >
 < /repositoryMappingsConfiguration >

 < entityMappingsConfiguration >
 < entityMappings >
 < entityMapping entityShortTypeName=”Project”

entityFactoryFullTypeName=”SmartCA.Infrastructure.Repositories.ProjectFactory,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < entityMapping entityShortTypeName=”Employee”

entityFactoryFullTypeName=”SmartCA.Infrastructure.Repositories.EmployeeFactory,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < entityMapping entityShortTypeName=”Company”

entityFactoryFullTypeName=”SmartCA.Infrastructure.Repositories.CompanyFactory,
SmartCA.Infrastructure.Repositories, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null” / >
 < /entityMappings >
 < /entityMappingsConfiguration >

 < /configuration >

c02.indd 43c02.indd 43 3/17/08 2:38:14 PM3/17/08 2:38:14 PM

Chapter 2: Designing the Layered Architecture

44

 Configuration Section Handling

 Again, just as with the Repository Framework configuration, I have added a Configuration folder
under the EntityFactoryFramework folder of the SmartCA.Infrastructure project (see Figure 2.4).

Figure 2.4: EntityFactoryFramework
Configuration folder.

 I am not going to show the configuration code for the Entity Factory Framework because it is almost
exactly the same as the configuration code for the Repository Framework.

The EntityFactoryBuilder Class

 Now that the configuration is finished, the EntityFactoryBuilder can use it to create repositories. The
way the EntityFactoryBuilder works is that it uses a Generic type parameter representing the type of
the entity that needs to be mapped, combined with the mappings from the configuration in order to
determine what kind of IEntityFactory < T > to create. The EntityFactoryBuilder class is a static
class with one static method, BuildFactory .

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.EntityFactoryFramework.Configuration;
using System.Configuration;

namespace SmartCA.Infrastructure.EntityFactoryFramework
{
 public static class EntityFactoryBuilder
 {
 // Dictionary used for caching purposes
 private static Dictionary < string, object > factories =
 new Dictionary < string, object > ();

 public static IEntityFactory < T > BuildFactory < T > () where T : EntityBase
 {
 IEntityFactory < T > factory = null;

 // Get the key from the Generic parameter passed in
 string key = typeof(T).Name;

c02.indd 44c02.indd 44 3/17/08 2:38:14 PM3/17/08 2:38:14 PM

Chapter 2: Designing the Layered Architecture

45

 // See if the factory is in the cache
 if (EntityFactoryBuilder.factories.ContainsKey(key))
 {
 // It was there, so retrieve it from the cache
 factory = EntityFactoryBuilder.factories[key] as IEntityFactory < T > ;
 }
 else
 {
 // Create the factory

 // Get the entityMappingsConfiguration config section
EntitySettings settings = (EntitySettings)ConfigurationManager.GetSection
(EntityMappingConstants.EntityMappingsConfigurationSectionName);

 // Get the type to be created using reflection
 Type entityFactoryType =
Type.GetType(settings.EntityMappings[key].EntityFactoryFullTypeName);

 // Create the factory using reflection
 factory = Activator.CreateInstance(entityFactoryType) as
IEntityFactory < T > ;

 // Put the newly created factory in the cache
 EntityFactoryBuilder.factories[key] = factory;
 }

 // Return the factory
 return factory;
 }
 }
}

 The signature of this method is much simpler than the RepositoryFactory class ’ s
GetRepository < TRepository, TEntity > method. It has only one Generic type parameter, T ,
and that is the type of entity for which the factory was created. The T parameter has a restriction that it
must be derived from the EntityBase class.

 First, the code for the method uses .NET Reflection to find the short type name of the Generic parameter
type being passed in via the T parameter. Then, the code looks in its static dictionary of entity factories to
see whether it can pull the particular Factory out of memory. If it cannot, it then uses the custom Entity
Factory Framework configuration objects to find the right entity factory type to create based on the
values in the mappings configuration. When the type is found, the method then uses the reflection
capabilities of the Activator object to create an instance of the correct Factory based on the mapped type
from configuration. Then, after the Factory has been created, it is put into the static dictionary of
repositories so it will be available the next time it has been requested. Once the Factory has been
retrieved from memory or created, the instance is then returned to the caller.

 The Model - View - ViewModel Pattern
Traditional Presentation Patterns

 So far, I have covered the various patterns and principles being followed in the domain layer and the
infrastructure layer. Since this book is about Domain - Driven Design, that is a good thing, but I still have
an application to build; it cannot just be all domain objects and unit tests. I actually have to make the

c02.indd 45c02.indd 45 3/17/08 2:38:15 PM3/17/08 2:38:15 PM

Chapter 2: Designing the Layered Architecture

46

application present something fairly compelling to the user. If you remember, in Chapter 1 I stated that
I was going to be using WPF for the presentation technology. That is all well and good, but there must be
some type of strategy for hooking up domain objects to the user interface. Some very common
presentation patterns are the Model - View - Controller (MVC) and the Model - View - Presenter (MVP).
These patterns are very good, and I highly encourage you to study more about them; however, in my
opinion, they have one major drawback when used with WPF: they do not take into account data -
 binding technology at all. What I mean by that, is that in those patterns, the Controller or the Presenter is
responsible for acting upon the View, such as filling TextBoxes with text, loading ListBoxes, filling a grid,
and so on. It just so happens that one of WPF ’ s greatest strengths is its rich data - binding capabilities. By
implementing either the MVC or the MVP pattern, I would be completely bypassing the data - binding
facilities in WPF. There must be some way to make this concept of separating the View from the Model
work in WPF without bypassing a whole slew of rich WPF features!

Model - View - ViewModel Definition
 That way is the Model - View - ViewModel pattern. I first learned about this pattern by reading John
Gossman ’ s blog entries about it. He was a member of the Microsoft Expression Blend team and is
currently on the WPF team at Microsoft. In his blog entries, he talks about how his team has created this
new pattern, called Model - View - ViewModel, to separate the Model from the View but, at the same time,
to take full advantage of WPF ’ s features. According to John “ The pattern was to take a pure Model,
create an abstract view that contained state, and data bind a View created with a visual designer to that
abstract view. That ’ s a nice clean, formal pattern. ” In this case, the visual designer is the Microsoft
Expression Blend tool, and the abstract view is the ViewModel. The key point is that there is a two - way
connection between the View and the ViewModel via data binding. When properly set up, this means
that every View will consist of almost nothing but pure XAML and very little procedural code, which is
exactly what I want.

 Because this pattern separates out the View and the Model so nicely, there are a lot of opportunities for
graphic artist types to work in Blend all day, hand the XAML off to a developer working on the
domain model, and have the developer wire everything up to the domain model. Shortly, I will show
how I implemented this pattern for the SmartCA application.

What ’ s a ViewModel?
 You must be asking yourself this question by now. When I first read about it and looked at some sample
code, it took me a while to grasp the full power of it. The purpose in life for a ViewModel is to adapt the
Model to the View. This may mean that you have a method in the domain model that returns an
 IList < Project > type, but you would really like to convert that into a more WPF - friendly class for data
binding purposes. Enter the ViewModel. In this case the ViewModel would transform the
 IList < Project > type from the domain model into something like a CollectionView class for a WPF
UI Element to bind data to. The key is to expose public properties on the ViewModel for the things that
the View needs to bind data to. Also, like a Controller, the ViewModel can be used to hold the View ’ s
state, as well as any commands that the View needs.

 Since WPF natively implements the Command pattern, by which I mean certain UI elements such as
Button controls, there is a property called Command that is of the WPF - defined ICommand type. I can
place Commands into my ViewModel and expose them as public properties for my View to bind to. This
is extremely powerful, as it allows me to bind executable code to a Button on a form without having to
write any code to wire up the Button. WPF ’ s Command pattern along with a public Command property
on my ViewModel take care of this.

c02.indd 46c02.indd 46 3/17/08 2:38:15 PM3/17/08 2:38:15 PM

Chapter 2: Designing the Layered Architecture

47

 An Example
 In order to understand this a little better, I will show you a part of the SmartCA application. The use case
is extremely simple; it is to display a form to the user to show a list of projects, and have the user pick a
project, and remember what project was selected. The selected project is what the user will be working
on in his or her session until the user decides to change to another project. Since the point of this
example is the Model - View - ViewModel presentation pattern, I will focus a little bit less on the domain
and a little bit more on the presentation items.

 To start off with, I first create a Service class in my domain model, called ProjectService .
 ProjectService has one method we care about right now, and that is GetProjects .

using System;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Projects
{
 public static class ProjectService
 {
 public static IList < Project > GetAllProjects()
 {
 IProjectRepository repository =
RepositoryFactory.GetRepository < IProjectRepository, Project > ();
 return repository.FindAll();
 }
 }
}

 The code is pretty straightforward; it is simply acting as a fa ç ade to the IProjectRepository instance
and gets a list of all of the repository ’ s Projects. So far so good; I now have a way of getting the data that
I need.

 The next step is to build a View for displaying the list of Projects to the user in the form of a dropdown
list. Figure 2.5 shows what I want the form to look like.

Figure 2.5: The SelectProjectView view

c02.indd 47c02.indd 47 3/17/08 2:38:16 PM3/17/08 2:38:16 PM

Chapter 2: Designing the Layered Architecture

48

 In order to get to this point, I need to build a ViewModel class that I can have the SelectProjectView
class bind to. I only need to expose a list and two commands, one per button.

using System;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using System.Windows.Data;
using SmartCA.Infrastructure.UI;
using SmartCA.Presentation.Views;
using SmartCA.Application;

namespace SmartCA.Presentation.ViewModels
{
 public class SelectProjectViewModel
 {
 private CollectionView projects;
 private DelegateCommand selectCommand;
 private DelegateCommand cancelCommand;
 private IView view;

 public SelectProjectViewModel()
 : this(null)
 {
 }

 public SelectProjectViewModel(IView view)
 {
 this.view = view;
 this.projects = new CollectionView(ProjectService.GetAllProjects());
 this.selectCommand = new DelegateCommand(this.SelectCommandHandler);
 this.cancelCommand = new DelegateCommand(this.CancelCommandHandler);
 }

 public CollectionView Projects
 {
 get { return this.projects; }
 }

 public DelegateCommand SelectCommand
 {
 get { return this.selectCommand; }
 }

 public DelegateCommand CancelCommand
 {
 get { return this.cancelCommand; }
 }

 private void SelectCommandHandler(object sender, EventArgs e)
 {
 Project project = this.projects.CurrentItem as Project;
 UserSession.CurrentProject = project;
 this.view.Close();
 }

c02.indd 48c02.indd 48 3/17/08 2:38:16 PM3/17/08 2:38:16 PM

Chapter 2: Designing the Layered Architecture

49

 private void CancelCommandHandler(object sender, EventArgs e)
 {
 this.view.Close();
 }
 }
}

 The first thing to note about this class is its overloaded constructor. It first gives a reference to the View
via the IView interface. This interface currently has two methods, Show and Close , and it just so
happens that the WPF Window class happens to implement both of these methods.

using System;

namespace SmartCA.Presentation.Views
{
 public interface IView
 {
 void Show();
 void Close();
 }
}

 This interface allows me to open and close the form from my ViewModel.

 The next thing that the SelectProjectViewModel constructor does is to transform the
 IList < Project > list of projects into a WPF - friendly CollectionView class. This CollectionView is
then exposed via the Projects public property.

 public SelectProjectViewModel(IView view)
 {
 this.view = view;
 this.projects = new CollectionView(ProjectService.GetAllProjects());
 this.selectCommand = new DelegateCommand(this.SelectCommandHandler);
 this.cancelCommand = new DelegateCommand(this.CancelCommandHandler);
 }

 The next two lines are interesting not in that they are setting up the two ICommand properties for the two
Buttons, but rather that they are using a class called DelegateCommand to represent the ICommand
instances. The DelegateCommand class not only implements the ICommand interface but also allows a
delegate to be called when the ICommand ’ s Execute method is called.

using System;
using System.Windows.Input;

namespace SmartCA.Infrastructure.UI
{
 public class DelegateCommand : ICommand
 {
 public delegate void SimpleEventHandler(object sender, EventArgs e);

 private SimpleEventHandler handler;
 private bool isEnabled = true;

(continued)

c02.indd 49c02.indd 49 3/17/08 2:38:17 PM3/17/08 2:38:17 PM

Chapter 2: Designing the Layered Architecture

50

 public DelegateCommand(SimpleEventHandler handler)
 {
 this.handler = handler;
 }

 #region ICommand implementation

 /// < summary >
 /// Executing the command is as simple as calling that method
 /// we were handed on creation.
 /// < /summary >
 /// < param name=”parameter” > Data used by the command. If the
 /// command does not require data to be passed,
 /// this object can be set to null. < /param >
 public void Execute(object parameter)
 {
 this.handler(this, EventArgs.Empty);
 }

 /// < summary >
 /// Determines whether the command can execute in its
 /// current state.
 /// < /summary >
 /// < param name=”parameter” > Data used by the command. If the
 /// command does not require data to be passed,
 /// this object can be set to null. < /param >
 /// < returns > True if the command can be executed. < /returns >
 public bool CanExecute(object parameter)
 {
 return this.IsEnabled;
 }

 /// < summary >
 /// This is the event that WPF’s command architecture listens to so
 /// it knows when to update the UI on command enable/disable.
 /// < /summary >
 public event EventHandler CanExecuteChanged;

 #endregion

 /// < summary >
 /// Public visibility of the isEnabled flag - note that when it is
 /// set, need to raise the event so that WPF knows to update
 /// any UI that uses this command.
 /// < /summary >
 public bool IsEnabled
 {
 get { return this.isEnabled; }
 set
 {
 this.isEnabled = value;
 this.OnCanExecuteChanged();

(continued)

c02.indd 50c02.indd 50 3/17/08 2:38:17 PM3/17/08 2:38:17 PM

Chapter 2: Designing the Layered Architecture

51

 }
 }

 /// < summary >
 /// Simple event propagation that makes sure someone is
 /// listening to the event before raising it.
 /// < /summary >
 private void OnCanExecuteChanged()
 {
 if (this.CanExecuteChanged != null)
 {
 this.CanExecuteChanged(this, EventArgs.Empty);
 }
 }
 }
}

 As advertised, the real power of this class is that, when its Execute method is called, it calls the delegate
method that was passed in via the constructor. The reason why this is so powerful is that I can define
the method handler for the delegate right inside of my ViewModel class, which keeps all of the
presentation logic glue right where I want it.

 So going back to the SelectProjectViewModel class, here are the handler methods for the two
 DelegateCommand properties.

 private void SelectCommandHandler(object sender, EventArgs e)
 {
 Project project = this.projects.CurrentItem as Project;
 UserSession.CurrentProject = project;
 this.view.Close();
 }

 private void CancelCommandHandler(object sender, EventArgs e)
 {
 this.view.Close();
 }

 The handler for the SelectCommand property is a true example of why the ViewModel shines. Instead of
having to talk to an element on the UI to know which project was selected, it simply asks the
 CollectionView for its CurrentItem property to get the selected project. This is made possible by the
default two - way binding in the XAML, which I will show shortly. The handler method then sets the
 CurrentProject property of the application layer ’ s UserSession class. Then, since its work is done, it
tells the View to go away via the Close method of the IView interface.

 The handler for the CancelCommand property is much simpler. It simply tells the View to close itself via
the IView interface.

 Now that the ViewModel class for the use case SelectProjectViewModel has been detailed, it ’ s time to
look at how the View actually uses it and communicates with it. The View class, SelectProjectView ,
has very little code behind in it. The only code that I wrote for it was in the constructor for wiring up the
 DataContext property of the form ’ s Window element.

c02.indd 51c02.indd 51 3/17/08 2:38:17 PM3/17/08 2:38:17 PM

Chapter 2: Designing the Layered Architecture

52

using System;
using System.Windows;
using System.Windows.Controls;
using SmartCA.Presentation.ViewModels;

namespace SmartCA.Presentation.Views
{
 public partial class SelectProjectView : Window, IView
 {
 public SelectProjectView()
 {
 this.InitializeComponent();
 this.DataContext = new SelectProjectViewModel(this);
 }
 }
}

 The first thing to notice is that I added the implementation of the IView interface to the class. This was
easy since the System.Windows.Window class already implemented the Close and Show methods.
Then, in the constructor, after the auto - generated call to InitializeComponent , I set the Window ’ s
 DataContext property to the SelectProjectViewModel class, passing in the Window instance (this)
as the IView instance expected in SelectProjectViewModel ’ s constructor. Finally, the form is wired
up for data binding to the ViewModel.

 The XAML markup for the View contains the ComboBox declaration, a few Label declarations, as well as
a few Button declarations.

 < Window x:Class=”SmartCA.Presentation.Views.SelectProjectView”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:vm=”clr-namespace:SmartCA.Presentation.ViewModels”
 Title=”SelectProjectView” Height=”300” Width=”437”
 Background=”{DynamicResource FormBackgroundBrush}” >
 < Grid >
 < ComboBox Height=”26” Margin=”175.993333333333,98,28.006666666667,0”
 Name=”projectsComboBox” VerticalAlignment=”Top”
 IsSynchronizedWithCurrentItem=”True”
 TextSearch.TextPath=”Name”
 ItemsSource=”{Binding Path=Projects}” IsTextSearchEnabled=”True”
 IsEditable=”True” >
 < ComboBox.ItemTemplate >
 < DataTemplate >
 < Grid ShowGridLines=”True” >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”50” / >
 < ColumnDefinition / >
 < /Grid.ColumnDefinitions >
 < TextBlock Grid.Column=”0” Text=”{Binding
Path=Number}”/ >
 < TextBlock Grid.Column=”1” Text=”{Binding Path=Name}” / >
 < /Grid >
 < /DataTemplate >

c02.indd 52c02.indd 52 3/17/08 2:38:18 PM3/17/08 2:38:18 PM

Chapter 2: Designing the Layered Architecture

53

 < ComboBox.ItemTemplate >
 < /ComboBox >
 < Label Margin=”47,42,0,0” Name=”selectProjectLabel”
 Style=”{StaticResource boldLabelStyle}”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Width=”153” > Please select a Project... < /Label >
 < Label Margin=”47,98.04,0,0” Name=”projectLabel”
 Style=”{StaticResource boldLabelStyle}” > Project: < /Label >
 < Button Margin=”47,0,0,35” Name=”cancelButton”
 Command=”{Binding Path=CancelCommand}” Style=”{StaticResource baseButton}”
 HorizontalAlignment=”Left” VerticalAlignment=”Bottom” > Cancel < /Button >
 < Button Margin=”0,0,28.006666666667,35” Name=”okButton”
 Command=”{Binding Path=SelectCommand}” Style=”{StaticResource baseButton}”
 HorizontalAlignment=”Right” VerticalAlignment=”Bottom” > OK < /Button >
 < /Grid >
 < /Window >

 The first interesting thing to note about the ComboBox declaration is that it is bound to the Projects
CollectionView property of the SelectProjectViewModel , and that its
 IsSynchronizedWithCurrentItem property is set to True . What this means is that whenever I change
a selection in the ComboBox, I can always get the item selected from the CollectionView in the
ViewModel to which it is bound, in this case the Projects property. The way I get that is by checking
the SelectedItem property of that CollectionView . That is cool because I do not need to be tightly
coupled to the UI elements in the ViewModel; data binding takes care of giving me the state that I need.

 The next interesting thing about the ComboBox declaration is its use of a DataTemplate element to
format how the dropdown will be displayed. In this case, the dropdown will show two columns instead
of one, and each one of the columns is bound to properties of the child Property objects via the Path
property of the Binding declaration. What ’ s nice about using this pattern is that I can make the code for
the UI View be more declarative, that is, keep most of it in XAML, and really get a good separation
between the View and the Model, while at the same time take advantage of WPF ’ s binding features to
reduce the amount of code that I would have had to write to do this manually.

 Summary
 I covered quite a bit of ground in this chapter. I started out by designing the Visual Studio solution that
will be used throughout the rest of the book, and then began the design for the four architectural layers,
which were the application, domain, infrastructure, and presentation layers. In designing and
implementing the layers, I introduced a few patterns that will be used throughout the book, such as the
Layered Supertype pattern, the Separated Interface pattern, and the Model - View - ViewModel pattern.
Also, when talking about the domain layer, I covered some very important Domain - Driven Design
terms, which will be used throughout the remainder of the book.

 I also wrote some code in this chapter! I started writing code for the infrastructure layer with the Layered
Supertype implementation, followed by the Repository Framework and the Entity Factory Framework,
and ending with the Model - View - ViewModel pattern implementation for the presentation layer. Overall,
there is a good foundation on which to build for the rest of the application.

c02.indd 53c02.indd 53 3/17/08 2:38:18 PM3/17/08 2:38:18 PM

c02.indd 54c02.indd 54 3/17/08 2:38:18 PM3/17/08 2:38:18 PM

 Managing Projects

 Since I have just built the application architecture, it is time to start implementing the functionality of
the application. Actually, the application architecture is not fully developed yet; in fact, I will probably
refactor parts of it based on the needs of the application as I go along. In last chapter ’ s example of a
View and a ViewModel, I introduced what I will be talking about this chapter, the SmartCA ’ s concept
of Projects. I intentionally did not show you the Project class because that is the focus of this
chapter. I will also be talking about the concept of Contractors and how they relate to Projects.

 The Problem
 Smart Design is an architectural, engineering, and interior design firm that is known for its
expertise in the design and construction of complex facilities, such as hospitals and universities.
Because they are involved from beginning to end in the construction projects, they are, by default,
the “ general contractor, ” meaning that they are the ones in charge of making sure that the facilities
are built properly, according to both customer ’ s and government ’ s specifications. In order to carry
out this large responsibility, they must manage several other parties involved in carrying out their
architectural and engineering plans. This usually involves a lot of administration, mostly for
keeping track of costs, project communications, documentation (such as requests for information,
change orders, and proposal requests), and more. This construction administration is designed to
ensure that the construction process is in general conformance with the architectural and
engineering design documents as well as the applicable codes and standards. It is exactly these
types of activities that the SmartCA application is intended to track and manage.

 In the SmartCA domain, a Project is the center of all behavior: almost everything in the domain
relates to a Project in one way or another. Construction Projects are, after all, what other companies
hire Smart Design to do for them. A Project is a part of SmartCA ’ s core domain .

 The Design
 In the SmartCA domain, the purpose of a Project is to bring together and manage all of the people
involved in the construction process. In the next few sections I will be designing the domain model,
determining the Project Aggregate and its boundaries, and designing the repository for Projects.

c03.indd 55c03.indd 55 3/18/08 5:12:45 PM3/18/08 5:12:45 PM

Chapter 3: Managing Projects

56

 Designing the Domain Model
 Listed below is a drawing showing the Entities that make up the Project Domain:

Principal-in-ChargeConstruction
AdministratorOwner

Contract Contractor

Market Sector

Market Segment Allowance

Project

*
*

*

Figure 3.1: The Project Domain and its parts.

 As you can see from Figure 3.1 , every Project must have an Owner. An Owner is an outside party for
whom the Project is being built. Other entities represented in every Project are the Construction
Administrator and the Principal - in - Charge. These two roles will always be occupied by Smart Design
employees. The Principal - in - Charge is the project director, the person who is ultimately responsible for
the success or failure of the Project. The Construction Administrator will be using the SmartCA
application the most. This person, and usually their assistant, is the domain expert of a Project.

 One of the most important parts of the application is keeping track of the Contracts between Smart
Design and the Contractors on the Project. Many of the aspects of the SmartCA application deal in
communicating with the Contractors and documenting all of their costs in order to know what the
current cost of the Project is and what the estimated cost of the Project will be.

 One of the other items that must be tracked about a Project is what Market Segment the construction is
for, that is, if it is for a university, a high school, a woman ’ s hospital, and so on. Market Segments belong
to Market Sectors, and are a bit more specific than Market Sectors. For example, a high school building
would be classified in the education Market Sector, as would a university. A woman ’ s hospital would be
classified in the health care Market Sector. This information is later used by Smart Design management
to analyze the company ’ s portfolio of projects to identify trends within a particular Market Sector
or Segment.

 Defining the Project Aggregate
 Now that the Project domain model has been designed, I need to design the Project Aggregate with the
actual classes that will be used. Figure 3.2 shows a class diagram showing the classes that will be used in
the Project Aggregate.

c03.indd 56c03.indd 56 3/18/08 5:12:46 PM3/18/08 5:12:46 PM

Chapter 3: Managing Projects

57

Allowance
Class

Employee
Class
 Person

Contract
Class
 EntityBase

Project
Class
 EntityBase

MarketSegment
Class
 EntityBase

MarketSector
Class
 EntityBase

Segment

ConstructionAdministrator

PrincipalInCharge

Company
Class
 EntityBase

Segments

Allowances
Owner

Contractor Contracts

Figure 3.2: Classes constituting the Project Aggregate.

 As you can tell from Figure 3.2 , the class names are staying true to the model that I created in the
previous section. There are some subtle differences though. For example, in the previous diagram, there
was an association between the Project entity and the Principal - in - Charge entity. In the class diagram
above, the association to Principal - in - Charge is a property on the Project class that is associated with an
Employee class. The same pattern follows for the association to Construction Administrator. This is
because the PrincipalInCharge and ConstructionAdministrator properties are both instances of
an Employee class. The main idea here is to keep the code as consistent with the model as possible, and
to strive to make the code become as easy to read as the model.

 Defining the Aggregate Boundaries
 Now that I have defined the Project Aggregate, it is time to determine where the boundaries are on this
Aggregate. This is very important for when I start to design the Project repository in the next section.

 Obviously, all of the classes in this diagram are part of the Project Aggregate, but the Project Aggregate
also holds some references to the roots of other Aggregates. Figure 3.3 shows the Aggregate boundaries
that I have determined so far in the domain model.

 In Figure 3.3 , I have identified two additional Aggregate Roots, Company and Employee . There is
definitely a need to get Company and Employee information outside the context of a Project . In the
context of a particular Project , if I wanted to get some detailed information about the
 ConstructionAdministrator , even though that represents an Employee instance, and Employee is an
Aggregate Root, I would still need to navigate from the Project class to the
 ConstructionAdministrator property to get that information. If I just wanted to find some data
about an Employee not in the context of a Project , I would go directly to the Employee aggregate itself,
via the repository for the Employee aggregate. The same concept applies to accessing Company
information; if you are in the context of a Project , for example wanting to find about the Owner of a
 Project , then you should go through the Project Aggregate ’ s repository, but, if you just need
information on a particular Company outside the concerns of a Project , then go directly to the
repository for the Company Aggregate.

c03.indd 57c03.indd 57 3/18/08 5:12:47 PM3/18/08 5:12:47 PM

Chapter 3: Managing Projects

58

Company
Class
 EntityBase

Address
Class

Allowance
Class

MarketSegment
Class
 EntityBase

Employee
Class
 Person

Person
Abstract Class
 EntityBase

MarketSector
Class
 EntityBase

Contract
Class
 EntityBase

Project
Class
 EntityBase

Contracts

Contractor

Owner

Address Segment

Segments

Allowances

PrincipalInCharge

ConstructionAdministrator

HeadquartersAddress

Figure 3.3: The Project Aggregate boundaries.

Company
Class
 EntityBase

Address
Class

Allowance
Class

MarketSegment
Class
 EntityBase

Employee
Class
 Person

Person
Abstract Class
 EntityBase

MarketSector
Class
 EntityBase

Contract
Class
 EntityBase

Project
Class
 EntityBase

Contracts

Contractor

Owner

Address Segment

Segments

Allowances

PrincipalInCharge

ConstructionAdministrator

HeadquartersAddress

Figure 3.4: The Project Aggregate Repositories.

 Designing the Repositories
 Since I have just defined the boundaries for the Project Aggregate, identifying the classes that need
Repositories is easy. The rule is that each Aggregate Root gets its own repository. Very simply, if a class
has been identified as the Entity Root of an Aggregate, then a repository will be made for that class. This
means that in the current domain model, we will have three repositories: one for the Project Aggregate,
one for the Company Aggregate, and one for the Employee Aggregate (see Figure 3.4).

c03.indd 58c03.indd 58 3/18/08 5:12:47 PM3/18/08 5:12:47 PM

Chapter 3: Managing Projects

59

 Because I will be covering Companies in the next chapter, I will not be showing the details of the
Company Aggregate nor its respective repository in this chapter.

 The IProjectRepository Interface
 The IProjectRepository interface is the front to instances of Project Repositories. Currently, I have
two implementations of this interface, one designed as a mock implementation, and the other one
designed as real. As I was developing, I quickly decided that the mock implementations were not really
necessary since I was writing to a local SQL CE database anyway, so my tests did not slow down at all.
Here is the IProjectRepository interface:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Projects
{
 public interface IProjectRepository : IRepository < Project >
 {
 IList < Project > FindBy(IList < MarketSegment > segments, bool completed);
 Project FindBy(string projectNumber);
 IList < MarketSegment > FindAllMarketSegments();
 }
}

 Notice how the IProjectRepository interface implements the IRepository < T > interface. This
functionality is all handled by the RepositoryBase < T > class and the SqlCeRepositoryBase < T > class,
which I showed in Chapter 2 .

 The IEmployeeRepository Interface
 The IEmployeeRepository interface is the interface for instances of Employee Repositories. Here is the
 IEmployeeRepository interface:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Employees
{
 public interface IEmployeeRepository : IRepository < Employee >
 {
 IList < Employee > GetConstructionAdministrators();
 IList < Employee > GetPrincipals();
 }
}

 Just like the IProjectRepository interface, the IEmployeeRepository interface also implements the
 IRepository < T > interface.

c03.indd 59c03.indd 59 3/18/08 5:12:47 PM3/18/08 5:12:47 PM

Chapter 3: Managing Projects

60

 Writing the Unit Tests
 Before implementing the solution for managing Projects, I am going to write some unit tests for what
I expect of the Project and Employee repository implementations. I am not going to write any tests, yet,
for the Project and Employee classes, just for their respective Repositories. You may be wondering how
I can write these tests when the classes do not even exist yet. Since I have written the interfaces for these
Repositories, and since I also have a Repository Factory implemented, I can write test code against the
interfaces. The tests will fail, and that is what I expect. After the code is written for the repository
implementations later on in the Solution section, then the tests should pass. The goal is to write code in
the Solution section that will ultimately make the unit tests pass.

 Setting Up the Unit Tests Project
 For all of my unit tests, I have decided to use Visual Studio Team System (VSTS) to create my unit
test projects. There is an excellent project template for doing this, and it is fairly straightforward.
I simply add a new project to my Visual Studio solution, and choose “ Test Project, ” as shown
in Figure 3.5 .

Figure 3.5: Creating the Visual Studio test project.

 The next thing to do is to delete the default UnitTest1.cs file and create a real unit test file. In order to
make things a little better organized, I have created folders in my test project for both Projects and
Employees (see Figure 3.6).

c03.indd 60c03.indd 60 3/18/08 5:12:47 PM3/18/08 5:12:47 PM

Chapter 3: Managing Projects

61

Figure 3.6: The SmartCA.UnitTests
Project with folders.

Figure 3.7: Creating Unit Tests for the IProjectRepository interface.

 The IProjectRepository Unit Tests
 In order to get a jump start on writing the unit tests for the IProjectRepository interface, I use the
VSTS New Unit Test Wizard to write test stubs automatically for each method in the
 IProjectRepository interface that I choose to test (see Figure 3.7).

c03.indd 61c03.indd 61 3/18/08 5:12:48 PM3/18/08 5:12:48 PM

Chapter 3: Managing Projects

62

 The next step is to modify the file created to use the RepositoryFactory class to build instances of the
 IProjectRepository interface. I have created a private class field for the unit test class to hold this
reference, and I initialize it in the MyTestInitialize method of the unit test class. Here are the
declarations for the private class fields:

using SmartCA.Infrastructure.Repositories;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using SmartCA.Model.Projects;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Infrastructure;

namespace SmartCA.UnitTests
{
 /// < summary >
 ///This is a test class for ProjectRepositoryTest and is intended
 ///to contain all ProjectRepositoryTest Unit Tests
 /// < /summary >
 [TestClass()]
 public class ProjectRepositoryTest
 {
 private TestContext testContextInstance;
 private UnitOfWork unitOfWork;
 private IProjectRepository repository;

 As you can see, I am also using a UnitOfWork private field (unitOfWork), and a TestContext private
field (testContextInstance). The testContextInstance field was added automatically by the
Visual Studio Wizard.

 The next step is to initialize these fields in the MyTestInitialize method:

 /// < summary >
 /// Use TestInitialize to run code before running each test
 /// < /summary >
 [TestInitialize()]
 public void MyTestInitialize()
 {
 this.unitOfWork = new UnitOfWork();
 this.repository = RepositoryFactory.GetRepository < IProjectRepository,
 Project > (this.unitOfWork);
 }

 The code to create the IProjectRepository interface instance should look familiar to you, since I just
covered that in the last chapter.

 Now that the initialization is taken care of, it is time to fix the unit test methods that the Visual Studio
Wizard generated.

 The FindBySegmentsAndNotCompletedTest Method
 The purpose of this test is to verify that I can query the IProjectRepository interface for all Projects
that match the given Market Segments but have not been completed.

c03.indd 62c03.indd 62 3/18/08 5:12:48 PM3/18/08 5:12:48 PM

Chapter 3: Managing Projects

63

 /// < summary >
 ///A test for FindBy(object sector, object segment, bool completed)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindBySegmentsAndNotCompletedTest()
 {
 // Create a list of Market Segments
 List < MarketSegment > segments = new List < MarketSegment > ();
 segments.Add(new MarketSegment(1, null, “test”, “test”));

 // Pass the Market Segments into the FindBy method, and
 // specify Projects that have NOT completed yet
 IList < Project > projects = this.repository.FindBy(segments, false);

 // Make sure there is one project that matches the criteria
 Assert.AreEqual(1, projects.Count);
 }

 The first thing to notice about this method is how it is decorated with the two different attributes, the
 DeploymentItem attribute and the TestMethod attribute. The DeploymentItem attribute lets the VSTS
test host know to copy the SmartCA.sdf SQL CE project file to the output directory of the unit test
project. This is important because otherwise I would not be able to connect to the database in the test.
The TestMethod attribute lets VSTS know that this is a unit test, and it will be recognized as such by the
VSTS unit testing UI.

 This test code starts out by creating a dummy MarketSegment instance and adds it to a generic List of
type MarketSegment . I then pass the list of Market Segments into the IProjectRepository ’ s
overloaded FindBy method to have an IList of type Project returned. The test occurs on the last line,
when I assert that there should be one Project returned from the IProjectRepository method. If the
assertion is true, then the test will pass. As of this point in the chapter, this test (and all others in this
class) should fail because I have not written the IProjectRepository implementation, yet.

 The FindByProjectNumberTest Method
 This method validates the ability to get a Project instance based on the Number of a Project:

 /// < summary >
 ///A test for FindBy(string projectNumber)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindByProjectNumberTest()
 {
 // The Project Number
 string projectNumber = “12345.00”;

 // Try to get the Project
 Project project = this.repository.FindBy(projectNumber);

 // Verify the Project is there and is the right one
 Assert.AreEqual(“My Project”, project.Name);
 }

c03.indd 63c03.indd 63 3/18/08 5:12:49 PM3/18/08 5:12:49 PM

Chapter 3: Managing Projects

64

 The method first starts out by initializing a Project Number string value. It then passes that value to
the IProjectRepository in order to retrieve a Project with that particular Number value. Once the
 Project instance is returned from the repository, the Project ’ s name is validated.

The FindAllMarketSegmentsTest Method
 This method tests the last method on the IProjectRepository interface, the FindAllMarketSegments
method:

 /// < summary >
 ///A test for FindAllMarketSegments()
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindAllMarketSegmentsTest()
 {
 // Get the list of all Market Segments
 IList < MarketSegment > segments =
 this.repository.FindAllMarketSegments();

 // Make sure there is at least one item in the list
 Assert.AreEqual(true, segments.Count > 0);
 }

 The code for this method is pretty straightforward; it simply calls the IProjectRepository interface to
get the list of all Market Segments and then asserts that at least one has been returned.

 The IEmployeeRepository Unit Tests
 There are only two tests necessary for the IEmployeeRepository , and those are the tests for the
 GetConstructionAdministrators method and the GetPrincipals method. I am not going to go
over the steps for creating the EmployeeRepositoryTest class; the steps are exactly the same as those
I just outlined for the IProjectRepository unit tests.

 The GetPrincipalsTest Method
 This method tests the GetPrincipals method of the IEmployeeRepository interface:

 /// < summary >
 ///A test for GetPrincipals
 /// < /summary >
 [TestMethod()]
 public void GetPrincipalsTest()
 {
 // Get the list of all Principals
 IList < Employee > principals = this.repository.GetPrincipals();

 // Make sure there is at least one item in the list
 Assert.AreEqual(true, principals.Count > 0);
 }

 This method is very similar to the FindAllMarketSegmentsTest method on the
 ProjectRepositoryTest class shown previously. It just validates that at least one Employee instance
was returned from the GetPrincipals method of the IEmployeeRepository interface.

c03.indd 64c03.indd 64 3/18/08 5:12:49 PM3/18/08 5:12:49 PM

Chapter 3: Managing Projects

65

The GetConstructionAdministratorsTest Method
 The code for this test is almost identical to the last test, only this time I am testing the
 GetConstructionAdministrators method of the IEmployeeRepository interface:

 /// < summary >
 ///A test for GetConstructionAdministrators
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void GetConstructionAdministratorsTest()
 {
 // Get the list of all Construction Administrators
 IList < Employee > administrators =
 this.repository.GetConstructionAdministrators();

 // Make sure there is at least one item in the list
 Assert.AreEqual(true, administrators.Count > 0);
 }

 This method validates that at least one Employee instance was returned from the
 GetConstructionAdministrators method.

 The Solution
 Now that the design is in place for the Project domain model, the Project Aggregate has been defined
and its boundaries have been determined, and the Repositories have been designed with their associated
tests, it is time to start the code implementation. In this section, I will be implementing these designs, as
well as implementing the ViewModel and the View for Projects.

 The Project Class
 Currently, the Project class does not have any behavior. It only contains data at the moment, but this will
change as I get further into the domain model. One of the things that should jump out at you about the
Project class is that there is no persistence code in it, no code that calls any file operations, database
operations, and the like. It is a Plain - Old CLR Object (POCO), and because of this it helps me to focus on
the domain logic of a Project rather than worrying about persistence - related things. Those types of
concerns will be left to the infrastructure layer.

 The Private Fields and Constructors
 Here are the private fields and constructors for the Project class:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Companies;
using SmartCA.Model.Employees;

namespace SmartCA.Model.Projects

(continued)

c03.indd 65c03.indd 65 3/18/08 5:12:49 PM3/18/08 5:12:49 PM

Chapter 3: Managing Projects

66

{
 public class Project : EntityBase
 {
 #region Private Fields

 private string number;
 private string name;
 private Address address;
 private Company owner;
 private Employee constructionAdministrator;
 private Employee principalInCharge;
 private DateTime? contractDate;
 private DateTime? estimatedStartDate;
 private DateTime? estimatedCompletionDate;
 private DateTime? adjustedCompletionDate;
 private DateTime? currentCompletionDate;
 private DateTime? actualCompletionDate;
 private decimal contingencyAllowanceAmount;
 private decimal testingAllowanceAmount;
 private decimal utilityAllowanceAmount;
 private decimal originalConstructionCost;
 private int totalChangeOrderDays;
 private decimal adjustedConstructionCost;
 private decimal totalChangeOrdersAmount;
 private int totalSquareFeet;
 private int percentComplete;
 private string remarks;
 private decimal aeChangeOrderAmount;
 private string contractReason;
 private string agencyApplicationNumber;
 private string agencyFileNumber;
 private MarketSegment segment;
 private List < Allowance > allowances;
 private List < Contract > contracts;

 #endregion

 #region Constructors

 public Project(string number, string name)
 : this(null, number, name)
 {
 }

 public Project(object key, string number, string name)
 : base(key)
 {
 this.number = number;
 this.name = name;
 this.address = null;
 this.owner = new Company();
 this.constructionAdministrator = null;
 this.principalInCharge = null;

(continued)

c03.indd 66c03.indd 66 3/18/08 5:12:50 PM3/18/08 5:12:50 PM

Chapter 3: Managing Projects

67

 this.contractDate = null;
 this.estimatedStartDate = null;
 this.estimatedCompletionDate = null;
 this.currentCompletionDate = null;
 this.actualCompletionDate = null;
 this.contingencyAllowanceAmount = 0;
 this.testingAllowanceAmount = 0;
 this.utilityAllowanceAmount = 0;
 this.originalConstructionCost = 0;
 this.totalChangeOrderDays = 0;
 this.adjustedConstructionCost = 0;
 this.totalChangeOrdersAmount = 0;
 this.totalSquareFeet = 0;
 this.percentComplete = 0;
 this.remarks = string.Empty;
 this.aeChangeOrderAmount = 0;
 this.contractReason = string.Empty;
 this.agencyApplicationNumber = string.Empty;
 this.agencyFileNumber = string.Empty;
 this.segment = null;
 this.allowances = new List < Allowance > ();
 this.contracts = new List < Contract > ();
 }

 #endregion

 Since the Project class is an Entity, it inherits from the EntityBase type. Again, this is not to give the
 Project class any type of infrastructure functionality from its base class, it is merely to eliminate the
duplicate code of having to decorate every Entity class with an Id property. This was mentioned before
in Chapter 2 , and it is my implementation of a Layer Supertype.

 When analyzing the constructors for the Project class, you will notice that there are two overloads, one that
requires a key value and one that does not. I used the two overloads because sometimes I may be loading
an existing Project from a data store, and other times I may be creating a new Project that does not yet
exist in the data store. When loading from the data store, I will use the key value to retrieve the Project .

 The Properties
 Currently, the Project class has several properties, which may make it a candidate to be split up into
further classes later.

The Name and Number Properties
 The first two properties, Name and Number , are actually read - only:

 public string Number
 {
 get { return this.number; }
 }

 public string Name
 {
 get { return this.name; }
 }

c03.indd 67c03.indd 67 3/18/08 5:12:50 PM3/18/08 5:12:50 PM

Chapter 3: Managing Projects

68

 This means that once a number and name have been assigned to a Project , they cannot be changed. To
change the name or number, you must delete the old Project instance and create a new one. The project
number and project name are very important parts of a Project ; many other parts of the application will
refer to these properties later. Currently, the only way to set these values of the class is through the constructor.

 Since C# 2.0, it is possible to add a private or protected set accessor to properties, but I have decided not
to do that because right now I do not need it.

The Address Property
 The next property, Address , actually represents a Value Object type.

 public Address Address
 {
 get { return this.address; }
 set { this.address = value ; }
 }

 Since address information will be used on several other objects, it was put into its own class, so I only had
to write the code for address information once. This class is a Value Object type because it has no conceptual
identity that the SmartCA domain model cares about; it is simply holding the atomic value of an address.

 Please do not confuse the term Value Object with a .NET Value type. .NET Value types are data types
such as integers and DateTime structures. Strictly speaking in .NET terms, a Value Object is still a
Reference type. In the Address example, the Address class is a Value Object in DDD terms, but in
.NET terms it is still a Reference type.

 A nice consequence of making the Address class a Value Object is that I do not have to write any code to
track its identity. Here is the code for the Address class:

using System;

namespace SmartCA.Model
{
 /// < summary >
 /// This is an immutable Value class.
 /// < /summary >
 public class Address
 {
 private string street;
 private string city;
 private string state;
 private string postalCode;

 public Address(string street, string city, string state, string postalCode)
 {
 this.street = street;
 this.city = city;
 this.state = state;
 this.postalCode = postalCode;
 }

 public string Street

c03.indd 68c03.indd 68 3/18/08 5:12:50 PM3/18/08 5:12:50 PM

Chapter 3: Managing Projects

69

 {
 get { return this.street; }
 }

 public string City
 {
 get { return this.city; }
 }

 public string State
 {
 get { return this.state; }
 }

 public string PostalCode
 {
 get { return this.postalCode; }
 }
 }
}

 The interesting thing about this class is that it is immutable. What this means is that once it is created, it
can never be changed. This is exactly how the .NET Framework ’ s System.String class behaves, also.
When I change the value of a String , or call a method on the String class to modify the String , I get
an entirely new String returned to me. According to Eric Evans, if a class meets the requirements to be
a Value Object, it should be conceptually whole (Evans, Domain - Driven Design, Tackling Complexity in the
Heart of Software , 99). In the case of the class, it is conceptually whole and cannot be changed; it can only
be copied or have new instances of it created.

 In order to make sure that the address data from the constructor is valid, I have added some validation
code to the Address class to make sure that only valid Address instances will be created:

using System;

namespace SmartCA.Model
{
 /// < summary >
 /// This is an immutable Value class.
 /// < /summary >
 public class Address
 {
 private string street;
 private string city;
 private string state;
 private string postalCode;

 public Address(string street, string city, string state, string postalCode)
 {
 this.street = street;
 this.city = city;

(continued)

c03.indd 69c03.indd 69 3/18/08 5:12:51 PM3/18/08 5:12:51 PM

Chapter 3: Managing Projects

70

 this.state = state;
 this.postalCode = postalCode;

 this.Validate();

 }

 public string Street
 {
 get { return this.street; }
 }

 public string City
 {
 get { return this.city; }
 }

 public string State
 {
 get { return this.state; }
 }

 public string PostalCode
 {
 get { return this.postalCode; }
 }

 private void Validate()
 {
 if (string.IsNullOrEmpty(this.street) ||
 string.IsNullOrEmpty(this.city) ||
 string.IsNullOrEmpty(this.state) ||
 string.IsNullOrEmpty(this.postalCode))
 {
 throw new InvalidOperationException(“Invalid address.”);
 }
 }

 }
}

 Later, when I write the ViewModel for editing Projects , I will show a strategy for how to change the
 Project ’ s Address property value from the UI.

The Owner Property
 The next property, Owner , represents a Company instance. A Company is an Entity that is also the root of
its own Aggregate. This is not a problem, as we are only referring to the Company instance (Owner), and
all information requested about the Company instance will need to go through its respective repository.
I will show how I deal with this later in the chapter when looking at the repositories for the
Aggregate Roots.

 The code for Company is very simple right now, and following the principle of YAGNI (You Ain ’ t Gonna
Need It) (Wikipedia - http://en.wikipedia.org/wiki/You_Ain ’ t_Gonna_Need_It), it only
contains the code we need for the moment.

(continued)

c03.indd 70c03.indd 70 3/18/08 5:12:51 PM3/18/08 5:12:51 PM

Chapter 3: Managing Projects

71

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.Companies
{
 public class Company : EntityBase
 {
 private string name;
 private string abbreviation;
 private Address address;

 public Company()
 : this(null)
 {
 }

 public Company(object key)
 : base(key)
 {
 }

 public string Name
 {
 get { return this.name; }
 set { this.name = value; }
 }

 public string Abbreviation
 {
 get { return this.abbreviation; }
 set { this.abbreviation = value; }
 }

 public Address HeadquartersAddress
 {
 get { return this.address; }
 set { this.address = value; }
 }
 }
}

 The main note of interest in the Company class is that it is using the immutable Address class also being
used by the Project class. This is great because we are getting immediate reuse of the Address class.

The ConstructionAdministrator and PrincipalInCharge Properties
 The ConstructionAdministrator and PrincipalInCharge properties are both instances of the
 Employee class, which is also the root of its own Aggregate.

using System;

namespace SmartCA.Model.Employees
{
 public class Employee : Person

(continued)

c03.indd 71c03.indd 71 3/18/08 5:12:51 PM3/18/08 5:12:51 PM

Chapter 3: Managing Projects

72

 {
 private string jobTitle;

 public Employee(object key)
 : this(key, string.Empty, string.Empty)
 {
 }

 public Employee(object key, string firstName, string lastName)
 : base(key, firstName, lastName)
 {
 this.jobTitle = string.Empty;
 }

 public string JobTitle
 {
 get { return this.jobTitle; }
 set { this.jobTitle = value; }
 }
 }
}

 The interesting thing to notice about the Employee class is that it inherits from the Person class. The
 Person class is mainly to share common properties for some of the classes coming up in later chapters
that are also people, such as Contacts .

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model
{
 public abstract class Person : EntityBase
 {
 private string firstName;
 private string lastName;
 private string initials;

 protected Person()
 : this(null)
 {
 }

 protected Person(object key)
 : this(key, string.Empty, string.Empty)
 {
 }

 protected Person(object key, string firstName, string lastName)
 : base(key)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 this.initials = string.Empty;
 }

(continued)

c03.indd 72c03.indd 72 3/18/08 5:12:52 PM3/18/08 5:12:52 PM

Chapter 3: Managing Projects

73

 public string FirstName
 {
 get { return this.firstName; }
 set { this.firstName = value; }
 }

 public string LastName
 {
 get { return this.lastName; }
 set { this.lastName = value; }
 }

 public string Initials
 {
 get { return this.initials; }
 set { this.initials = value; }
 }
 }
}

 The main thing to note about the Person class is that it is abstract, that is, it cannot be created directly.
I really just wanted this class to reuse some of the property code, but who knows, later on having it as an
abstract class might turn out to be useful in other ways via polymorphism.

The Segment Property
 The next property in the Project class, Segment , represents what market segment the Project is in:

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.Projects
{
 public class MarketSegment : EntityBase
 {
 private MarketSector parentSector;
 private string name;
 private string code;

 public MarketSegment(MarketSector parentSector, string name, string code)
 : this(null, parentSector, name, code)
 {
 }

 public MarketSegment(object key, MarketSector parentSector, string name,
 string code) : base(key)
 {
 this.parentSector = parentSector;
 this.name = name;
 this.code = code;
 }

 public string Name

(continued)

c03.indd 73c03.indd 73 3/18/08 5:12:52 PM3/18/08 5:12:52 PM

Chapter 3: Managing Projects

74

 {
 get { return this.name; }
 set { this.name = value; }
 }

 public string Code
 {
 get { return this.code; }
 set { this.code = value; }
 }

 public MarketSector ParentSector
 {
 get { return this.parentSector; }
 }
 }
}

 The MarketSegment class holds a reference to the market sector in which it belongs, and this
relationship is represented by the ParentSector property.

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.Projects
{
 public class MarketSector : EntityBase
 {
 private string name;
 private List < MarketSegment > segments;

 public MarketSector(string name)
 : this(null, name)
 {
 this.name = name;
 }

 public MarketSector(object key, string name)
 : base(key)
 {
 this.name = name;
 this.segments = new List < MarketSegment > ();
 }

 public string Name
 {
 get { return this.name; }
 set { this.name = value; }
 }

(continued)

c03.indd 74c03.indd 74 3/18/08 5:12:52 PM3/18/08 5:12:52 PM

Chapter 3: Managing Projects

75

 public IList < MarketSegment > Segments
 {
 get { return this.segments; }
 }
 }
}

 As you can see in the code for the MarketSector class, there is a bidirectional relationship between
 MarketSegment and MarketSector . MarketSector can contain zero or more MarketSegment
instances, and MarketSegment refers to the appropriate market sector via its MarketSector property.

The ContingencyAllowanceAmount, TestingAllowanceAmount,
and UtilityAllowanceAmount Properties

 You may notice in the Project class that there are properties for ContingencyAllowanceAmount ,
 TestingAllowanceAmount , and UtilityAllowanceAmount , and also one called Allowances .
The first three are of type System.Decimal (for money), and the last one, Allowances , is an
 IList < Allowance > , which is just a list of name - value pairs of allowance names and allowance
amounts. This gives the Construction Administrator the flexibility to have other allowance amounts
without having to have them be hard - coded into the Project class.

using System;

namespace SmartCA.Model.Projects
{
 public class Allowance
 {
 private string title;
 private decimal amount;

 public Allowance(string title, decimal amount)
 {
 this.title = title;
 this.amount = amount;
 }

 public string Title
 {
 get { return this.title; }
 }

 public decimal Amount
 {
 get { return this.amount; }
 }
 }
}

 Hopefully, from the code above you can ascertain that the Allowance class is a Value class. Because of
its read - only properties and constructor, it has been made immutable. Just as with the other Value
classes, the only way to change its value is to create another instance of the class.

c03.indd 75c03.indd 75 3/18/08 5:12:53 PM3/18/08 5:12:53 PM

Chapter 3: Managing Projects

76

The Contracts Property
 The Contracts property represents a list of Contract types. The contract represents an agreement
between the main or general contractor, in this case Smart Design, and another contractor:

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Companies;

namespace SmartCA.Model.Projects
{
 public class Contract : EntityBase
 {
 private Company contractor;
 private string scopeOfWork;
 private string bidPackageNumber;
 private DateTime? contractDate;
 private DateTime? noticeToProceedDate;
 private decimal contractAmount;

 public Contract()
 : this(null)
 {
 }

 public Contract(object key)
 : base(key)
 {
 this.contractor = new Company();
 this.scopeOfWork = string.Empty;
 this.bidPackageNumber = string.Empty;
 this.contractAmount = 0;
 }

 public Company Contractor
 {
 get { return this.contractor; }
 set { this.contractor = value; }
 }

 public string ScopeOfWork
 {
 get { return this.scopeOfWork; }
 set { this.scopeOfWork = value; }
 }

 public string BidPackageNumber

c03.indd 76c03.indd 76 3/18/08 5:12:53 PM3/18/08 5:12:53 PM

Chapter 3: Managing Projects

77

 {
 get { return this.bidPackageNumber; }
 set { this.bidPackageNumber = value; }
 }

 public DateTime? ContractDate
 {
 get { return this.contractDate; }
 set { this.contractDate = value; }
 }

 public DateTime? NoticeToProceedDate
 {
 get { return this.noticeToProceedDate; }
 set { this.noticeToProceedDate = value; }
 }

 public decimal ContractAmount
 {
 get { return this.contractAmount; }
 set { this.contractAmount = value; }
 }
 }
}

 As you can see, the Contract class contains the scope of work to be performed, how much the work will
cost, when the contract is in effect, and when the contractor can start the work. The BidPackageNumber
property allows the Contract to be tied back to the original bid for the work. Most important, the class
contains a Contractor property, which represents the instance of the Company doing the work. More
will be covered on the Company class in the next chapter.

 The Repository Implementations
 The next code to start writing is for the repositories. In this section I will be writing the code for the
Project and Employee repositories.

 The Project Repository
 In order to implement the concrete ProjectRepository class, I just need to inherit from
 SqlCeRepositoryBase < T > , and also implement the IProjectRepository interface that I showed
earlier in the Design section:

namespace SmartCA.Infrastructure.Repositories
{
 public class ProjectRepository : SqlCeRepositoryBase < Project > ,
 IProjectRepository
 {
...

c03.indd 77c03.indd 77 3/18/08 5:12:53 PM3/18/08 5:12:53 PM

Chapter 3: Managing Projects

78

 Refactoring the FindAll and FindBy Methods
 During the process of writing the code for the ProjectRepository class and testing the Repository
Framework, I noticed a nice refactoring I could do by putting the FindAll method inside of the
 IRepository interface:

using System;
using SmartCA.Infrastructure.DomainBase;
using System.Collections.Generic;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public interface IRepository < T > where T : EntityBase
 {
 T FindBy(object key);

 IList < T > FindAll();

 void Add(T item);
 T this[object key] { get; set; }
 void Remove(T item);
 }
}

 To implement the FindAll method, I put in an abstract method in the RepositoryBase < T > class and
then did an override of the method in the SqlCeRepositoryBase < T > class. Here is the signature in
 RepositoryBase < T > :

public abstract IList < T > FindAll();

 Here is the implementation in the SqlCeRepositoryBase < T > class:

 public override IList < T > FindAll()
 {
 StringBuilder builder = this.GetBaseQueryBuilder();
 builder.Append(“;”) ;
 return this.BuildEntitiesFromSql(builder.ToString());
 }

 The baseQuery variable is a private string variable in the SqlCeRepositoryBase < T > class that I have
added. It gets set by an abstract Template Method, GetBaseQuery() , which returns a string:

protected abstract string GetBaseQuery();

 This allows all of the derived SqlCeRepositoryBase < T > classes to define their own base queries for
their respective Aggregates. The GetBaseQuery() method is called from the constructor of
 SqlCeRepositoryBase < T > :

 protected SqlCeRepositoryBase(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 this.database = DatabaseFactory.CreateDatabase();
 this.entityFactory = EntityFactoryBuilder.BuildFactory < T > ();

c03.indd 78c03.indd 78 3/18/08 5:12:54 PM3/18/08 5:12:54 PM

Chapter 3: Managing Projects

79

 this.childCallbacks = new Dictionary < string, AppendChildData > ();
 this.BuildChildCallbacks();

 this.baseQuery = this.GetBaseQuery();

 }

 I also noticed another refactoring opportunity, and that was to change the FindBy method in
 SqlCeRepositoryBase < T > from abstract to an implemented public method. Here was the old signature
for the method in the SqlCeRepositoryBase < T > class:

public abstract T FindBy(object key);

 Here is the new implementation of the method in the SqlCeRepositoryBase < T > class:

 public override T FindBy(object key)
 {
 StringBuilder builder = this.GetBaseQueryBuilder();
 builder.Append(this.BuildBaseWhereClause(key));
 return this.BuildEntityFromSql(builder.ToString());
 }

 The BuildBaseWhereClause method is a private method in the SqlCeRepositoryBase < T > class:

 protected virtual string BuildBaseWhereClause(object key)
 {
 return string.Format(this.baseWhereClause, key);
 }

 This method uses the private string variable, baseWhereClause , in the SqlCeRepositoryBase < T >
class to substitute in a key value for the Aggregate ’ s base query. It is set by another abstract Template
Method, GetBaseWhereClause() , which returns a string, just like GetBaseQuery() :

protected abstract string GetBaseWhereClause();

 This also allows all of the derived SqlCeRepositoryBase < T > classes to define their own where clauses
for their respective Aggregate queries. The GetBaseWhereClause() method is also called from the
constructor of SqlCeRepositoryBase < T > :

 protected SqlCeRepositoryBase(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 this.database = DatabaseFactory.CreateDatabase();
 this.entityFactory = EntityFactoryBuilder.BuildFactory < T > ();
 this.childCallbacks = new Dictionary < string, AppendChildData > ();
 this.BuildChildCallbacks();
 this.baseQuery = this.GetBaseQuery();

 this.baseWhereClause = this.GetBaseWhereClause();

 }

 The end result of this refactoring is that now I do not have to implement the FindAll and FindBy
methods in any of my concrete repositories, it is already done for me by the SqlCeRepositoryBase < T >
class. This could save quite a bit of coding and testing in the long run.

c03.indd 79c03.indd 79 3/18/08 5:12:54 PM3/18/08 5:12:54 PM

Chapter 3: Managing Projects

80

The Organization of the ProjectRepository Class
 Before going any further into the implementation of the ProjectRepository class, I wanted to take a
moment to show you how I have it organized. I have divided the class into several collapsible regions
(via the #region and #endregion keywords), as shown in Figure 3.8 .

Figure 3.8: Repository code organization.

 This type of code organization helps me quite a bit when I need to refactor code or just get to something
quickly in the class.

The Constructors
 There are two public constructors for the ProjectRepository class, a default constructor, and one that
takes an IUnitOfWork instance (defined earlier in Chapter 2).

#region Public Constructors

 public ProjectRepository()
 : this(null)
 {
 }

 public ProjectRepository(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 }

 #endregion

c03.indd 80c03.indd 80 3/18/08 5:12:54 PM3/18/08 5:12:54 PM

Chapter 3: Managing Projects

81

 These are very simple, and just pass on their data to the SqlCeRepositoryBase < T > constructor.

The IProjectRepository Implementation
 Because of the infrastructure I have already built, the actual implementation of methods for almost all of
the Repository interfaces are fairly simple. The usual pattern they follow is to build a SQL string, and
then have the base class execute the SQL and return instances of Entity object(s) to the derived
 Repository . The IProjectRepository interface dictates that I need to implement three methods,
FindBy(IList < MarketSegment > segments, bool completed) , FindBy(string projectNumber) ,
and FindAllMarketSegments() . The first one is the most complex of the three:

 public IList < Project > FindBy(IList < MarketSegment > segments, bool completed)
 {
 StringBuilder builder = this.GetBaseQueryBuilder();
 if (completed)
 {
 builder.Append(“ WHERE p.ActualCompletionDate IS NOT NULL AND
p.PercentComplete > 99”);
 }
 else
 {
 builder.Append(“ WHERE p.ActualCompletionDate IS NULL AND
p.PercentComplete < 100”) ;
 }
 if (segments ! = null || segments.Count > 0)
 {
 builder.Append(string.Format(“ AND p.MarketSegmentID IN ({0})” ,
 DataHelper.EntityListToDelimited(segments).ToString()));
 }
 builder.Append(“;”);
 return this.BuildEntitiesFromSql(builder.ToString());
 }

 This method first filters the list of Projects based on whether the Project has been completed. It then
builds another filter based on what MarketSegment instances were passed in to it. It uses the
 DataHelper class to help transform the IList < MarketSegment > object into a comma - delimited SQL IN
clause via the EntityListToDelimited method. Finally, it passes the SQL it has built up to its base
class, SqlCeRepositoryBase < T > for processing.

 The next method, FindBy(string projectNumber) , is the simplest, thanks to the base class
functionality in SqlCeRepository < T > :

 public Project FindBy(string projectNumber)
 {
 StringBuilder builder = this.GetBaseQueryBuilder();
 return this.BuildEntityFromSql(builder.Append(string.Format(“ WHERE
p.ProjectNumber = N’{0}’;”,
 projectNumber)).ToString());
 }

 It does not have any logic in it except to build the SQL WHERE clause for the Project Number. It then
follows the normal pattern of sending the SQL statement to the base class and getting an Entity back.

c03.indd 81c03.indd 81 3/18/08 5:12:55 PM3/18/08 5:12:55 PM

Chapter 3: Managing Projects

82

 The last IProjectRepository method to look at is the FindAllMarketSegments() method. I was
trying to decide whether MarketSegment objects belonged in their own repository, but right now they
are not used outside of the Project Aggregate, so I have decided to leave them in the
 ProjectRepository .

 public IList < MarketSegment > FindAllMarketSegments()
 {
 List < MarketSegment > segments = new List < MarketSegment > ();
 string query = “ SELECT * FROM MarketSegment mst INNER JOIN MarketSector
msr ON mst.MarketSectorID = msr.MarketSectorID;”;
 IEntityFactory < MarketSegment > factory =
EntityFactoryBuilder.BuildFactory < MarketSegment > ();
 using (IDataReader reader = this.ExecuteReader(query))
 {
 while (reader.Read())
 {
 segments.Add(factory.BuildEntity(reader));
 }
 }
 return segments;
 }

 This method is a little bit different in that it must build its own full SQL statement, use its own
 IEntityFactory < T > instance, IEntityFactory < MarketSegment > , and builds the list of
 MarketSegment instances “ by hand. ” The IEntityFactory < MarketSegment > instance created by the
 EntityFactoryBuilder is actually a MarketSegmentFactory instance. In Chapter 2 , I went over the
Entity Factory Framework, and now you will see it actually put to use.

using System;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure.EntityFactoryFramework;
using System.Data;

namespace SmartCA.Infrastructure.Repositories
{
 internal class MarketSegmentFactory : IEntityFactory < MarketSegment >
 {
 #region Field Names

 internal static class FieldNames
 {
 public const string MarketSegmentId = “MarketSegmentID”;
 public const string MarketSectorId = “MarketSectorID”;
 public const string Code = “Code”;
 public const string MarketSegmentName = “MarketSegmentName”;
 public const string MarketSectorName = “MarketSectorName”;
 }

 #endregion

 #region IEntityFactory < MarketSegment > Members

 public MarketSegment BuildEntity(IDataReader reader)

c03.indd 82c03.indd 82 3/18/08 5:12:55 PM3/18/08 5:12:55 PM

Chapter 3: Managing Projects

83

 {
 return new MarketSegment(reader[FieldNames.MarketSegmentId],
 new
MarketSector(reader[FieldNames.MarketSectorId],
reader[FieldNames.MarketSectorName].ToString()),
reader[FieldNames.MarketSegmentName].ToString(),
 reader[FieldNames.Code].ToString());
 }

 #endregion
 }
}

 This class uses an internal static class, FieldNames , to hold the field names used in the mapping from
database table field names to the class property names. The interface method BuildEntity uses the
 IDataReader instance passed to it along with the FieldNames static class to build an instance of a
 MarketSegment class. That is all there is to it, very nice and simple to maintain. The rest of the objects
that get build by the repositories will all follow this same pattern.

The BuildChildCallbacks Method
 Now that I have finished going over the IProjectRepository implementation, it is time to go back to
how the Project class actually gets built. If you recall, this functionality was moved up into the base
class, SqlCeRepositoryBase < T > , but it does make use of the Template Method pattern, and
 BuildChildCallbacks is one of those abstract template methods that the ProjectRepository must
implement.

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(ProjectFactory.FieldNames.OwnerCompanyId,
 this.AppendOwner);

 this.ChildCallbacks.Add(
 ProjectFactory.FieldNames.ConstructionAdministratorEmployeeId,
 this.AppendConstructionAdministrator);

 this.ChildCallbacks.Add(ProjectFactory.FieldNames.PrincipalEmployeeId,
 this.AppendPrincipal);

 this.ChildCallbacks.Add(“allowances”,
 delegate(Project project, object childKeyName)
 {
 this.AppendProjectAllowances(project);
 });

 }

 #endregion

c03.indd 83c03.indd 83 3/18/08 5:12:55 PM3/18/08 5:12:55 PM

Chapter 3: Managing Projects

84

 To refresh your memory from Chapter 2 , the ChildCallbacks property of SqlCeRepositoryBase < T >
is a dictionary of type Dictionary < string, AppendChildData > , with AppendChildData being a
delegate type with the following signature:

 #region AppendChildData Delegate

 /// < summary >
 /// The delegate signature required for callback methods
 /// < /summary >
 /// < param name=”entityAggregate” > < /param >
 /// < param name=”childEntityKey” > < /param >
 public delegate void AppendChildData(T entityAggregate,
 object childEntityKeyValue);

 #endregion

 This takes in the entity Aggregate type, in this case a Project instance, and an entity key value, in this
case the value of the primary key of the child entity ’ s corresponding table. In the first example of
 AppendOwner , this would be the field name on the Project table representing the Owner .

 The code in the BuildChildCallbacks method just adds entries to the ChildCallbacks dictionary,
with the appropriate field names and delegate methods. The last entry is the most interesting, because the
 AppendProjectAllowances method has no parameters, so an anonymous delegate is used to make it fit:

 this.ChildCallbacks.Add(“allowances”,
 delegate(Project project, object childKeyName)
 {
 this.AppendProjectAllowances(project);
 });

 Since it has no parameters, it does not need a field name on the Project table either; it will use the Id
property of the Project class (I will show this method shortly). I added the “ allowances ” string value in
order to give it a valid key value in the ChildCallbacks dictionary.

The AppendOwner Callback Method

 The first entry made in the ChildCallbacks dictionary was for the AppendOwner method. This method
uses the Company Repository to find the matching Company that represents the Owner of the Project:

 private void AppendOwner(Project project, object ownerCompanyId)
 {
 ICompanyRepository repository
 = RepositoryFactory.GetRepository < ICompanyRepository, Company > ();
 project.Owner = repository.FindBy(ownerCompanyId);
 }

 As you can see, it follows the same pattern I have been using and is actually using the IRepository < T >
interface ’ s FindBy(object key) method implemented in SqlCeRepositoryBase < T > .

c03.indd 84c03.indd 84 3/18/08 5:12:56 PM3/18/08 5:12:56 PM

Chapter 3: Managing Projects

85

The AppendConstructionAdministrator and AppendPrincipal Callback Methods

 These methods both need to get and set an Employee instance value on their respective properties in the
 Project class:

 private void AppendConstructionAdministrator(Project project,
 object constructionAdministratorId)
 {
 project.ConstructionAdministrator =
 this.GetEmployee(constructionAdministratorId);
 }

 private void AppendPrincipal(Project project, object principalId)
 {
 project.PrincipalInCharge = this.GetEmployee(principalId);
 }

 Following the “ Don ’ t Repeat Yourself ” (DRY) principle, I created a GetEmployee(object
employeeId) method that the two methods could share:

 private Employee GetEmployee(object employeeId)
 {
 IEmployeeRepository repository
 = RepositoryFactory.GetRepository < IEmployeeRepository, Employee > ();
 return repository.FindBy(employeeId);
 }

 This method is very similar to the AppendOwner method in that it also uses the IRepository < T >
interface ’ s FindBy(object key) method implemented in SqlCeRepositoryBase < T > in order to build
the Employee instance.

 The AppendProjectAllowances Callback Method

 As mentioned earlier, the AppendProjectAllowances method is a little bit different from the previous
three callback methods:

 private void AppendProjectAllowances(Project project)
 {
 string sql =
 string.Format(“SELECT * FROM ProjectAllowance WHERE ProjectID =
‘{0}’”, project.Key);
 using (IDataReader reader = this.ExecuteReader(sql))
 {
 while (reader.Read())
 {
 project.Allowances.Add(ProjectFactory.BuildAllowance(reader));
 }
 }
 }

 The Project Allowance data does not belong to another repository; it is part of the ProjectRepository .
Therefore, since it is not covered by the base query for the ProjectRepository , the Allowance
instances must be built by hand, very similarly to the FindAllMarketSegments method seen earlier in

c03.indd 85c03.indd 85 3/18/08 5:12:56 PM3/18/08 5:12:56 PM

Chapter 3: Managing Projects

86

this chapter. In fact, this method is almost identical except for the SQL statement and the
 ProjectFactory method used to build the Entity. In this case the method is using a static method on
the ProjectFactory class to build the Entity.

 public static Allowance BuildAllowance(IDataReader reader)
 {
 return new Allowance(reader[FieldNames.AllowanceTitle].ToString(),
 DataHelper.GetDecimal(reader[FieldNames.AllowanceAmount]));
 }

 As you can see in the code for the method, it is a very simple mapping. I had to make it a static method
in the ProjectFactory class because the Allowance class is not an Entity, it is a Value class; therefore,
it cannot use the Entity Factory Framework.

The GetBaseQuery Method
 The next abstract Template Method that the SqlCeRepositoryBase < T > calls is the GetBaseQuery
method. Here is the ProjectRepository class ’ s override of the abstract method:

 #region GetBaseQuery

 protected override string GetBaseQuery()
 {
 return “SELECT * FROM Project p INNER JOIN MarketSegment ms ON
p.MarketSegmentID = ms.MarketSegmentID”;
 }

 #endregion

 This simply returns the SQL statement for the Project Aggregate. By abstracting the base query out, the
 SqlCeRepositryBase < T > class is able to pull in the two “ FindBy ” methods, thus eliminating repetitive
code in all of the derived repositories.

The GetBaseWhereClause Method
 The GetBaseWhereClause method is very similar to the GetBaseQuery method just shown, only this
time the string returned is just a formatted SQL WHERE clause for the Project Aggregate with a
placeholder for the ProjectID field.

 #region GetBaseWhereClause

 protected override string GetBaseWhereClause()
 {
 return “ WHERE ProjectID = ‘{0}’;”;
 }

 #endregion

 The SqlCeRepositoryBase < T > class handles filling in the ProjectID placeholder at runtime.

c03.indd 86c03.indd 86 3/18/08 5:12:57 PM3/18/08 5:12:57 PM

Chapter 3: Managing Projects

87

The Unit of Work Implementation
 In order to implement the Repository Framework ’ s Unit of Work defined in Chapter 2 , I only need to
override three methods, PersistNewItem(Project item) , PersistUpdatedItem(Project item) ,
and PersistDeletedItem(Project item) . I am not going to show all of the code for
 PersistNewItem , since it is rather lengthy, but here is an abbreviated version of it:

 protected override void PersistNewItem(Project item)
 {
 StringBuilder builder = new StringBuilder(100) ;
 builder.Append(string.Format(“INSERT INTO Project
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},
{18},{19},{20},{21},{22},{23},{24},{25},{26}) “ ,
 ProjectFactory.FieldNames.ProjectId,
 ProjectFactory.FieldNames.ProjectNumber,
 ProjectFactory.FieldNames.ProjectName,

 … … … … … … … … … … … … … … … … … …

 DataHelper.GetSqlValue(item.AgencyFileNumber),
 item.Segment.Key));

 this.Database.ExecuteNonQuery(this.Database.GetSqlStringCommand(builder
.ToString()));
 }

 The code is building up an insert statement composed of the values from the Project instance and then
executing the query using the Microsoft Enterprise Library ’ s Database object.

 PersistUpdatedItem is very similar, only it does an update to the table:

protected override void PersistUpdatedItem(Project item)
 {
 StringBuilder builder = new StringBuilder(100) ;
 builder.Append(“UPDATE Project SET “) ;

 builder.Append(string.Format(“{0} = {1}” ,
 ProjectFactory.FieldNames.ConstructionAdministratorEmployeeId,
 item.ConstructionAdministrator.Key));

 builder.Append(string.Format(“,{0} = {1}” ,
 ProjectFactory.FieldNames.PrincipalEmployeeId,
 item.PrincipalInCharge.Key));
 builder.Append(string.Format(“,{0} = {1}” ,
 ProjectFactory.FieldNames.AgencyFileNumber,
 DataHelper.GetSqlValue(item.AgencyFileNumber)));

 builder.Append(string.Format(“,{0} = {1}” ,
 ProjectFactory.FieldNames.MarketSegmentId,
 item.Segment.Key));

(continued)

c03.indd 87c03.indd 87 3/18/08 5:12:57 PM3/18/08 5:12:57 PM

Chapter 3: Managing Projects

88

 builder.Append(“ “) ;
 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(this.Database.GetSqlStringCommand(builder
.ToString()));
 }

 The last method to implement, PersistDeletedItem , follows the same pattern:

 protected override void PersistDeletedItem(Project item)
 {
 string query = string.Format(“DELETE FROM ProjectAllowance {0}” ,
 this.BuildBaseWhereClause(item.Key));
 this.Database.ExecuteNonQuery(this.Database.GetSqlStringCommand(query));
 query = string.Format(“DELETE FROM Project {0}” ,
 this.BuildBaseWhereClause(item.Key));
 this.Database.ExecuteNonQuery(this.Database.GetSqlStringCommand(query));
 }

 It is a little different from the other two persistence methods in that it actually has to execute two SQL
statements, one to delete rows from the ProjectAllowance table and then one for deleting the single
row from the Project table. Notice, also, how the last two methods make use of the
 SqlCeRepositoryBase < T > class ’ s BuildBaseWhereClause method. The refactoring of code into
 SqlCeRepositoryBase < T > keeps paying off.

 The Employee Repository
 Similar to the ProjectRepository class, in order to implement the concrete EmployeeRepository
class I just need to inherit from SqlCeRepositoryBase < T > , and also to implement the
 IEmployeeRepository interface shown earlier in the Design section of this chapter:

namespace SmartCA.Infrastructure.Repositories
{
 public class EmployeeRepository : SqlCeRepositoryBase < Employee > ,
 IEmployeeRepository
 {
...

 The Constructors
 The public constructors for the EmployeeRepository class are exactly the same as those in the
 ProjectRepository class:

 #region Public Constructors

 public EmployeeRepository()
 : this(null)
 {
 }

 public EmployeeRepository(IUnitOfWork unitOfWork)
 : base(unitOfWork)

(continued)

c03.indd 88c03.indd 88 3/18/08 5:12:57 PM3/18/08 5:12:57 PM

Chapter 3: Managing Projects

89

 {
 }

 #endregion

 The IEmployeeRepository Implementation
 The IEmployeeRepository interface dictates that I need to implement two methods,
 GetConstructionAdministrators() and GetPrincipals() . Both of these methods are fairly simple,
and both return a type of IList < Employee > .

 #region IEmployeeRepository Members

 public IList < Employee > GetConstructionAdministrators()
 {
 //Construction Administrator
 StringBuilder builder = this.GetBaseQueryBuilder ();
 return this.BuildEntitiesFromSql(builder.Append
 (“ WHERE JobTitle LIKE ‘%Construction Administrator%’;”)
.ToString());
 }

 public IList < Employee > GetPrincipals()
 {
 //Principal-in-Charge
 StringBuilder builder = this.GetBaseQueryBuilder();
 return this.BuildEntitiesFromSql(builder.Append
 (“ WHERE JobTitle LIKE ‘%Principal%’;”).ToString());
 }

 #endregion

 I am not going to worry about the string matching going on in the SQL WHERE clauses of these two
methods because that is not my concern right now. This can always be refactored later to get rid of the
string references and made to use a more normalized table structure with foreign key relationships.

 The GetBaseQuery Method
 Here is the EmployeeRepository class ’ s override of the GetBaseQuery abstract method:

 #region GetBaseQuery

 protected override string GetBaseQuery()
 {
 return “SELECT * FROM Employee”;
 }

 #endregion

 This just follows the same Template Method pattern I have shown all along.

c03.indd 89c03.indd 89 3/18/08 5:12:58 PM3/18/08 5:12:58 PM

Chapter 3: Managing Projects

90

The GetBaseWhereClause Method
 Again, I am just following the Template Method pattern for implementing the GetBaseWhereClause
method:

 #region GetBaseWhereClause

 protected override string GetBaseWhereClause()
 {
 return “ WHERE EmployeeID = {0};”;
 }

 #endregion

 The Service Class Implementations
 The only Service classes I have implemented up to this point are all Service classes that live in the domain
model layer and are acting as facades to their respective Repository interfaces. These Service classes are
intended to be called directly from the ViewModel classes; the idea is that they will greatly simplify access
to the domain model operations. In this section, I will cover the ProjectService and the
 EmployeeService classes.

 The ProjectService Class
 The ProjectService class is responsible for retrieving and saving Project instances, as well as retrieving
 MarketSegment instances:

using System;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Infrastructure;

namespace SmartCA.Model.Projects
{
 public static class ProjectService
 {
 private static IProjectRepository repository;
 private static IUnitOfWork unitOfWork;

 static ProjectService()
 {
 ProjectService.unitOfWork = new UnitOfWork();
 ProjectService.repository =
 RepositoryFactory.GetRepository < IProjectRepository,
 Project > (ProjectService.unitOfWork);
 }

 public static IList < Project > GetAllProjects()
 {
 return ProjectService.repository.FindAll();
 }

c03.indd 90c03.indd 90 3/18/08 5:12:58 PM3/18/08 5:12:58 PM

Chapter 3: Managing Projects

91

 public static IList < MarketSegment > GetMarketSegments()
 {
 return ProjectService.repository.FindAllMarketSegments();
 }

 public static void SaveProject(Project project)
 {
 ProjectService.repository[project.Key] = project;
 ProjectService.unitOfWork.Commit();
 }
 }
}

 The first thing to notice about this class is that it is a static class with all static methods. Again, the idea is
to make it very easy to use. The next interesting part of the class is its static constructor. This is where the
instance to the IProjectRepository is created via the RepositoryFactory . Also note that when the
 IProjectRepository is created it is injected with a UnitOfWork instance. This is necessary since I will
be saving Project instances in this class and want that operation to be wrapped in a transaction.

 The rest of the class is just acting as a fa ç ade in front of the IProjectRepository instance. The next
interesting method is the SaveProject method. Notice how the collection - like functionality of the
 IProjectRepository instance is utilized by calling the indexer (see Chapter 2 for more information).
What ’ s nice about having the indexer is that the RepositoryBase < T > class will figure out whether it is a
new Project or an existing one. Also, after updating the IProjectRepository with the newly
updated Project instance, the Commit method is called on the UnitOfWork instance to commit the
transaction.

 The EmployeeService Class
 Currently, the only thing that the EmployeeService class does is to wrap the IEmployeeRepository
calls for the GetConstructionAdministrators and GetPrincipals methods.

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Employees
{
 public static class EmployeeService
 {
 private static IEmployeeRepository repository;
 private static IUnitOfWork unitOfWork;

 static EmployeeService()
 {
 EmployeeService.unitOfWork = new UnitOfWork();
 EmployeeService.repository
 = RepositoryFactory.GetRepository < IEmployeeRepository,
 Employee > (EmployeeService.unitOfWork);
 }

 public static IList < Employee > GetConstructionAdministrators()

(continued)

c03.indd 91c03.indd 91 3/18/08 5:12:58 PM3/18/08 5:12:58 PM

Chapter 3: Managing Projects

92

 {
 return EmployeeService.repository.GetConstructionAdministrators();
 }

 public static IList < Employee > GetPrincipals()
 {
 return EmployeeService.repository.GetPrincipals();
 }
 }
}

 This code should look very similar to the ProjectService class. It literally is acting like a fa ç ade for
now, but there is plenty of room for it to grow later. Right now, we do not need any additional
functionality in it yet.

 The Project Information ViewModel Implementation
 As I showed in Chapter 2 , with the SelectProjectViewModel example, the ViewModel class is used
for adapting the domain model to the UI, or View.

 The ViewModel Class Revisited
 Since writing Chapter 2 , I went in and did some refactoring on this concept and made an abstract
 ViewModel class for all of the new ViewModel classes to inherit from.

using System;
using System.ComponentModel;

namespace SmartCA.Infrastructure.UI
{
 public abstract class ViewModel : INotifyPropertyChanged
 {
 private IView view;
 private DelegateCommand cancelCommand;
 private ObjectState currentObjectState;
 private const string currentObjectStatePropertyName = “CurrentObjectState”;

 protected ViewModel()
 : this(null)
 {
 }

 protected ViewModel(IView view)
 {
 this.view = view;
 this.cancelCommand = new DelegateCommand(this.CancelCommandHandler);
 this.currentObjectState = ObjectState.Existing;
 }

 public enum ObjectState

(continued)

c03.indd 92c03.indd 92 3/18/08 5:12:59 PM3/18/08 5:12:59 PM

Chapter 3: Managing Projects

93

 {
 New,
 Existing,
 Deleted
 }

 public DelegateCommand CancelCommand
 {
 get { return this.cancelCommand; }
 }

 public ObjectState CurrentObjectState
 {
 get { return this.currentObjectState; }
 set
 {
 if (this.currentObjectState != value)
 {
 this.currentObjectState = value;
 this.OnPropertyChanged(
 ViewModel.currentObjectStatePropertyName);
 }
 }
 }

 protected virtual void OnPropertyChanged(string propertyName)
 {
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 protected virtual void CancelCommandHandler(object sender, EventArgs e)
 {
 this.CloseView();
 }

 protected void CloseView()
 {
 if (this.view != null)
 {
 this.view.Close();
 }
 }

 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
 }
}

c03.indd 93c03.indd 93 3/18/08 5:12:59 PM3/18/08 5:12:59 PM

Chapter 3: Managing Projects

94

 This class implements the INotifyPropertyChanged interface, which tells the WPF UI when certain
object properties have changed so that the UI will automatically be updated. Again, this is all part of
adapting the domain model to the UI. It also contains properties for a CancelCommand and an
 ObjectState property, so the View can know whether its domain object is new, deleted, or updated. It
can then act appropriately based on those states. I will show an example of this with the
 ProjectInformationView a little bit later.

 The constructor for the ViewModel class takes care of getting a reference to the passed in IView instance,
as well as wiring up the CancelCommand ’ s DelegateCommand to the CancelCommandHandler method.
This class is very simple, yet it gives me a lot of necessary functionality that I need in all of my
 ViewModel classes.

 The ProjectInformationViewModel Class
 Now, I can create my ProjectInformationViewModel class and inherit from the new ViewModel
abstract class:

using System;
using SmartCA.Presentation.Views;
using SmartCA.Model.Projects;
using SmartCA.Application;
using System.Windows.Data;
using SmartCA.Infrastructure.UI;
using System.ComponentModel;
using SmartCA.Model.Employees;
using SmartCA.Model.Companies;

namespace SmartCA.Presentation.ViewModels
{
 public class ProjectInformationViewModel : ViewModel
 {
 private static class Constants
 {
 public const string CurrentProjectPropertyName = “CurrentProject”;
 public const string ProjectAddressPropertyName = “ProjectAddress”;
 public const string OwnerHeadquartersAddressPropertyName =
 “ProjectOwnerHeadquartersAddress”;
 }

 private Project currentProject;
 private string newProjectNumber;
 private string newProjectName;
 private MutableAddress projectAddress;
 private MutableAddress projectOwnerHeadquartersAddress;
 private CollectionView owners;
 private CollectionView marketSegments;
 private CollectionView constructionAdministrators;
 private CollectionView principals;
 private DelegateCommand saveCommand;
 private DelegateCommand newCommand;

 public ProjectInformationViewModel()
 : this(null)

c03.indd 94c03.indd 94 3/18/08 5:12:59 PM3/18/08 5:12:59 PM

Chapter 3: Managing Projects

95

 {
 }

 public ProjectInformationViewModel(IView view)
 : base(view)
 {
 this.currentProject = UserSession.CurrentProject;
 this.newProjectNumber = string.Empty;
 this.newProjectName = string.Empty;

 this.projectAddress = new MutableAddress
 {
 Street = this.currentProject.Address.Street,
 City = this.currentProject.Address.City,
 State = this.currentProject.Address.State,
 PostalCode = this.currentProject.Address.PostalCode
 };

 this.projectOwnerHeadquartersAddress = new MutableAddress
 {
 Street = this.currentProject.Owner.HeadquartersAddress.Street,
 City = this.currentProject.Owner.HeadquartersAddress.City,
 State = this.currentProject.Owner.HeadquartersAddress.State,
 PostalCode =
 this.currentProject.Owner.HeadquartersAddress.PostalCode
 };

 this.CurrentObjectState =
 (this.currentProject != null ?
 ObjectState.Existing : ObjectState.New);

 this.owners = new CollectionView(CompanyService.GetOwners());

 this.marketSegments =
 new CollectionView(ProjectService.GetMarketSegments());

 this.constructionAdministrators =
 new CollectionView(
 EmployeeService.GetConstructionAdministrators());

 this.principals = new CollectionView(EmployeeService.GetPrincipals());
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 }

 public Project CurrentProject
 {
 get { return this.currentProject; }
 }

 public string NewProjectNumber
 {
 get { return this.newProjectNumber; }
 set

(continued)

c03.indd 95c03.indd 95 3/18/08 5:13:00 PM3/18/08 5:13:00 PM

Chapter 3: Managing Projects

96

 {
 if (this.newProjectNumber != value)
 {
 this.newProjectNumber = value;
 this.VerifyNewProject();
 }
 }
 }

 public string NewProjectName
 {
 get { return this.newProjectName; }
 set
 {
 if (this.newProjectName != value)
 {
 this.newProjectName = value;
 this.VerifyNewProject();
 }
 }
 }

 public MutableAddress ProjectAddress
 {
 get { return this.projectAddress; }
 }

 public MutableAddress ProjectOwnerHeadquartersAddress
 {
 get { return this.projectOwnerHeadquartersAddress; }
 }

 public CollectionView Owners
 {
 get { return this.owners; }
 }

 public CollectionView MarketSegments
 {
 get { return this.marketSegments; }
 }

 public CollectionView ConstructionAdministrators
 {
 get { return this.constructionAdministrators; }
 }

 public CollectionView Principals

(continued)

c03.indd 96c03.indd 96 3/18/08 5:13:00 PM3/18/08 5:13:00 PM

Chapter 3: Managing Projects

97

 {
 get { return this.principals; }
 }

 public DelegateCommand SaveCommand
 {
 get { return this.saveCommand; }
 }

 public DelegateCommand NewCommand
 {
 get { return this.newCommand; }
 }

 private void SaveCommandHandler(object sender, EventArgs e)
 {
 this.currentProject.Address = this.projectAddress.ToAddress();

 this.currentProject.Owner.HeadquartersAddress =
 this.projectOwnerHeadquartersAddress.ToAddress();

 ProjectService.SaveProject(this.currentProject);

 this.OnPropertyChanged(
 Constants.CurrentProjectPropertyName);

 this.CurrentObjectState = ObjectState.Existing;
 }

 private void NewCommandHandler(object sender, EventArgs e)
 {
 this.currentProject = null;
 this.projectAddress = new MutableAddress();

 this.OnPropertyChanged(
 Constants.ProjectAddressPropertyName);

 this.newProjectNumber = string.Empty;
 this.newProjectName = string.Empty;
 this.projectOwnerHeadquartersAddress = new MutableAddress();

 this.OnPropertyChanged(
 Constants.OwnerHeadquartersAddressPropertyName);

 this.CurrentObjectState = ObjectState.New;

 this.OnPropertyChanged(
 Constants.CurrentProjectPropertyName);
 }

 private void VerifyNewProject()

(continued)

c03.indd 97c03.indd 97 3/18/08 5:13:00 PM3/18/08 5:13:00 PM

Chapter 3: Managing Projects

98

 {
 if (this.newProjectNumber.Length > 0 & &
 this.newProjectName.Length > 0)
 {
 this.currentProject = new Project(this.newProjectNumber,
 this.newProjectName);
 this.OnPropertyChanged(
 Constants.CurrentProjectPropertyName);
 }
 }
 }
}

 The Constructors
 Notice that there is quite a bit going on in the constructor. Just like the SelectProjectViewModel class
in Chapter 2 , the ProjectInformationViewModel class is a Value class.

 public ProjectInformationViewModel()
 : this(null)
 {
 }

 public ProjectInformationViewModel(IView view)
 : base(view)
 {
 this.currentProject = UserSession.CurrentProject;
 this.newProjectNumber = string.Empty;
 this.newProjectName = string.Empty;
 this.projectAddress = new MutableAddress
 {
 Street = this.currentProject.Address.Street,
 City = this.currentProject.Address.City,
 State = this.currentProject.Address.State,
 PostalCode = this.currentProject.Address.PostalCode
 };
 this.projectOwnerHeadquartersAddress = new MutableAddress
 {
 Street = this.currentProject.Owner.HeadquartersAddress.Street,
 City = this.currentProject.Owner.HeadquartersAddress.City,
 State = this.currentProject.Owner.HeadquartersAddress.State,
 PostalCode =
 this.currentProject.Owner.HeadquartersAddress.PostalCode
 };
 this.CurrentObjectState =
 (this.currentProject != null ?
 ObjectState.Existing : ObjectState.New);

 this.owners = new CollectionView(CompanyService.GetOwners());

 this.marketSegments =
 new CollectionView(ProjectService.GetMarketSegments());

(continued)

c03.indd 98c03.indd 98 3/18/08 5:13:01 PM3/18/08 5:13:01 PM

Chapter 3: Managing Projects

99

 this.constructionAdministrators =
 new CollectionView(
 EmployeeService.GetConstructionAdministrators());

 this.principals = new CollectionView(EmployeeService.GetPrincipals());
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 }

 In the constructor code above, all of the read - only properties of the class are being initialized. Probably
the most important one is the Project instance coming from the UserSession ’ s CurrentProject
property, since editing the Project instance is the whole point of the form. Remember from Chapter 2
that the CurrentProject property of the UserSession class gets set when you select a Project from the
 SelectProjectView .

The MutableAddress Class

 The next thing that should stand out to you is that I am creating an instance of a MutableAddress class.
This class is a mutable companion to the immutable Address class, and it allows the UI to have two - way
binding to its read - write properties.

using System;
using SmartCA.Model;

namespace SmartCA.Presentation.ViewModels
{
 public class MutableAddress
 {
 private string street;
 private string city;
 private string state;
 private string postalCode;

 public string Street
 {
 get { return this.street; }
 set { this.street = value; }
 }

 public string City
 {
 get { return this.city; }
 set { this.city = value; }
 }

 public string State
 {
 get { return this.state; }
 set { this.state = value; }
 }

 public string PostalCode

(continued)

c03.indd 99c03.indd 99 3/18/08 5:13:01 PM3/18/08 5:13:01 PM

Chapter 3: Managing Projects

100

 {
 get { return this.postalCode; }
 set { this.postalCode = value; }
 }

 public Address ToAddress()
 {
 return new Address(this.street, this.city,
 this.state, this.postalCode);
 }
 }
}

 The purpose of this class is to make it easy for the presentation layer to deal with the Address Value
object, since binding to and setting properties on an immutable class is impossible (believe me, I learned
the hard way about that). As you can see, it is also a Value object, but not immutable. The ToAddress
method actually creates an instance of the Address Value object, and this is what we will be using from
the ProjectInformationViewModel .

Using the C# 3.0 Initializer Features

 Going back to the ProjectInformationViewModel , notice how the MutableAddress class is being
initialized; I am taking advantage of the new C# 3.0 object initializer features:

 this.projectAddress = new MutableAddress
 {
 Street = this.currentProject.Address.Street,
 City = this.currentProject.Address.City,
 State = this.currentProject.Address.State,
 PostalCode = this.currentProject.Address.PostalCode
 };
 this.projectOwnerHeadquartersAddress = new MutableAddress
 {
 Street = this.currentProject.Owner.HeadquartersAddress.Street,
 City = this.currentProject.Owner.HeadquartersAddress.City,
 State = this.currentProject.Owner.HeadquartersAddress.State,
 PostalCode =
 this.currentProject.Owner.HeadquartersAddress.PostalCode
 };

 Transforming the Model Objects into View Objects

 The rest of the ProjectInformationViewModel is transforming IList < T > types from the domain
model into WPF - friendly CollectionView objects and setting up a few DelegateCommand instances.

 this.CurrentObjectState =
 (this.currentProject != null ?
 ObjectState.Existing : ObjectState.New);

 this.owners = new CollectionView(CompanyService.GetOwners());

 this.marketSegments =

(continued)

c03.indd 100c03.indd 100 3/18/08 5:13:01 PM3/18/08 5:13:01 PM

Chapter 3: Managing Projects

101

 new CollectionView(ProjectService.GetMarketSegments());

 this.constructionAdministrators =
 new CollectionView(
 EmployeeService.GetConstructionAdministrators());

 this.principals = new CollectionView(EmployeeService.GetPrincipals());
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);

 Notice how I am taking full advantage of the Service classes I have created that stand in front of the
Company and Employee repositories.

The Properties
 All of the properties in the ProjectInformationViewModel class are read - only except for two,
 ProjectName and ProjectNumber . These properties are actually taking the place of the same properties
on the Project class, kind of like what I did with the MutableAddress class shown earlier.

 public string NewProjectNumber
 {
 get { return this.newProjectNumber; }
 set
 {
 if (this.newProjectNumber != value)
 {
 this.newProjectNumber = value;
 this.VerifyNewProject();
 }
 }
 }

 public string NewProjectName
 {
 get { return this.newProjectName; }
 set
 {
 if (this.newProjectName != value)
 {
 this.newProjectName = value;
 this.VerifyNewProject();
 }
 }
 }

c03.indd 101c03.indd 101 3/18/08 5:13:02 PM3/18/08 5:13:02 PM

Chapter 3: Managing Projects

102

 The setters for these two properties both call the VerifyNewProject method, and this method checks to
make sure that there is both a valid ProjectNumber value set and a valid ProjectName value set:

 private void VerifyNewProject()
 {
 if (this.newProjectNumber.Length > 0 & &
 this.newProjectName.Length > 0)
 {
 this.currentProject = new Project(this.newProjectNumber,
 this.newProjectName);
 this.OnPropertyChanged(
 ProjectInformationViewModel.currentProjectPropertyName);
 }
 }

 If the validation passes, it then sets the CurrentProject property value of the
 ProjectInformationViewModel class to an instance of a new Project class, passing in the two values
to the Project constructor. Then, in order to signal the UI to refresh, it raises the PropertyChanged
event. In the next section, you will see how I deal with this functionality in the UI in order to change the
display when a new Project is created.

 The Project Information View Implementation
 The View that is associated with the ProjectInformationViewModel , the ProjectInformationView
class (which consists of XAML plus code - behind), is very similar to the SelectProjectView class, in
that it has very little code behind in it:

using System;
using System.Windows;
using SmartCA.Presentation.ViewModels;
using SmartCA.Infrastructure.UI;

namespace SmartCA.Presentation.Views
{
 public partial class ProjectInformationView : Window, IView
 {
 public ProjectInformationView()
 {
 this.InitializeComponent();
 this.DataContext = new ProjectInformationViewModel(this);
 }
 }
}

c03.indd 102c03.indd 102 3/18/08 5:13:02 PM3/18/08 5:13:02 PM

Chapter 3: Managing Projects

103

Figure 3.9: The Project Information View

 In fact it is almost identical to the code in the SelectProjectView class, except that it initializes the
 DataContext of the View with a ProjectInformationViewModel instead of a
 SelectProjectViewModel . The XAML for the form is fairly complex, so first I want to show what the
form looks like at run time. Then, you can get a better picture of what I am building, as shown in
Figure 3.9 .

 As you can see, it utilizes a tabbed view in order to take better advantage of the screen real estate. Also,
notice that the Project Number and Project Name fields are displayed with a label instead of a textbox,
thus indicating that they are read - only fields. In this instance of the form, the two fields are bound to the
 ProjectNumber and ProjectName properties of the ProjectInformationViewModel ’ s
 CurrentProject property (which is an instance of the Project domain object), but when I click on the
New Project button, you will see that they both change into textboxes in order to support adding a new
Project (see Figure 3.10).

c03.indd 103c03.indd 103 3/18/08 5:13:02 PM3/18/08 5:13:02 PM

Chapter 3: Managing Projects

104

Figure 3.10: The Project Information View for a new Project

 This is all made possible through the ProjectInformationViewModel and the XAML of the
 ProjectInformationView . Specifically, I am using a data template with a data trigger element
embedded inside of it, which is bound to properties in the ProjectInformationViewModel .

 < DataTemplate x:Key=”projectNameAndNumber” >
 < Grid >

 < Label Margin=”35,13.04,0,0” Content=”Project Number:”
 Style=”{StaticResource boldLabelStyle}”/ >

 < Label Margin=”195,13.04,131,0”
 Content=”{Binding Path=CurrentProject.Number}”
 x:Name=”projectNumber”
 Style=”{StaticResource baseLabelStyle}”/ >

 < TextBox Margin=”195,13.04,131,0” Visibility=”Hidden”
 Text=”{Binding Path=NewProjectNumber}”
 x:Name=”newProjectNumber”/ >

c03.indd 104c03.indd 104 3/18/08 5:13:03 PM3/18/08 5:13:03 PM

Chapter 3: Managing Projects

105

 < Label Margin=”35,41.04,0,0” Content=”Project Name:”
 Style=”{StaticResource boldLabelStyle}”/ >

 < Label Margin=”195,41.04,0,0”
 Content=”{Binding Path=CurrentProject.Name}”
 x:Name=”projectName”
 Style=”{StaticResource baseLabelStyle}”/ >

 < TextBox Margin=”195,41.04,0,0” Visibility=”Hidden”
 x:Name=”newProjectName”
 Text=”{Binding Path=NewProjectName}”
 Style=”{StaticResource baseTextBoxStyle}”/ >

 < /Grid >
 < DataTemplate.Triggers >
 < DataTrigger Binding=”{Binding Path=CurrentObjectState}”
 Value=”New” >

 < Setter Property=”Visibility” Value=”Visible”
 TargetName=”newProjectNumber” / >

 < Setter Property=”Visibility” Value=”Visible”
 TargetName=”newProjectName” / >

 < Setter Property=”Visibility” Value=”Hidden”
 TargetName=”projectNumber” / >

 < Setter Property=”Visibility” Value=”Hidden”
 TargetName=”projectName” / >

 < /DataTrigger >
 < /DataTemplate.Triggers >

 The data trigger is actually listening for changes to the CurrentObjectState property in the
 ProjectInformationViewModel . Based upon the value of that property it either shows textboxes or
labels for the Project Name and Project Number fields. Also cool is how this data template is integrated
into the rest of the XAML for the tab control:

 < Grid x:Name=”LayoutRoot” >
 < TabControl Margin=”80,40,64,80” IsSynchronizedWithCurrentItem=”True” >
 < TabItem Header=”Contact Info” >
 < Grid >
 < ContentControl Content=”{Binding}”
ContentTemplate=”{StaticResource projectNameAndNumber}”/ >

 All I have to do is place the name of the data template into the ContentTemplate attribute of a
 ContentControl element to make it show up in the right place. Setting the Content attribute value to
 {Binding} means that the data binding will honor what binding paths I have already set in the
 projectNameAndNumber data template.

c03.indd 105c03.indd 105 3/18/08 5:13:03 PM3/18/08 5:13:03 PM

Chapter 3: Managing Projects

106

 I promised earlier to show how I was going to deal with the Address Value objects in the XAML code, so
here it goes. I already showed how I am handling this in the ProjectInformationViewModel , so now
it is time to show it in the XAML:

 < Label Margin=”35,69.04,0,0” Content=”Project Address:”
 Style=”{StaticResource boldLabelStyle}”/ >

 < TextBox Margin=”195,69.15,0,0”
 Text=”{Binding Path=ProjectAddress.Street}”
 Style=”{StaticResource baseTextBoxStyle}”/ >

 < Label Margin=”35,97.04,0,0” Content=”Project City:”
 Style=”{StaticResource boldLabelStyle}”/ >

 < TextBox Margin=”195,97.15,0,0”
 Text=”{Binding Path=ProjectAddress.City}”
 Style=”{StaticResource baseTextBoxStyle}”/ >

 < Label Margin=”35,125.04,0,0” Content=”Project State:”
 Style=”{StaticResource boldLabelStyle}”/ >

 < TextBox Margin=”195,125.15,0,0”
 Text=”{Binding Path=ProjectAddress.State}”
 Style=”{StaticResource baseTextBoxStyle}”/ >

 < Label Margin=”35,153.04,0,0” Content=”Project Zip:”
 Style=”{StaticResource boldLabelStyle}”/ >

 < TextBox Margin=”195,153.15,0,0”
 Text=”{Binding Path=ProjectAddress.PostalCode}”
 Style=”{StaticResource baseTextBoxStyle}”/ >

 The way this works is that I am not actually binding to the CurrentProject property of the
 ProjectInformationViewModel ; instead I am binding to the properties of the ProjectAddress
property of the ProjectInformationViewModel . Remember, the ProjectAddress property is actually
an instance of the MutableAddress type, so I can change the properties through data binding. The code
inside of the ProjectInformationViewModel translates this into my immutable Address Value object,
and the data going into the Address Value object ’ s constructor is validated inside of the constructor in
order to make sure that I am entering a valid address.

 I love the fact that I can bind to my ViewModel and get the type of functionality that I just showed in
these examples without having to write any procedural code in my View!

 For the sake of brevity, I am not going to show all of the XAML code for the ProjectInformationView ;
there is just too much. There is nothing really special going on with the rest of it; it is the same pattern as
I showed in Chapter 2 with the SelectProjectView XAML.

c03.indd 106c03.indd 106 3/18/08 5:13:04 PM3/18/08 5:13:04 PM

Chapter 3: Managing Projects

107

 Summary
 The end result in the UI is not that spectacular, but I certainly covered a lot of ground in getting there. In
this chapter, I first defined and modeled all of the objects that make up what a Project is and then started
analyzing the classes further in order to define the Aggregate Boundaries. Once the Aggregate
Boundaries were defined, the Aggregate Roots were chosen, and then I defined what the various
repositories were for the Aggregates. After the repositories were designed and implemented, I then
designed and implemented the ViewModel and the View for the use case scenario of editing Projects.
I know it may not sound like much, but I actually wrote a lot of code and refactored a lot of code in the
process of getting to where I am now. The rest of the way should be well - paved for code reuse in the
SmartCA application.

c03.indd 107c03.indd 107 3/18/08 5:13:04 PM3/18/08 5:13:04 PM

c03.indd 108c03.indd 108 3/18/08 5:13:04 PM3/18/08 5:13:04 PM

 Companies and Contacts

 Last chapter I showed how both Companies and Contacts were part of the Project Aggregate. Since
the focus was on the Project Aggregate, not much was done with these two Entities. This chapter,
I will dive in and take a deeper look at the Company and Contact Aggregates, and I will show how
they relate to the Project Aggregate.

 The Problem
 One of the problems with the legacy application is that it does not handle tracking Companies,
Contacts, and their associated Addresses very well. The current system does not allow multiple
Addresses per Company or Contact, and as a result the users are often entering the same
Companies and Contacts into the system as duplicate records in order to show a different Address
for the Company or Contact.

 With that being said, it sounds like a database issue of having denormalized data. It is not the
point of this book to dwell on the database design; I believe that the focus of the problem needs to
be on the domain model. If the domain model is designed properly, it can handle this problem.
Remember, one of the tenets of Domain - Driven Design, which I discussed in Chapter 2 , is
 persistence ignorance . Therefore, the application ’ s data store could be a text file for all I care, because
it is abstracted away by the Repository Framework.

 The Design
 In the SmartCA domain, the purpose of a Project is to bring together and manage all of the people
involved in the construction process. In the next few sections, I will be designing the domain
model, determining the Project Aggregate and its boundaries, and designing the repository
for Projects.

c04.indd 109c04.indd 109 3/18/08 5:14:11 PM3/18/08 5:14:11 PM

Chapter 4: Companies and Contacts

110

 Designing the Domain Model
 Companies and Contacts are extremely important in the SmartCA domain, as they ensure that the right
construction documents get to the right people in a timely manner. There is a slight distinction between a
Contact and a ProjectContact. A ProjectContact is a Contact that happens to be part of a Project, whereas
a Contact may or may not be on a Project.

 Companies and Contacts both have multiple Addresses, but Companies also must have one of their
Addresses designated as their headquarters address. Figure 4.1 is a diagram showing the relationships
between Companies, Contacts, ProjectContacts, and Addresses.

Headquarters
Address

Address

Project Contact

ContactCompany

* *

 Figure 4.1: Company and Contact Aggregates.

 Each contact belongs to a single Company, but people move around, and therefore Contacts often change
companies over the course of time. You may notice that in this diagram that a ProjectContact contains a
Contact, but does not inherit from a Contact. This is purely my preference to stick with the Gang - of - Four
advice by favoring composition over inheritance.

 The Gang - of - Four, also known as GoF, refers to the four authors who wrote the classic
software - engineering book Design Patterns: Elements of Reusable Object - Oriented Software .
The book ’ s authors are Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

 Defining the Company and Contact Aggregates
 Even though the Contact class maintains a relationship to the Company class, both the Company class
and the Contact class are the roots of their own Aggregates, with both containing instances of the
 Address Value class. ProjectContact is not the root of an aggregate; it is an Entity, but it actually
belongs to the Project Aggregate (see Figure 4.2).

c04.indd 110c04.indd 110 3/18/08 5:14:13 PM3/18/08 5:14:13 PM

Chapter 4: Companies and Contacts

111

Project
Class
 EntityBase

Fields

Methods

Properties

ActualCompletionDate
Address
AdjustedCompletionDate
AdjustedConstructionCost
AeChangeOrderAmount
AgencyApplicationNumber
AgencyFileNumber
Allowances
ConstructionAdministrator
Contacts
ContingencyAllowanceAmount
ContractDate
ContractReason
Contracts
CurrentCompletionDate
EstimatedCompletionDate
EstimatedStartDate
Name
Number
OriginalConstructionCost
Owner
PercentComplete
PrincipalInCharge
Remarks
Segment
TestingAllowanceAmount
TotalChangeOrderDays
TotalChangeOrdersAmount
TotalSquareFeet
UtilityAllowanceAmount

Contact
Class
 Person

Fields

Methods

Properties

Email
FaxNumber
JobTitle
MobilePhoneNumber
PhoneNumber
Remarks

ProjectAddresses

Addresses

Contact

Company
Class
 EntityBase

Fields

Methods

Properties

Abbreviation
FaxNumber
Name
PhoneNumber
Remarks
Url

ProjectContact
Class
 EntityBase

Fields

Methods

Properties

OnFinalDistribution...

Address
Sealed Class

CurrentCompany

HeadquartersAddress

Company Aggregate

Project Aggregate

Contact Aggregate

Figure 4.2: Classes composing the Company and Contact Aggregates.

 Defining the Aggregate Boundaries
 As mentioned before, both the Company and Contact Aggregates share the Address class (see Figure 4.3).
Since the Contact class has a Company property, there are two ways to get to a particular company.
The first way is to go to the Company Aggregate, and the second way is to go to the Contact Aggregate,
navigate to a particular Contact, and then from the Contact navigate to a Company via the
 CurrentCompany property.

 The third Aggregate in the figure is one I have already shown, the Project Aggregate. This time around,
I have refactored the domain model to include the ProjectContact class as part of the Project
Aggregate and have defined its relationship with the Contact Aggregate to be one of composition.

c04.indd 111c04.indd 111 3/18/08 5:14:13 PM3/18/08 5:14:13 PM

Chapter 4: Companies and Contacts

112

Project
Class
 EntityBase

Fields

Methods

Properties

ActualCompletionDate
Address
AdjustedCompletionDate
AdjustedConstructionCost
AeChangeOrderAmount
AgencyApplicationNumber
AgencyFileNumber
Allowances
ConstructionAdministrator
Contacts
ContingencyAllowanceAmount
ContractDate
ContractReason
Contracts
CurrentCompletionDate
EstimatedCompletionDate
EstimatedStartDate
Name
Number
OriginalConstructionCost
Owner
PercentComplete
PrincipalInCharge
Remarks
Segment
TestingAllowanceAmount
TotalChangeOrderDays
TotalChangeOrdersAmount
TotalSquareFeet
UtilityAllowanceAmount

Contact
Class
 Person

Fields

Methods

Properties

Email
FaxNumber
JobTitle
MobilePhoneNumber
PhoneNumber
Remarks

ProjectAddresses

Addresses

Contact

Company
Class
 EntityBase

Fields

Methods

Properties

Abbreviation
FaxNumber
Name
PhoneNumber
Remarks
Url

ProjectContact
Class
 EntityBase

Fields

Methods

Properties

OnFinalDistribution...

Address
Sealed Class

CurrentCompany

HeadquartersAddress

Company Aggregate

Project Aggregate

Contact Aggregate

Figure 4.3: The Company and Contact Aggregate boundaries.

 Designing the Repositories
 Following the one repository per Aggregate rule, there are three repositories to look at in this chapter, the
 CompanyRepository , the ContactRepository , and last a revised ProjectRepository . Figure 4.4
shows the company and contact repositories.

 I did not show the Project Aggregate Repository classes since they are still the same, they will just have
some new behavior added to them.

 The ICompanyRepository Interface
 The ICompanyRepository interface is the interface to instances of Company Repositories. Because of
the previous refactoring to IRepository and SqlCeRepositoryBase < T > , the ICompanyRepository is
currently empty. Here is the ICompanyRepository interface:

using System;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Companies
{
 public interface ICompanyRepository : IRepository < Company >
 {
 }
}

c04.indd 112c04.indd 112 3/18/08 5:14:13 PM3/18/08 5:14:13 PM

Chapter 4: Companies and Contacts

113

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

IContactRepository
Interface
 IRepository<Contact>

IRepository<T>
GenericInterface

ContactRepository
Class
 SqlCeRepositoryBase<Contact>

IContactRepository

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

ICompanyRepository
Interface
 IRepository<Company>

IRepository<T>
GenericInterface

CompanyRepository
Class
 SqlCeRepositoryBase<Company>

ICompanyRepository

Figure 4.4: The Company and Contact Aggregate Repositories.

 The IContactRepository Interface
 Just like the ICompanyRepository interface, the IContactRepository interface is also empty. Here is
the IContactRepository interface:

using System;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Companies
{
 public interface IContactRepository : IRepository < Contact >
 {
 }
}

 The IProjectRepository Interface Revisited
 The IProjectRepository interface has a new method added to it in order to support ProjectContacts:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Projects
{
 public interface IProjectRepository : IRepository < Project >

(continued)

c04.indd 113c04.indd 113 3/18/08 5:14:13 PM3/18/08 5:14:13 PM

Chapter 4: Companies and Contacts

114

 {
 IList < Project > FindBy(IList < MarketSegment > segments, bool completed);
 Project FindBy(string projectNumber);
 IList < MarketSegment > FindAllMarketSegments();
 void SaveContact(ProjectContact contact);

 }
}

 The new method added is SaveContact , which takes an instance of the ProjectContact class as its
argument. You may be wondering where a FindProjectContacts method is, but the fact that
 ProjectContact is not an Aggregate Root and is part of the Project Aggregate means that I must
traverse to ProjectContact instances from the Project Entity root. This is because the ProjectContact
class is just an Entity in the Project Aggregate; it is not its own Aggregate Root.

 Writing the Unit Tests
 Just as in the last chapter, before implementing the solution for managing Companies and Contacts, I am
first going to write some unit tests of what I expect of the Company and Contact Repository
implementations. It is important to remember that these tests will compile correctly, but they will also
fail when run, and that is what I expect. They will pass once I write the code for the Repository
implementations in the Solution section.

 The ICompanyRepository Unit Tests
 I have already created the CompanyRepositoryTest class for the ICompanyRepository unit tests. I am not
going to go over the steps of creating this class, as I covered that in Chapter 3 . I am not going to show how
I created the instance of the ICompanyRepository interface either, as that is explained in the previous chapter.

 Since the ICompanyRepository interface has no methods in it, and since it does extend the
 IRepository < Company > interface, I am going to test the methods from the IRepository < Company >
interface.

The FindByKeyTest Method
 The purpose of this test is to verify that I can query the IProjectRepository interface for all Projects
that match the given Market Segments and have not completed.

 /// < summary >
 ///A test for FindBy(object key)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindByKeyTest()
 {
 // Set the Key value
 object key = “8b6a05be-6106-45fb-b6cc-b03cfa5ab74b”;

(continued)

c04.indd 114c04.indd 114 3/18/08 5:14:14 PM3/18/08 5:14:14 PM

Chapter 4: Companies and Contacts

115

 // Find the Company
 Company company = this.repository.FindBy(key);

 // Verify the Company’s name
 Assert.AreEqual(“My Company”, company.Name);
 }

 The method first starts out by initializing a unique identifier string value. It then passes that value to the
 ICompanyRepository interface instance in order to retrieve a Company with that particular Key value.
Once the Company instance is returned from the repository, the Company ’ s name is validated.

The FindAllTest Method
 The purpose of the FindAllTest method is to validate that the correct number of Company instances
have been returned by the Company Repository:

 /// < summary >
 ///A test for FindAll()
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindAllTest()
 {
 // Get all of the Companies
 IList < Company > companies = this.repository.FindAll();

 // Make sure there are two
 Assert.AreEqual(2, companies.Count);
 }

 This method is pretty short; it simply gets all of the Company instances and checks the total count. What
is not seen here is that when the ICompanyRepository interface is implemented, it will test the ability
of the repository to map the data correctly from the data store into Company instances. Later in the
chapter, when the ICompanyRepository interface is implemented, I can run the test again to see what
I messed up when the test fails.

The AddTest Method
 The purpose of the AddTest method is to test adding a new Company to the Company Repository:

 /// < summary >
 ///A test for Add(Company item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void AddTest()
 {
 // Create a new Company and give it a fake name
 Company company = new Company();
 company.Name = “My Test Company”;

 // Add the Company to the Repository
 this.repository.Add(company);

(continued)

c04.indd 115c04.indd 115 3/18/08 5:14:14 PM3/18/08 5:14:14 PM

Chapter 4: Companies and Contacts

116

 // Commit the transaction
 this.unitOfWork.Commit();

 // Reload the Company and verify it’s name
 Company savedCompany = this.repository.FindBy(company.Key);
 Assert.AreEqual(“My Test Company”, savedCompany.Name);

 // Clean up
 this.repository.Remove(savedCompany);
 this.unitOfWork.Commit();
 }

 This test is a little bit more involved than the previous tests. It starts out by instantiating a new Company
instance and setting its Name property. It then tries to add the Company to the repository, and then
commits the transaction by calling the Commit method on the IUnitOfWork instance.

 The Commit method is important because that method calls back into the Company Repository to tell it
to write the Company ’ s data to the data store.

 Once the Company has been saved, it is then reloaded and the Company ’ s Name property is checked to
verify that the Add and Commit methods worked properly. The last task that the method needs to
perform is to remove the Company. Removing the Company that was just created leaves the data store
in the same state as it was in before the method started, which is important for the rest of the tests that
may depend on a known state of the data store. Otherwise, some of the other tests may fail because there
was data in the data store that was not expected.

 The UpdateTest Method
 The purpose of the UpdateTest method is to find a Company and update it with a different name, and
then verify that the change was persisted properly:

 /// < summary >
 ///A test for Updating a Company
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void UpdateTest()
 {
 // Set the Key value
 object key = “59427e22-0c9e-4821-95d6-9c9f541bf37a”;

 // Find the Company
 Company company = this.repository.FindBy(key);

 // Change the Company’s Name
 company.Name = “My Updated Company”;

 // Update the Repository
 this.repository[company.Key] = company;

(continued)

c04.indd 116c04.indd 116 3/18/08 5:14:15 PM3/18/08 5:14:15 PM

Chapter 4: Companies and Contacts

117

 // Commit the transaction
 this.unitOfWork.Commit();

 // Verify that the change was saved
 Company savedCompany = this.repository.FindBy(company.Key);
 Assert.AreEqual(“My Updated Company”, savedCompany.Name);
 }

 The first few lines of the method should look familiar; I am just using the same Key value I used before
to find a Company. Once I have found the Company, I then change its Name property, and then call the
indexer method of the ICompanyRepository . After the call to the indexer, I use the IUnitOfWork
interface to commit the transaction. Last, I verify that the change actually made it to the data store by
reloading the same Company and checking to see whether its Name property value is the same one that
I just assigned earlier in the method.

 The RemoveTest Method
 The purpose of the RemoveTest method is to test the process of removing a Company from the
data store:

 /// < summary >
 ///A test for Remove(Company item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void RemoveTest()
 {
 // Set the Key value
 object key = “8b6a05be-6106-45fb-b6cc-b03cfa5ab74b”;

 // Find the Company
 Company company = this.repository.FindBy(key);

 // Remove the Company from the Repository
 this.repository.Remove(company);

 // Commit the transaction
 this.unitOfWork.Commit();

 // Verify that there is now one less Company in the data store
 IList < Company > companies = this.repository.FindAll();
 Assert.AreEqual(1, companies.Count);
 }

 Again, the first few lines of the method should look familiar; I am just using the same Key value I used
before to find a Company. Once I have found the Company, I remove it from the repository. After
removing it from the repository, I then use the IUnitOfWork interface to commit the transaction. Last,
I verify that the change actually made it to the data store by using the repository to find all of the
Company instances and making sure that there is now one fewer Company than before.

c04.indd 117c04.indd 117 3/18/08 5:14:15 PM3/18/08 5:14:15 PM

Chapter 4: Companies and Contacts

118

 The IContactRepository Unit Tests
 Since the IContactRepository is identical to the ICompanyRepository in that it does not implement
any new methods, I have decided not to show any of the unit test code for it. Its test class will have all of
the exact same methods tested as the ICompanyRepository test class, only the Entity being passed
around will be a Contact instead of a Company.

 The IProjectRepository Unit Test
 Since the IProjectRepository has been refactored with a new method, the SaveContact method,
I will only unit test that method.

 I have created a new method in the ProjectRepositoryTest class called SaveProjectContactTest .
The purpose of the method is to test creating a new ProjectContact instance that is then saved to the
 IProjectRepository instance.

 /// < summary >
 ///A test for SaveContact(ProjectContact contact)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void SaveProjectContactTest()
 {
 // The Project Number
 string projectNumber = “12345.00”;

 // Try to get the Project
 Project project = this.repository.FindBy(projectNumber);

 // Get the old count of Project Contacts
 int oldCount = project.Contacts.Count;

 // Get a Contact
 IContactRepository contactRepository =
 RepositoryFactory.GetRepository < IContactRepository, Contact > ();
 object contactKey = “cae9eb86-5a86-4965-9744-18326fd56a3b”;
 Contact contact = contactRepository.FindBy(contactKey);

 // Create a Project Contact
 ProjectContact projectContact = new ProjectContact(project,
 Guid.NewGuid(), contact);

 // Save the Project Contact
 this.repository.SaveContact(projectContact);

 // Commit the transaction
 this.unitOfWork.Commit();

 // Reload the the Project
 Project updatedProject = this.repository.FindBy(“12345.00”);

 // Verify that there is a new ProjectContact now
 Assert.AreEqual(oldCount, updatedProject.Contacts.Count - 1);
 }

c04.indd 118c04.indd 118 3/18/08 5:14:15 PM3/18/08 5:14:15 PM

Chapter 4: Companies and Contacts

119

 The first part of the code should remind you of the test code from the last chapter, where I tested finding
a Project by a Project Number value. The next step is to get the count of ProjectContact instances
the Project currently contains. Next, I use the IContactRepository interface instance to find a Contact,
and then I use that contact to create an instance of the ProjectContact class. Once I have the new
 ProjectContact instance, I then save it to the IProjectRepository instance and commit the
transaction on the IUnitOfWork instance.

 Now that the ProjectContact instance is saved, I will reload the same Project from the repository, and
make sure that the new count of ProjectContact instances is one more than the old count.

 The Solution
 The design is in place for the Company and Contact domain models, the Company and Contact
Aggregates have been defined and their boundaries have been determined, and the repositories have
been designed with their associated tests. It is time to start the code implementation. In this section, I
will be implementing these designs, as well as implementing the ViewModel and the View for
Companies and Contacts.

 The Company Class
 Like the Project class, the Company class does not have any behavior yet. I have already shown the
 Company class in Chapter 3 , but now I have added some more properties to it:

using System;
using SmartCA.Infrastructure.DomainBase;
using System.Collections.Generic;

namespace SmartCA.Model.Companies
{
 public class Company : EntityBase
 {
 private string name;
 private string abbreviation;
 private Address headquartersAddress;
 private List < Address > addresses;
 private string phoneNumber;
 private string faxNumber;
 private string url;
 private string remarks;

 public Company()
 : this(null)
 {
 }

 public Company(object key)
 : base(key)

(continued)

c04.indd 119c04.indd 119 3/18/08 5:14:16 PM3/18/08 5:14:16 PM

Chapter 4: Companies and Contacts

120

 {
 this.name = string.Empty;
 this.abbreviation = string.Empty;
 this.headquartersAddress = null;
 this.addresses = new List < Address > ();
 this.phoneNumber = string.Empty;
 this.faxNumber = string.Empty;
 this.url = string.Empty;
 this.remarks = string.Empty;
 }

 public string Name
 {
 get { return this.name; }
 set { this.name = value; }
 }

 public string Abbreviation
 {
 get { return this.abbreviation; }
 set { this.abbreviation = value; }
 }

 public Address HeadquartersAddress
 {
 get { return this.headquartersAddress; }
 set
 {
 if (this.headquartersAddress != value)
 {
 this.headquartersAddress = value;
 if (!this.addresses.Contains(value))
 {
 this.addresses.Add(value);
 }
 }
 }
 }

 public IList < Address > Addresses
 {
 get { return this.addresses; }
 }

 public string PhoneNumber
 {
 get { return this.phoneNumber; }
 set { this.phoneNumber = value; }
 }

 public string FaxNumber

(continued)

c04.indd 120c04.indd 120 3/18/08 5:14:16 PM3/18/08 5:14:16 PM

Chapter 4: Companies and Contacts

121

 {
 get { return this.faxNumber; }
 set { this.faxNumber = value; }
 }

 public string Url
 {
 get { return this.url; }
 set { this.url = value; }
 }

 public string Remarks
 {
 get { return this.remarks; }
 set { this.remarks = value; }
 }
 }
}

 The interesting thing to note about the Company class is its HeadquartersAddress property. The
address is really just one of its addresses that has been deemed as a headquarters address. In the setter
for this property, I included logic to make sure that the value of the Address being passed in is actually
contained in the internal list of Addresses . If it is not present, then the Address is added to the
collection. The rest of the properties of the Company class are all very straightforward.

 I am not going to go into the detail of the constructors of the Company class; they follow the pattern of
having two constructors, a default constructor and a parameterized constructor containing the Key value
for the instance. Again, as with the Project class before, this is because sometimes I may need to load
an existing Company from a data store and sometimes I may be creating a new Company that does not yet
exist in the data store.

 The Contact Class
 Aside from the names of its properties, the Contact class is almost completely the same as the
Company class:

using System;
using System.Collections.Generic;
using System.Text;
using SmartCA.Model.Companies;

namespace SmartCA.Model.Contacts
{
 public class Contact : Person
 {
 private string jobTitle;
 private string email;
 private string phoneNumber;
 private string mobilePhoneNumber;
 private string faxNumber;
 private string remarks;

(continued)

c04.indd 121c04.indd 121 3/18/08 5:14:17 PM3/18/08 5:14:17 PM

Chapter 4: Companies and Contacts

122

 private Company currentCompany;
 private IList < Address > addresses;

 public Contact()
 : this(null)
 {
 }

 public Contact(object key)
 : this(key, null, null)
 {
 }

 public Contact(object key, string firstName, string lastName)
 : base(key, firstName, lastName)
 {
 this.jobTitle = string.Empty;
 this.email = string.Empty;
 this.phoneNumber = string.Empty;
 this.mobilePhoneNumber = string.Empty;
 this.faxNumber = string.Empty;
 this.remarks = string.Empty;
 this.currentCompany = null;
 this.addresses = new List < Address > ();
 }

 public string JobTitle
 {
 get { return this.jobTitle; }
 set { this.jobTitle = value; }
 }

 public string Email
 {
 get { return this.email; }
 set { this.email = value; }
 }

 public string PhoneNumber
 {
 get { return this.phoneNumber; }
 set { this.phoneNumber = value; }
 }

 public string MobilePhoneNumber
 {
 get { return this.mobilePhoneNumber; }
 set { this.mobilePhoneNumber = value; }
 }

(continued)

c04.indd 122c04.indd 122 3/18/08 5:14:17 PM3/18/08 5:14:17 PM

Chapter 4: Companies and Contacts

123

 public string FaxNumber
 {
 get { return this.faxNumber; }
 set { this.faxNumber = value; }
 }

 public string Remarks
 {
 get { return this.remarks; }
 set { this.remarks = value; }
 }

 public Company CurrentCompany
 {
 get { return this.currentCompany; }
 set { this.currentCompany = value; }
 }

 public IList < Address > Addresses
 {
 get { return this.addresses; }
 }
 }
}

 The main difference between the Contact and Company classes is that the Contact class ’ s
 CurrentCompany property contains a reference to a Company instance. The Company class, however,
does not contain a reference to any Contact instances.

 The ProjectContact Class
 As I mentioned before, the ProjectContact class actually contains a Contact instance and then adds
one other property to it to distinguish it as a ProjectContact :

using System;
using SmartCA.Model.Contacts;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.Projects
{
 public class ProjectContact : EntityBase
 {
 private Project project;
 private bool onFinalDistributionList;
 private Contact contact;

 public ProjectContact(Project project, object key,
 Contact contact) : base(key)

(continued)

c04.indd 123c04.indd 123 3/18/08 5:14:17 PM3/18/08 5:14:17 PM

Chapter 4: Companies and Contacts

124

 {
 this.project = project;
 this.contact = contact;
 this.onFinalDistributionList = false;
 }

 public Project Project
 {
 get { return this.project; }
 }

 public Contact Contact
 {
 get { return this.contact; }
 }

 public bool OnFinalDistributionList
 {
 get { return this.onFinalDistributionList; }
 set { this.onFinalDistributionList = value; }
 }
 }
}

 In fact, you cannot create an instance of the ProjectContact class without passing an instance of a
 Contact in its constructor, as well as a Project instance and a Key value. The property that
distinguishes the ProjectContact class from the Contact class is the OnFinalDistributionList
property. This property is used to designate which Contacts in a Project are to receive copies of
documents for things like Submittal Transmittals, Change Orders, and so on once they become final. The
 ProjectContact class also maintains a reference to the Project to which it belongs via the Project
property, as well as what Contact it contains via its Contact property.

 The Repository Implementations
 In this section, I will be writing the code for the Company and Contact Repositories, as well as
refactoring part of the Project Repository.

 The Company Repository
 To implement the concrete CompanyRepository class, just like the other Repository implementations
before, I inherit from the SqlCeRepositoryBase < T > class, and also implement the
 ICompanyRepository interface:

namespace SmartCA.Infrastructure.Repositories
{
 public class CompanyRepository : SqlCeRepositoryBase < Company > ,
 ICompanyRepository
 {
...

(continued)

c04.indd 124c04.indd 124 3/18/08 5:14:18 PM3/18/08 5:14:18 PM

Chapter 4: Companies and Contacts

125

 Public Constructors
 Just like the ProjectRepository class, there are also two public constructors for the
 CompanyRepository class:

 #region Public Constructors

 public CompanyRepository()
 : this(null)
 {
 }

 public CompanyRepository(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 }

 #endregion

 All Repository implementations will follow this same pattern.

BuildChildCallbacks
 Now that I have finished going over the IProjectRepository implementation, it is time to go back to
how the Project class is actually built. If you recall, this functionality was moved up into the base class,
 SqlCeRepositoryBase < T > , but it does make use of the Template Method pattern, and
 BuildChildCallbacks is one of those abstract template methods that the ProjectRepository must
implement.

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(“addresses”,
 delegate(Company company, object childKeyName)
 {
 this.AppendAddresses(company);
 });
 }

 #endregion

 The AppendAddresses Callback

 The only entry made in the ChildCallbacks dictionary was for the AppendAddresses method. This
method queries the CompanyAddress table to get the list of addresses for the Company:

 private void AppendAddresses(Company company)
 {
 string sql = string.Format
 (“SELECT * FROM CompanyAddress WHERE CompanyID = ‘{0}’”,
 company.Key);
 using (IDataReader reader = this.ExecuteReader(sql))

(continued)

c04.indd 125c04.indd 125 3/18/08 5:14:18 PM3/18/08 5:14:18 PM

Chapter 4: Companies and Contacts

126

 {
 Address address = null;
 while (reader.Read())
 {
 address = AddressFactory.BuildAddress(reader);
 company.Addresses.Add(address);
 if (CompanyFactory.IsHeadquartersAddress(reader))
 {
 company.HeadquartersAddress = address;
 }
 }
 }
 }

 This method is using the AddressFactory static class to build the Address instance from the
 IDataReader instance using static field mappings. It then asks the CompanyFactory class whether the
data for the Address contained in the IDataReader contains a Headquarters Address.

 internal static bool IsHeadquartersAddress(IDataReader reader)
 {
 return DataHelper.GetBoolean(reader[FieldNames.IsHeadquarters]);
 }

 If the data does contain a Headquarters Address, the method then sets the HeadquartersAddress
property of the Company instance.

GetBaseQuery
 The next abstract Template Method that the SqlCeRepositoryBase < T > calls is the
 GetBaseQueryMethod . Here is the CompanyRepository class ’ s override of the abstract method:

 #region GetBaseQuery

 protected override string GetBaseQuery()
 {
 return “SELECT * FROM Company”;
 }

 #endregion

 This simply returns the SQL statement for the Company Aggregate. Again, just as I mentioned before, by
abstracting this, the SqlCeRepositryBase < T > class is able to pull in the two “ FindBy ” methods from
the IRepository < T > interface, thereby eliminating the code from CompanyRepository .

(continued)

c04.indd 126c04.indd 126 3/18/08 5:14:18 PM3/18/08 5:14:18 PM

Chapter 4: Companies and Contacts

127

GetBaseWhereClause
 This is very similar to the GetBaseQuery method just shown, only this time the string returned is just a
formatted SQL WHERE clause for the Company Aggregate with a placeholder for the CompanyID field:

 #region GetBaseWhereClause

 protected override string GetBaseWhereClause()
 {
 return “ WHERE CompanyID = ‘{0}’;”;
 }

 #endregion

 The SqlCeRepositoryBase < T > class handles filling in the CompanyID placeholder at runtime.

 Unit of Work Implementation
 As I demonstrated in Chapter 3 , in order to implement the Repository Framework ’ s Unit of Work, I only
need to override three methods, PersistNewItem(Company item) , PersistUpdatedItem(Company
item) , and PersistDeletedItem(Company item) . Here is the code for PersistNewItem :

 protected override void PersistNewItem(Company item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO Company
({0},{1},{2},{3},{4},{5},{6}) “ ,
 CompanyFactory.FieldNames.CompanyId,
 CompanyFactory.FieldNames.CompanyName,
 CompanyFactory.FieldNames.CompanyShortName,
 CompanyFactory.FieldNames.Phone,
 CompanyFactory.FieldNames.Fax,
 CompanyFactory.FieldNames.Url,
 CompanyFactory.FieldNames.Remarks));
 builder.Append(string.Format(“VALUES ({0},{1},{2},{3},{4},{5},{6});” ,
 DataHelper.GetSqlValue(item.Key),
 DataHelper.GetSqlValue(item.Name),
 DataHelper.GetSqlValue(item.Abbreviation),
 DataHelper.GetSqlValue(item.PhoneNumber),
 DataHelper.GetSqlValue(item.FaxNumber),
 DataHelper.GetSqlValue(item.Url),
 DataHelper.GetSqlValue(item.Remarks)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the addresses
 this.InsertAddresses(item);
 }

c04.indd 127c04.indd 127 3/18/08 5:14:19 PM3/18/08 5:14:19 PM

Chapter 4: Companies and Contacts

128

 The code is building up an insert statement composed of the values from the Company instance and then
executing the query using the Microsoft Enterprise Library ’ s Database object. After the insert statement
has been executed, the Company ’ s addresses are saved to the database via the InsertAddresses
method:

 private void InsertAddresses(Company company)
 {
 foreach (Address address in company.Addresses)
 {
 this.InsertAddress(address, company.Key,
 (company.HeadquartersAddress == address));
 }
 }

 InsertAddresses just iterates the Addresses property of the Company instance and
calls InsertAddress on each one. InsertAddress then saves the address to the database:

 private void InsertAddress(Address address, object key,
 bool isHeadquartersAddress)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO CompanyAddress
({0},{1},{2},{3},{4},{5}) “,
 CompanyFactory.FieldNames.CompanyId,
 AddressFactory.FieldNames.Street,
 AddressFactory.FieldNames.City,
 AddressFactory.FieldNames.State,
 AddressFactory.FieldNames.PostalCode,
 CompanyFactory.FieldNames.IsHeadquarters));
 builder.Append(string.Format(“VALUES ({0},{1},{2},{3},{4},{5});”,
 DataHelper.GetSqlValue(key),
 DataHelper.GetSqlValue(address.Street),
 DataHelper.GetSqlValue(address.City),
 DataHelper.GetSqlValue(address.State),
 DataHelper.GetSqlValue(address.PostalCode),
 DataHelper.GetSqlValue(isHeadquartersAddress)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));
 }

 InsertAddress is also very similar to the first part of PersistNewItem , in that it builds up its insert
statement and executes it against the database in the same manner.

 PersistUpdatedItem first does an update to the Company table:

 protected override void PersistUpdatedItem(Company item)
 {
 StringBuilder builder = new StringBuilder(100) ;
 builder.Append(“UPDATE Company SET “) ;

 builder.Append(string.Format(“{0} = {1}” ,
 CompanyFactory.FieldNames.CompanyName,

c04.indd 128c04.indd 128 3/18/08 5:14:19 PM3/18/08 5:14:19 PM

Chapter 4: Companies and Contacts

129

 DataHelper.GetSqlValue(item.Name)));

 builder.Append(string.Format(“,{0} = {1}” ,
 CompanyFactory.FieldNames.CompanyShortName,
 DataHelper.GetSqlValue(item.Abbreviation)));

 builder.Append(string.Format(“,{0} = {1}” ,
 CompanyFactory.FieldNames.Phone,
 DataHelper.GetSqlValue(item.PhoneNumber)));

 builder.Append(string.Format(“,{0} = {1}” ,
 CompanyFactory.FieldNames.Fax,
 DataHelper.GetSqlValue(item.FaxNumber)));

 builder.Append(string.Format(“,{0} = {1}” ,
 CompanyFactory.FieldNames.Url,
 DataHelper.GetSqlValue(item.Url)));

 builder.Append(string.Format(“,{0} = {1}” ,
 CompanyFactory.FieldNames.Remarks,
 DataHelper.GetSqlValue(item.Remarks)));

 builder.Append(“ “) ;
 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the addresses

 // First, delete the existing ones
 this.DeleteAddresses(item);

 // Now, add the current ones
 this.InsertAddresses(item);
 }

 The second part of the method uses DeleteAddresses to delete the existing addresses for the Company
and then uses the familiar InsertAddresses method to add the addresses from the Company ’ s
 Addresses property to the database. DeleteAddresses runs a query against the CompanyAddress
table to remove all entries with a matching CompanyID field value:

 private void DeleteAddresses(Company company)
 {
 string query = string.Format(“DELETE FROM CompanyAddress {0}”,
 this.BuildBaseWhereClause(company.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

c04.indd 129c04.indd 129 3/18/08 5:14:19 PM3/18/08 5:14:19 PM

Chapter 4: Companies and Contacts

130

 The last method in CompanyRepository to override, PersistDeletedItem , follows the same pattern
as DeleteAddresses :

 protected override void PersistDeletedItem(Company item)
 {
 // Delete the company addresses first
 this.DeleteAddresses(item);

 // Now delete the company
 string query = string.Format(“DELETE FROM Company {0}” ,
 this.BuildBaseWhereClause(item.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

 This method actually takes advantage of the DeleteAddresses method in the first part of its body in
order to remove the entries from the CompanyAddress table before deleting a row from the Company
table. The rest of the code in the method should look very familiar as it is building up a standard delete
statement for removing a row from the Company table and then executing the statement.

 The Contact Repository
 To implement the concrete ContactRepository class, just as before, I inherit from the
 SqlCeRepositoryBase < T > class, and also implement the IContactRepository interface:

namespace SmartCA.Infrastructure.Repositories
{
 public class ContactRepository : SqlCeRepositoryBase < Contact > ,
 IContactRepository
 {
...

 Public Constructors
 The public constructors for the ContactRepository class are exactly the same as the
 CompanyRepository class:

 #region Public Constructors

 public ContactRepository()
 : this(null)
 {
 }

 public ContactRepository(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 }

 #endregion

c04.indd 130c04.indd 130 3/18/08 5:14:20 PM3/18/08 5:14:20 PM

Chapter 4: Companies and Contacts

131

 GetBaseQuery
 Here is the ContactRepository class ’ s override of the GetBaseQuery abstract method:

 #region GetBaseQuery

 protected override string GetBaseQuery()
 {
 return “SELECT * FROM Contact”;
 }

 #endregion

 This just follows the same Template Method pattern I have shown all along.

 GetBaseWhereClause
 Again, I am just following the Template Method pattern for implementing the GetBaseWhereClause
method:

 #region GetBaseWhereClause

 protected override string GetBaseWhereClause()
 {
 return “ WHERE ContactID = ‘{0}’;”;
 }

 #endregion

 Unit of Work Implementation
 Since the code for the ContactRepository ’ s Unit of Work implementation is almost identical to the
 CompanyRepository ’ s implementation, I am not going to show it here. It is follows all of the same
patterns, so there is nothing new to see with it.

 The Refactored Project Repository Implementation
 public void SaveContact(ProjectContact contact)
 {

 // Get the list of contacts
 List < ProjectContact > contacts =
 new List < ProjectContact > (
 this.FindBy(contact.Project.Key).Contacts);

 if (contacts.Where(c = > c.Key.Equals(contact.Key)).Count() > 0)
 {
 // The contact exists, so update it
 this.UnitOfWork.RegisterChanged(contact, this);
 }
 else
 {
 // The contact is new, so add it
 this.UnitOfWork.RegisterAdded(contact, this);
 }
 }

c04.indd 131c04.indd 131 3/18/08 5:14:20 PM3/18/08 5:14:20 PM

Chapter 4: Companies and Contacts

132

 The SaveContact method first uses the FindBy method to find the correct Project based on a Project
Key property passed in from the ProjectContact argument. Once the Project is found, I then call the
 Contacts property getter to get the list of ProjectContact instances for the Project. When the list has
been obtained, a LINQ query is performed on the list to see if it contains any ProjectContact instances
that match that being passed from the method ’ s argument contact argument. To perform the query, I am
using a lambda expression (c = > c.Key.Equals(contact.Key)) to find the list of ProjectContacts that
meet the criteria, and then using the Count method extension on the IEnumerable interface (which
 List < ProjectContact > implements) to see whether the results are greater than zero. If the results are
greater than zero, then I know that the ProjectContact already exists, and I can go ahead and update it.
If not, then I know that the ProjectContact is new and needs to be added.

 The way that I am handling the actual changes to the data store is by telling the UnitOfWork property
of the RepositoryBase < T > instance to register the items as either changed or added. Then, once the
 Commit method on the IUnitOfWork instance is called, the items will be properly persisted and
the transaction will be committed.

 Calling the IUnitOfWork instance directly should look strange, since in every other Repository
implementation I just had the RepositoryBase < T > class abstract that away for me. This case is
different, because I am not dealing with an object that is an Entity Root. I have to tell the IUnitOfWork
instance about the Entity explicitly in order for it to be part of the transaction. I also had to refactor a
little bit more of the ProjectRepository in order for the transaction to work. Normally, when Commit
is called on the IUnitOfWork instance, the IUnitOfWork instance will cycle through all of the entities in
its deleted, added, and changed Entity collections, and call the proper Persist * method on each one
(e.g., PersistNewItem). In this case, it ’ s a little bit of a challenge because I want to save one of the
Project ’ s ProjectContact items, but not the whole entire Project. In the current implementation of the
 ProjectRepository , if one of the Persist * overrides is called, it will cause an error because it will try
to convert a ProjectContact instance into a Project instance. The way around that was to declare the
 RepositoryBase < T > ’ s Persist * methods as virtual and override them, thereby effectively bypassing
the RepositoryBase < T > ’ s translation from EntityBase to Project by casting the Entity to the proper
type using the T generic parameter. I then exposed the IUnitOfWork instance as a protected property.
Here is what I am talking about on RepositoryBase < T > :

 #region IUnitOfWorkRepository Members

 public virtual void PersistNewItem(EntityBase item)
 {
 this.PersistNewItem((T)item);
 }

 public virtual void PersistUpdatedItem(EntityBase item)
 {
 this.PersistUpdatedItem((T)item);
 }

 public virtual void PersistDeletedItem(EntityBase item)
 {
 this.PersistDeletedItem((T)item);
 }

 #endregion

c04.indd 132c04.indd 132 3/18/08 5:14:20 PM3/18/08 5:14:20 PM

Chapter 4: Companies and Contacts

133

 protected IUnitOfWork UnitOfWork
 {
 get { return this.unitOfWork; }
 }

 protected abstract void PersistNewItem(T item);
 protected abstract void PersistUpdatedItem(T item);
 protected abstract void PersistDeletedItem(T item);

 By overriding the PersistNewItem(EntityBase item) , PersistUpdatedItem(EntityBase item) ,
and PersistDeletedItem(EntityBase item) methods, the abstract PersistNewItem(T item) ,
 PersistUpdatedItem(T item) , and PersistDeletedItem(T item) methods never get called.
I have to call them myself within the ProjectRepository :

 public override void PersistNewItem(EntityBase item)
 {
 Project project = item as Project ;
 if (project != null)
 {
 this.PersistNewItem(project);
 }
 else
 {
 ProjectContact contact = item as ProjectContact ;
 this.PersistNewItem(contact);
 }
 }

 In the example above, I have to test to see what is getting passed in to the method from the
 IUnitOfWork instance; it could either be a Project instance or a ProjectContact instance. If it is a
 Project instance, then I just call the existing PersistNewItem(Project item) method. If it is a
 ProjectContact instance, then I need to call the new method, PersistNewItem(ProjectContact
item) .

 protected void PersistNewItem(ProjectContact contact)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(
 “INSERT INTO ProjectContact ({0},{1},{2}) “ ,
 ProjectFactory.FieldNames.ProjectId,
 ContactFactory.FieldNames.ContactId,
 ProjectFactory.FieldNames.OnFinalDistributionList));
 builder.Append(string.Format(“VALUES ({0},{1},{2});” ,
 DataHelper.GetSqlValue(contact.Project.Key),
 DataHelper.GetSqlValue(contact.Contact.Key),
 DataHelper.GetSqlValue(contact.OnFinalDistributionList)));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));
 }

 The other methods, PersistUpdatedItem and PersistDeletedItem follow the exact same
pattern so I am not going to show them.

c04.indd 133c04.indd 133 3/18/08 5:14:21 PM3/18/08 5:14:21 PM

Chapter 4: Companies and Contacts

134

 Everything is still cleanly broken out and easy to maintain. The Repository Framework still works and I
now have a pattern for saving Entities off of the aggregate root. That wasn ’ t too painful of a refactoring,
and it was actually pretty fun.

 The Service Class Implementations
 In this application, the only Service classes I have implemented up to this point are those that live in
the domain model layer and act as facades to their respective Repository interfaces.

 The CompanyService Class
 The CompanyService class is responsible for retrieving and saving Company instances.

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Companies
{
 public static class CompanyService
 {
 private static ICompanyRepository repository;
 private static IUnitOfWork unitOfWork;

 static CompanyService()
 {
 CompanyService.unitOfWork = new UnitOfWork();
 CompanyService.repository =
 RepositoryFactory.GetRepository < ICompanyRepository,
 Company > (CompanyService.unitOfWork);
 }

 public static IList < Company > GetOwners()
 {
 return CompanyService.GetAllCompanies();
 }

 public static IList < Company > GetAllCompanies()
 {
 return CompanyService.repository.FindAll();
 }

 public static void SaveCompany(Company company)
 {
 CompanyService.repository[company.Key] = company;
 CompanyService.unitOfWork.Commit();
 }
 }
}

c04.indd 134c04.indd 134 3/18/08 5:14:21 PM3/18/08 5:14:21 PM

Chapter 4: Companies and Contacts

135

 The first thing to notice about this class is that it is a static class with all static methods. Again, the idea is
to make it very easy to use. The next interesting part of the class is its static constructor. This is where the
instance to the IProjectRepository is created via the RepositoryFactory . Also note that when the
 IProjectRepository is created it is injected with a UnitOfWork instance. This is necessary since I will
be saving Project instances in this class and want that operation to be wrapped in a transaction.

 The rest of the class is just acting as a fa ç ade in front of the IProjectRepository instance. The next
interesting method is the SaveProject method. Notice how the collection - like functionality of the
 IProjectRepository instance is utilized by calling the indexer (see Chapter 2 for more information on
this). What ’ s nice about having the indexer is that the RepositoryBase < T > class will figure out if it is a
new Project or an existing one. Also, after updating the IProjectRepository with the newly
updated Project instance, the Commit method is called on the UnitOfWork instance to commit the
transaction.

 The ContactService Class
 Currently, the only thing that the ContactService class does is to wrap the IContactRepository call
for saving a Contact:

using System;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.Contacts
{
 public static class ContactService
 {
 private static IContactRepository repository;
 private static IUnitOfWork unitOfWork;

 static ContactService()
 {
 ContactService.unitOfWork = new UnitOfWork();
 ContactService.repository =
 RepositoryFactory.GetRepository < IContactRepository,
 Contact > (ContactService.unitOfWork);
 }

 public static void SaveContact(Contact contact)
 {
 ContactService.repository[contact.Key] = contact;
 ContactService.unitOfWork.Commit();
 }
 }
}

 Right now, this code does not need any additional functionality, so I am going to leave it alone for a
while.

c04.indd 135c04.indd 135 3/18/08 5:14:22 PM3/18/08 5:14:22 PM

Chapter 4: Companies and Contacts

136

 The ProjectService Class
 In order to save a ProjectContact, since it is part of the Project Aggregate, the SaveProjectContact
method was added to the ProjectService class:

using System;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Infrastructure;
using SmartCA.Model.Contacts;

namespace SmartCA.Model.Projects
{
 public static class ProjectService
 {
 private static IProjectRepository projectRepository;
 private static IContactRepository contactRepository;
 private static IUnitOfWork unitOfWork;

 static ProjectService()
 {
 ProjectService.unitOfWork = new UnitOfWork();
 ProjectService.projectRepository =
 RepositoryFactory.GetRepository < IProjectRepository,
 Project > (ProjectService.unitOfWork);
 ProjectService.contactRepository =
 RepositoryFactory.GetRepository < IContactRepository,
 Contact > (ProjectService.unitOfWork);
 }

 public static IList < Project > GetAllProjects()
 {
 return ProjectService.projectRepository.FindAll();
 }

 public static IList < MarketSegment > GetMarketSegments()
 {
 return ProjectService.projectRepository.FindAllMarketSegments();
 }

 public static void SaveProject(Project project)
 {
 ProjectService.projectRepository[project.Key] = project;
 ProjectService.unitOfWork.Commit();
 }

 public static void SaveProjectContact(ProjectContact contact)
 {
 ProjectService.contactRepository[contact.Contact.Key]
 = contact.Contact;

c04.indd 136c04.indd 136 3/18/08 5:14:22 PM3/18/08 5:14:22 PM

Chapter 4: Companies and Contacts

137

 // Add/Update the project contact
 ProjectService.projectRepository.SaveContact(contact);
 ProjectService.unitOfWork.Commit();
 }

 }
}

 The method first calls the IContactRepository instance ’ s indexer to save the Contact instance.
I thought about having this call the ContactService ’ s SaveContact method, but then I would
lose my Unit of Work context, so I decided to keep the code here for now. After talking to
the IContactRepository instance, the code then calls the SaveContact method on the
 IProjectRepository ’ s instance. Once both of those calls are made, the Unit of Work is committed.

 The Company ViewModel
 Following the same patterns as before, the CompanyViewModel class adapts the Company Aggregate
from the domain model to the UI. To start out, just like my previous examples, I inherit from the
 ViewModel abstract class:

using System;
using SmartCA.Infrastructure.UI;
using System.Windows.Data;
using SmartCA.Model.Companies;
using System.Collections.Generic;
using SmartCA.Model;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.ComponentModel;
using Xceed.Wpf.DataGrid;

namespace SmartCA.Presentation.ViewModels
{
 public class CompanyViewModel : ViewModel
 {
 #region Constants

 private static class Constants
 {
 public const string CurrentCompanyPropertyName = “CurrentCompany”;
 public const string AddressesPropertyName = “Addresses”;
 public const string HeadquartersAddressPropertyName =
 “HeadquartersAddress”;
 }

 #endregion

 #region Private Fields

 private CollectionView companies;
 private IList < Company > companiesList;
 private Company currentCompany;

(continued)

c04.indd 137c04.indd 137 3/18/08 5:14:22 PM3/18/08 5:14:22 PM

Chapter 4: Companies and Contacts

138

 private BindingList < MutableAddress > addresses;
 private MutableAddress headquartersAddress;
 private DelegateCommand saveCommand;
 private DelegateCommand newCommand;
 private DelegateCommand deleteAddressCommand;

 #endregion

 #region Constructors

 public CompanyViewModel()
 : this(null)
 {
 }

 public CompanyViewModel(IView view)
 : base(view)
 {
 this.companiesList = CompanyService.GetAllCompanies();
 this.companies = new CollectionView(companiesList);
 this.currentCompany = null;
 this.addresses = new BindingList < MutableAddress > ();
 this.headquartersAddress = null;
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.saveCommand.IsEnabled = false;
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 this.deleteAddressCommand =
 new DelegateCommand(this.DeleteAddressCommandHandler);
 }

 #endregion

 #region Public Properties

 public CollectionView Companies
 {
 get { return this.companies; }
 }

 public Company CurrentCompany
 {
 get { return this.currentCompany; }
 set
 {
 if (this.currentCompany != value)
 {
 this.currentCompany = value;
 this.OnPropertyChanged(Constants.CurrentCompanyPropertyName);
 this.saveCommand.IsEnabled = (this.currentCompany != null);

(continued)

c04.indd 138c04.indd 138 3/18/08 5:14:22 PM3/18/08 5:14:22 PM

Chapter 4: Companies and Contacts

139

 this.PopulateAddresses();
 this.HeadquartersAddress =
 new MutableAddress(
 this.currentCompany.HeadquartersAddress);
 }
 }
 }

 public BindingList < MutableAddress > Addresses
 {
 get { return this.addresses; }
 }

 public MutableAddress HeadquartersAddress
 {
 get { return this.headquartersAddress; }
 set
 {
 if (this.headquartersAddress != value)
 {
 this.headquartersAddress = value;
 this.OnPropertyChanged(
 Constants.HeadquartersAddressPropertyName);
 }
 }
 }

 public DelegateCommand NewCommand
 {
 get { return this.newCommand; }
 }

 public DelegateCommand SaveCommand
 {
 get { return this.saveCommand; }
 }

 public DelegateCommand DeleteAddressCommand
 {
 get { return this.deleteAddressCommand; }
 }

 #endregion

 #region Private Methods

 private void SaveCommandHandler(object sender, EventArgs e)
 {
 this.currentCompany.Addresses.Clear();
 foreach (MutableAddress address in this.addresses)

(continued)

c04.indd 139c04.indd 139 3/18/08 5:14:23 PM3/18/08 5:14:23 PM

Chapter 4: Companies and Contacts

140

 {
 this.currentCompany.Addresses.Add(address.ToAddress());
 }
 this.currentCompany.HeadquartersAddress =
 this.headquartersAddress.ToAddress();
 CompanyService.SaveCompany(this.currentCompany);
 }

 private void NewCommandHandler(object sender, EventArgs e)
 {
 Company company = new Company();
 company.Name = “{Enter Company Name}”;
 this.companiesList.Add(company);
 this.companies.Refresh();
 this.companies.MoveCurrentToLast();
 }

 private void DeleteAddressCommandHandler(object sender,
 DelegateCommandEventArgs e)
 {
 MutableAddress address = e.Parameter as MutableAddress;
 if (address != null)
 {
 this.addresses.Remove(address);
 }
 }

 private void PopulateAddresses()
 {
 if (this.currentCompany != null)
 {
 this.addresses.Clear();
 foreach (Address address in this.currentCompany.Addresses)
 {
 this.addresses.Add(new MutableAddress(address));
 }
 this.OnPropertyChanged(Constants.AddressesPropertyName);
 }
 }

 #endregion
 }
}

 Constructor
 The interesting thing to note in this class, which is a little different from the other ViewModel classes,
is the initialization of the BindingList < MutableAddress > (the addresses variable) type in the
constructor that is used to represent the list of addresses for the Company.

(continued)

c04.indd 140c04.indd 140 3/18/08 5:14:23 PM3/18/08 5:14:23 PM

Chapter 4: Companies and Contacts

141

 #region Constructors

 public CompanyViewModel()
 : this(null)
 {
 }

 public CompanyViewModel(IView view)
 : base(view)
 {
 this.companiesList = CompanyService.GetAllCompanies();
 this.companies = new CollectionView(companiesList);
 this.currentCompany = null;
 this.addresses = new BindingList < MutableAddress > ();
 this.headquartersAddress = null;
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.saveCommand.IsEnabled = false;
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 this.deleteAddressCommand =
 new DelegateCommand(this.DeleteAddressCommandHandler);
 }

 #endregion

 The MutableAddress type should look familiar, as I have already used that in last chapter ’ s
 ProjectInformationViewModel class. The reason I had to use this type of object, and not something
like a CollectionView, is because I have decided to display the Company ’ s addresses in the form of a
data grid, and the data grid I am using (more on that in the next section) requires that the data bound to
it implement the IBindingList interface. Since the BindingList class gives me that implementation
for free, I have decided to use it.

 You may be wondering why I am maintaining an IList < Company > variable (companiesList) as well
as the CollectionView of the list. In the UI form I am going to be displaying a list of Companies to
choose from, but I am also supporting adding new Companies, which need to be added the list.
Therefore, I need access to the IList interface so that I can add new Companies to the list. Just as when
I had to deal with addresses in the previous chapter, I am also maintaining a MutableAddress instance
for the Company ’ s HeadquartersAddress property. The rest of the constructor code should look very
familiar; I am just doing the standard wire - up code for the DelegateCommand instances.

 Properties
 The CurrentCompany property indicates the current Company instance that is being edited:

 public Company CurrentCompany
 {
 get { return this.currentCompany; }
 set
 {
 if (this.currentCompany != value)

(continued)

c04.indd 141c04.indd 141 3/18/08 5:14:23 PM3/18/08 5:14:23 PM

Chapter 4: Companies and Contacts

142

 {
 this.currentCompany = value;
 this.OnPropertyChanged(Constants.CurrentCompanyPropertyName);
 this.saveCommand.IsEnabled = (this.currentCompany != null);
 this.PopulateAddresses();
 this.HeadquartersAddress =
 new MutableAddress(
 this.currentCompany.HeadquartersAddress);
 }
 }
 }

 Whenever a new Company is selected in the UI, the CurrentProperty setter is called (I will show you
how this is done in the XAML in a few paragraphs). Once that has happened, the PropertyChanged
event for the CurrentCompany property is raised, thus letting the UI know to refresh itself. Next,
the SaveCommand ’ s IsEnabled property is set to the boolean value of the Current Company. Then the
 PopulateAddresses method is called:

 private void PopulateAddresses()
 {
 if (this.currentCompany != null)
 {
 this.addresses.Clear();
 foreach (Address address in this.currentCompany.Addresses)
 {
 this.addresses.Add(new MutableAddress(address));
 }
 this.OnPropertyChanged(Constants.AddressesPropertyName);
 }
 }

 This is necessary because the Addresses contained in the Company ’ s Addresses property are the
immutable Address types, and in order to be able to edit the Addresses I have to convert them into
 MutableAddress types. Once this is done, then the PropertyChanged event for the Addresses
property is raised so the UI can refresh itself.

 The CurrentCompany property setter then finishes by resetting the HeadquartersAddress property.
This is necessary because the HeadquartersAddress property is also a converter between the current
Company ’ s immutable Address type and a MutableAddress :

 public MutableAddress HeadquartersAddress
 {
 get { return this.headquartersAddress; }
 set
 {
 if (this.headquartersAddress != value)

(continued)

c04.indd 142c04.indd 142 3/18/08 5:14:24 PM3/18/08 5:14:24 PM

Chapter 4: Companies and Contacts

143

 {
 this.headquartersAddress = value;
 this.OnPropertyChanged(
 Constants.HeadquartersAddressPropertyName);
 }
 }
 }

 The code for the property setter ensures that when the property changes the PropertyChanged event is
fired for the UI to consume.

 The rest of the properties in the CompanyView class are the read - only DelegateCommand properties for
creating New Companies, saving Companies, and deleting Addresses from a Company.

 Command Handler Methods
 The handlers for the DelegateCommand properties are pretty interesting. The NewCommandHandler
method has to do a lot of housekeeping:

 private void NewCommandHandler(object sender, EventArgs e)
 {
 Company company = new Company();
 company.Name = “{Enter Company Name}”;
 this.companiesList.Add(company);
 this.companies.Refresh();
 this.companies.MoveCurrentToLast();
 }

 It first has to create a new instance of a Company , set its Name property to some default text, and then add
it to the internal list of companies. Once the internal list has been updated, it then calls Refresh on the
 CollectionView companies variable in order to have the UI be refreshed. Finally, by calling the
 MoveCurrentToLast method on the CollectionView , the new Company will appear last in the list in
the UI.

 The DeleteAddressCommandHandler method is interesting because it gets the MutableAddress that
must be deleted passed in to it from the DelegateCommandEventArgs parameter.

 private void DeleteAddressCommandHandler(object sender,
 DelegateCommandEventArgs e)
 {
 MutableAddress address = e.Parameter as MutableAddress;
 if (address != null)
 {
 this.addresses.Remove(address);
 }
 }

 It then checks to see whether it is null, and if it is not, it removes it from the BindingList
 < MutableAddress > collection (the addresses are variable). Once this happens, the data grid that is
bound to it is automatically updated.

c04.indd 143c04.indd 143 3/18/08 5:14:24 PM3/18/08 5:14:24 PM

Chapter 4: Companies and Contacts

144

 The Company View
 The View that is associated with the CompanyViewModel , the CompanyView class (which consists of
XAML plus code - behind), is very similar to the ProjectInformationView class, in that it has very little
code behind it:

using System;
using System.Windows;
using SmartCA.Presentation.ViewModels;
using SmartCA.Infrastructure.UI;

namespace SmartCA.Presentation.Views
{
 public partial class CompanyView : Window, IView
 {
 public CompanyView()
 {
 this.InitializeComponent();
 this.DataContext = new CompanyViewModel(this);
 }
 }
}

 From this point forward, I will not show the code - behind any more for the Views, since they are almost
always going to be identical. Before diving into the XAML for the CompanyView , take a look at
Figure 4.5 , which shows what the form looks like at run time.

Figure 4.5: The Company View

c04.indd 144c04.indd 144 3/18/08 5:14:24 PM3/18/08 5:14:24 PM

Chapter 4: Companies and Contacts

145

 The form is split into two parts; the one on the left is for selecting a Company to edit, and the one on the
right is for actually editing the Company. The New button adds a new Company to the list. The Save and
Cancel buttons both deal with the currently selected Company. There are two things that should stand
out to you while looking at this form. One, I am using a data grid to display and edit the addresses,
and two, the dropdown for the headquarters address looks pretty cool, doesn ’ t it?

 For the grid, I am using the Xceed DataGrid for WPF component. Xceed recognized that Microsoft did
not include a data grid implementation in WPF, and so they made one themselves. The nice part is that
their product is licensed for free, with an unlimited number of licenses per company. Kudos to them,
I think that this was a very smart marketing move on their part, since most developers are going to want
to use a data grid control at some point when working in WPF.

 Using the Xceed Data Grid
 Since the XAML code for displaying lists of addresses will be needed for Contacts as well as Companies,
I have created the Addresses reusable UserControl to display editable Address data in a grid.
Because I am using the Xceed DataGrid control, it was fairly easy to create the Addresses
UserControl to display the list of editable addresses. In order to get the look and feel shown in
Figure 4.5 the UserControl contains the following XAML:

 < UserControl x:Class=”SmartCA.Presentation.Views.Addresses”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:xcdg=”http://schemas.xceed.com/wpf/xaml/datagrid”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 < xcdg:DataGridControl ItemsSource=”{Binding}” >
 < xcdg:DataGridControl.Columns >
 < xcdg:Column Width=”50” FieldName=”DeleteButton”
 DisplayMemberBinding=”{Binding .}” >
 < xcdg:Column.CellContentTemplate >
 < DataTemplate >
 < Button Content=”Delete”
 Command=”{Binding
 RelativeSource={RelativeSource
 FindAncestor, AncestorType={x:Type
Window}},
Path=DataContext.DeleteAddressCommand}” >
 < Button.CommandParameter >
 < Binding Path=”.”/ >
 < /Button.CommandParameter >
 < /Button >
 < /DataTemplate >
 < /xcdg:Column.CellContentTemplate >
 < /xcdg:Column >
 < xcdg:Column FieldName=”Street” Width=”100” TextWrapping=”Wrap”/ >
 < xcdg:Column FieldName=”City” Width=”75” TextWrapping=”Wrap”/ >
 < xcdg:Column FieldName=”State” MaxWidth=”35”/ >
 < xcdg:Column FieldName=”PostalCode” MaxWidth=”70”/ >
 < /xcdg:DataGridControl.Columns >

(continued)

c04.indd 145c04.indd 145 3/18/08 5:14:25 PM3/18/08 5:14:25 PM

Chapter 4: Companies and Contacts

146

 < xcdg:DataGridControl.View >
 < xcdg:TableView HorizontalGridLineThickness=”1”
 VerticalGridLineThickness=”1” >
 < xcdg:TableView.HorizontalGridLineBrush >
 < SolidColorBrush Color=”Orange”/ >
 < /xcdg:TableView.HorizontalGridLineBrush >
 < xcdg:TableView.VerticalGridLineBrush >
 < SolidColorBrush Color=”Orange”/ >
 < /xcdg:TableView.VerticalGridLineBrush >
 < xcdg:TableView.Footers >
 < DataTemplate >
 < xcdg:InsertionRow/ >
 < /DataTemplate >
 < /xcdg:TableView.Footers >
 < xcdg:TableView.FixedHeaders >
 < xcdg:ClearHeadersFooters/ >
 < DataTemplate >
 < xcdg:ColumnManagerRow/ >
 < /DataTemplate >
 < /xcdg:TableView.FixedHeaders >
 < /xcdg:TableView >
 < /xcdg:DataGridControl.View >
 < /xcdg:DataGridControl >
 < /UserControl >

 The first thing to notice is that, at the top of the XAML, I am setting the ItemsSource property of the
 DataGridControl to a value of “ {Binding} ” . This allows the DataGridControl to take advantage of
the current Window ’ s DataContext . The next interesting thing to note is the Delete button that shows
up in every row of the addresses grid. The grid column containing repeating Delete buttons has its
 DisplayMemberBinding set to a value of “ {Binding .} ” , and the Button itself has its Command
property ’ s binding set to “ {Binding RelativeSource={RelativeSource FindAncestor,
AncestorType={x:Type Window}}, Path=DataContext.DeleteAddressCommand} ” . These settings
allow each Delete Button to traverse up the binding tree to the Window , descend from the Window to the
 DataContext , and then bind to the DeleteAddressCommand property of the DataContext , which in
this case is the CompanyViewModel . The next thing I need, once I get the Delete Button ’ s Command
property bound, is to have it pass as a parameter to the item that is being deleted. This is done by the
following code inside of the Button element:

 < Button.CommandParameter >
 < Binding Path=”.”/ >
 < /Button.CommandParameter >

 This allows the Button ’ s Command property to receive the item being deleted; in this case it is an Address
instance.

(continued)

c04.indd 146c04.indd 146 3/18/08 5:14:25 PM3/18/08 5:14:25 PM

Chapter 4: Companies and Contacts

147

 The Headquarters Address Addresses Dropdown
 As far as the dropdown for the headquarters address, this is made possible by a little refactoring to both
the Address and MutableAddress classes and some WPF magic.

 Here is the ToString override in the Address class:

 public override string ToString()
 {
 StringBuilder builder = new StringBuilder(300) ;
 builder.Append(this.street);
 builder.Append(“\r\n”) ;
 builder.Append(this.city);
 builder.Append(“, “) ;
 builder.Append(this.state);
 builder.Append(“ “) ;
 builder.Append(this.postalCode);
 return builder.ToString() ;
 }

 In the MutableAddress class, it is even easier:

 public override string ToString()
 {
 return this.ToAddress().ToString();
 }

 In WPF, by not specifying the DisplayMemberPath property of the ComboBox control, what is rendered
for the text of the items in the list is the ToString() result of each item in the list. In .NET, the default
value specified on the System.Object class is the type name of the class, that is, “ System.Object ” or
 “ System.String ” , and so on, but, if your class overrides the ToString method, then WPF will use that for
the value of the list item.

 Here is the XAML for the Headquarters Address ComboBox :

 < ComboBox Grid.Row=”3” Grid.Column=”1”
 SelectedItem=”{Binding Path=HeadquartersAddress}”
 ItemsSource=”{Binding Path=Addresses}” >
 < /ComboBox >

 This XAML declares that the SelectedItem of the ComboBox will set the HeadquartersAddress
property in the CompanyViewModel class (remember that a CompanyViewModel instance has been set as
the DataContext for the whole Window). It also declares that the ItemsSource property is bound
to the Addresses property in the CompanyViewModel , and that property is a BindingList
< MutableAddress > type.

 The rest of the XAML for the CompanyView is fairly vanilla, so I will not show it here for the sake
of brevity.

c04.indd 147c04.indd 147 3/18/08 5:14:26 PM3/18/08 5:14:26 PM

Chapter 4: Companies and Contacts

148

 The Project Contact View Model
 The ProjectContactViewModel is very similar to the CompanyViewModel , and is actually a little bit
simpler. Because both the CompanyViewModel and ProjectContactViewModel need to contain an
 Addresses property and the necessary behavior around that property, I was able to factor that
functionality out from the CompanyViewModel into a new abstract class called AddressesViewModel .

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.UI;
using System.ComponentModel;

namespace SmartCA.Presentation.ViewModels
{
 public abstract class AddressesViewModel : ViewModel
 {
 #region Constants

 private static class Constants
 {
 public const string AddressesPropertyName = “Addresses”;
 }

 #endregion

 #region Private Fields

 private BindingList < MutableAddress > addresses;
 private DelegateCommand deleteAddressCommand;

 #endregion

 #region Constructors

 protected AddressesViewModel()
 : this(null)
 {
 }

 protected AddressesViewModel(IView view)
 : base(view)
 {
 this.addresses = new BindingList < MutableAddress > ();
 this.deleteAddressCommand =
 new DelegateCommand(this.DeleteAddressCommandHandler);
 }

 #endregion

 #region Public Properties

 public BindingList < MutableAddress > Addresses

c04.indd 148c04.indd 148 3/18/08 5:14:26 PM3/18/08 5:14:26 PM

Chapter 4: Companies and Contacts

149

 {
 get { return this.addresses; }
 }

 public DelegateCommand DeleteAddressCommand
 {
 get { return this.deleteAddressCommand; }
 }

 #endregion

 #region Private Methods

 private void DeleteAddressCommandHandler(object sender,
 DelegateCommandEventArgs e)
 {
 MutableAddress address = e.Parameter as MutableAddress;
 if (address != null)
 {
 this.addresses.Remove(address);
 }
 }

 #endregion

 #region Virtual Methods

 protected virtual void PopulateAddresses()
 {
 this.OnPropertyChanged(Constants.AddressesPropertyName);
 }

 #endregion
 }
}

 This class should look very similar to the parts of the CompanyViewModel that dealt with Addresses.
In fact, I copied and pasted most of the code from that class into the AddressesViewModel . It is an
abstract class, so the CompanyViewModel class changed to inherit from AddressesViewModel instead of
 ViewModel . The only method that I needed to change was PopulateAddressses ; I had to change it to
raise only the PropertyChanged event for the Addresses property, and then I marked it as virtual so
I could override it and call it from CompanyViewModel and ProjectContactViewModel .

 Here is the code for the ProjectContactViewModel using the new AddressesViewModel class:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.UI;
using System.Windows.Data;
using SmartCA.Application;
using SmartCA.Model.Companies;
using SmartCA.Model.Projects;

(continued)

c04.indd 149c04.indd 149 3/18/08 5:14:26 PM3/18/08 5:14:26 PM

Chapter 4: Companies and Contacts

150

using System.ComponentModel;
using SmartCA.Model.Contacts;
using SmartCA.Model;

namespace SmartCA.Presentation.ViewModels
{
 public class ProjectContactViewModel : AddressesViewModel
 {
 #region Constants

 private static class Constants
 {
 public const string CurrentContactPropertyName = “CurrentContact”;
 }

 #endregion

 private CollectionView contacts;
 private IList < ProjectContact > contactsList;
 ProjectContact currentContact;
 private CollectionView companies;
 private DelegateCommand saveCommand;
 private DelegateCommand newCommand;

 #region Constructors

 public ProjectContactViewModel()
 : this(null)
 {
 }

 public ProjectContactViewModel(IView view)
 : base(view)
 {
 this.contactsList = UserSession.CurrentProject.Contacts;
 this.contacts = new CollectionView(contactsList);
 this.currentContact = null;
 this.companies = new CollectionView(CompanyService.GetAllCompanies());
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 }

 #endregion

 public CollectionView Contacts
 {
 get { return this.contacts; }
 }

 public ProjectContact CurrentContact

(continued)

c04.indd 150c04.indd 150 3/18/08 5:14:27 PM3/18/08 5:14:27 PM

Chapter 4: Companies and Contacts

151

 {
 get { return this.currentContact; }
 set
 {
 if (this.currentContact != value)
 {
 this.currentContact = value;
 this.OnPropertyChanged(Constants.CurrentContactPropertyName);
 this.saveCommand.IsEnabled = (this.currentContact != null);
 this.PopulateAddresses();
 }
 }
 }

 public CollectionView Companies
 {
 get { return this.companies; }
 }

 public DelegateCommand SaveCommand
 {
 get { return this.saveCommand; }
 }

 public DelegateCommand NewCommand
 {
 get { return this.newCommand; }
 }

 private void SaveCommandHandler(object sender, EventArgs e)
 {
 this.currentContact.Contact.Addresses.Clear();
 foreach (MutableAddress address in this.Addresses)
 {
 this.currentContact.Contact.Addresses.Add(address.ToAddress());
 }
 ProjectService.SaveProjectContact(this.currentContact);
 }

 private void NewCommandHandler(object sender, EventArgs e)
 {
 ProjectContact contact = new ProjectContact(UserSession.CurrentProject,
 null, new Contact(null,
 “{First Name}”, “{Last Name}”));
 this.contactsList.Add(contact);
 this.contacts.Refresh();
 this.contacts.MoveCurrentToLast();
 }

 protected override void PopulateAddresses()

(continued)

c04.indd 151c04.indd 151 3/18/08 5:14:27 PM3/18/08 5:14:27 PM

Chapter 4: Companies and Contacts

152

 {
 if (this.currentContact != null)
 {
 this.Addresses.Clear();
 foreach (Address address in this.currentContact.Contact.Addresses)
 {
 this.Addresses.Add(new MutableAddress(address));
 }
 base.PopulateAddresses();
 }
 }
 }
}

 As you can see, it inherits from the AddressesViewModel class, thus eliminating several lines of code
from the class.

 Constructor
 The constructor is almost exactly the same as the CompanyViewModel constructor, only this time I am
dealing with ProjectContacts instead of Companies. There is a variable and property for Companies, but
that is used as a dropdown list in the UI to assign a ProjectContact to a Company.

 #region Constructors

 public ProjectContactViewModel()
 : this(null)
 {
 }

 public ProjectContactViewModel(IView view)
 : base(view)
 {
 this.contactsList = UserSession.CurrentProject.Contacts;
 this.contacts = new CollectionView(contactsList);
 this.currentContact = null;
 this.companies = new CollectionView(CompanyService.GetAllCompanies());
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 }

 #endregion

 Just like the CompanyView class, I am also maintaining an IList < T > variable (contactsList) as well as the
 CollectionView of the list. There is a CollectionView containing Company instances, and this is used
by the UI to select the Company to which a Contact belongs.

(continued)

c04.indd 152c04.indd 152 3/18/08 5:14:27 PM3/18/08 5:14:27 PM

Chapter 4: Companies and Contacts

153

 Properties
 The CurrentContact property indicates the current ProjectContact instance that is being edited.

 public ProjectContact CurrentContact
 {
 get { return this.currentContact; }
 set
 {
 if (this.currentContact != value)
 {
 this.currentContact = value ;
 this.OnPropertyChanged(Constants.CurrentContactPropertyName);
 this.saveCommand.IsEnabled = (this.currentContact != null);
 this.PopulateAddresses();
 }
 }
 }

 Whenever a new ProjectContact is selected in the UI, then this property ’ s setter is called. Once that has
happened, then the PropertyChanged event for the CurrentContact property is raised, thus letting
the UI know to refresh itself. The next thing to happen is to set the SaveCommand ’ s IsEnabled property
to the boolean value of the Current ProjectContact. Then the PopulateAddresses method is called:

 protected override void PopulateAddresses()
 {
 if (this.currentContact != null)
 {
 this.Addresses.Clear();
 foreach (Address address in this.currentContact.Contact.Addresses)
 {
 this.Addresses.Add(new MutableAddress(address));
 }
 base.PopulateAddresses();
 }
 }

 This is now changed to account for the PopulateAddresses method in the AddressesViewModel
base class.

 The rest of the properties in the ProjectContactView class are the Companies CollectionView
property and the read - only DelegateCommand properties for creating New ProjectContacts and saving
ProjectContacts.

c04.indd 153c04.indd 153 3/18/08 5:14:28 PM3/18/08 5:14:28 PM

Chapter 4: Companies and Contacts

154

 Command Handler Methods
 The handlers for the DelegateCommand properties are pretty interesting. The NewCommandHandler
method has to do a lot of housekeeping:

 private void NewCommandHandler(object sender, EventArgs e)
 {
 ProjectContact contact = new ProjectContact(UserSession.CurrentProject,
 null, new Contact(null,
 “{First Name}”, “{Last Name}”));
 this.contactsList.Add(contact);
 this.contacts.Refresh();
 this.contacts.MoveCurrentToLast();
 }

 It first has to create a new instance of a ProjectContact , and then add it to the internal list of
ProjectContacts. Once the internal list has been updated, it then calls Refresh on the CollectionView
contacts variable in order to have the UI refreshed. Finally, by calling the MoveCurrentToLast method
on the CollectionView , the ProjectContact will appear last in the list in the UI.

 The SaveCommandHandler first has to swap out the addresses from the Addresses property into the
 Addresses property of the ProjectContact .

 private void SaveCommandHandler(object sender, EventArgs e)
 {
 this.currentContact.Contact.Addresses.Clear();
 foreach (MutableAddress address in this.Addresses)
 {
 this.currentContact.Contact.Addresses.Add(address.ToAddress());
 }
 ProjectService.SaveProjectContact(this.currentContact);
 }

 It then finishes up by using the ProjectService class to save the current ProjectContact instance.
Again, it is nice how this Service class makes it very easy for the UI code to concentrate on display
rather than the plumbing of saving a ProjectContact.

 The Project Contact View
 The View that is associated with the ProjectContactViewModel , the ProjectContactView class
(which consists of XAML plus code - behind), is almost identical to the CompanyView class shown
previously in this chapter. Figure 4.6 shows what the form looks like at run time.

c04.indd 154c04.indd 154 3/18/08 5:14:28 PM3/18/08 5:14:28 PM

Chapter 4: Companies and Contacts

155

Figure 4.6: The ProjectContact View

 The main difference between this form and CompanyView form is that now I am dealing with
ProjectContacts instead of Companies. Everything else is almost identical, from the selection of items to
edit to using the UserControl for Addresses to saving and adding new ProjectContacts.

 There is one more difference, and that is that this View has a dropdown for choosing what Company a
ProjectContact belongs to.

 Here is the XAML for the Company ComboBox :

 < ComboBox Grid.Row=”5” Grid.Column=”1”
 SelectedItem=”{Binding Path=CurrentContact.Contact.CurrentCompany}”
 DisplayMemberPath=”Name”
 ItemsSource=”{Binding Path=Companies}” >
 < /ComboBox >

 This XAML declares that the SelectedItem of the ComboBox will set the CurrentCompany property in
the ProjectContactViewModel class. It also declares that the ItemsSource property is bound to the
 Companies property in the ProjectContactViewModel , and the property that will be displayed to the
user in the ComboBox will be the Name property on the Company instances.

 The rest of the XAML for the ProjectContactView is so similar to the CompanyView that it is not worth
showing here.

c04.indd 155c04.indd 155 3/18/08 5:14:28 PM3/18/08 5:14:28 PM

Chapter 4: Companies and Contacts

156

 Summary
 In this chapter I defined and modeled Companies, Contacts, and ProjectContacts, and then defined the
Aggregate Boundaries for these classes in the domain model. A new concept was added to both the
Domain Layer and Infrastructure Layer that allowed saving Entities that are not their own Aggregate
Root. This was demonstrated by the techniques I used to save ProjectContacts within the Project
Aggregate. Also covered was how to deal with Address Value Objects using the Xceed DataGrid control.
I showed how to wrap this functionality into a reusable UserControl for Addresses. Furthermore, there
was also a lot of good refactoring going on with the ProjectRepository and the new ViewModel
classes.

c04.indd 156c04.indd 156 3/18/08 5:14:29 PM3/18/08 5:14:29 PM

 Submittal Transmittals

 In the last chapter, I took a deep look at Companies and Contacts, mainly because they are
building blocks to be used in other parts of the SmartCA domain model. In this chapter, I will
show what Submittal Transmittals are and how they also depend on Contacts, Companies, and
several other classes in the domain model.

 The Problem
 In the construction administration world, submittal requirements are part of the project
specifications. The book of specifications for construction projects is very large and describes “ how
the project is to be constructed and what results are to be achieved. ”

 Architects and engineers prepare the specifications. Almost all specifications used in the United
States and Canada are based on a format called the “ MasterFormat ” developed by the
Construction Specifications Institute. Some design firms use the 16 division MasterFormat from
the 1995 version. Other design firms have adopted the 2004 edition, which has 20 divisions.

 As a rule, submittal requirements are set forth in project specifications. Another section lays
out specific submittal procedures. At the beginning of a project, the general contractor will prepare
a submittal schedule. The schedule, sometimes called a submittal log, indicates the specification
sections, due dates, and responsible party for each required submittal. The design firm then
approves this schedule.

 The specification details the time requirements for the architect ’ s review of each submittal and the
type of cover sheets and transmittal memos needed to identify them. Examples of some common
submittals for specifications are items such as product data and shop drawings.

c05.indd 157c05.indd 157 3/18/08 5:15:30 PM3/18/08 5:15:30 PM

Chapter 5: Submittal Transmittals

158

 The Design
 A Submittal Transmittal is made up of many parts, but probably the most important part is the tracking
of the status of the specification sections. It is very important for the Smart Design firm to know the
status of all of their submittals, such as which have been received and which are still pending.

 Designing the Domain Model
 Figure 5.1 is a drawing showing the relationships between the classes that combine to make up a
Submittal Transmittal.

 Figure 5.1: Submittal Aggregate.

FromStatus

Tracking ItemRouting Item

Copy To Submittal
*

* *

Discipline Recipient

Specification
Section

 Obviously, the root of this Aggregate is the Submittal class. Probably its most important relationship
is the one to the Specification Section. This is the whole purpose of the submittal transmittal, to track
the actual materials and labor against the project specifications. The Status class is used to convey the
overall status of the Submittal. Also, notice that each Tracking Item is related to an individual
Specification Section: this is how the domain model determines the status of each specification item in
the Submittal.

 The next important part of the diagram is the Submittal ’ s relationship to the Routing Item. This is how
Smart Design determines to whom each Submittal has been routed for action, and that person ’ s
Discipline, such as an architect, engineer, or a construction administrator. Also, notice that there is a
Copy To relationship from a Submittal; this represents the list of Recipients who need to be copied on all
correspondence having to do with the Submittal.

c05.indd 158c05.indd 158 3/18/08 5:15:32 PM3/18/08 5:15:32 PM

Chapter 5: Submittal Transmittals

159

 Defining the Submittal Aggregate

 As you can see from the diagram of the Submittal Aggregate in Figure 5.2 , there are a lot of moving parts
in this Aggregate. Notice how I am starting to make use of some of the other Entities introduced in
previous chapters, such as the ProjectContact class, which is used to represent the To property of
the Submittal class, the Recipient property of the RoutingItem class, and the Contact property
of the CopyTo class. Also, the Employee class is used in the Submittal ’ s From property to represent the
Employee that originated the Submittal.

 Defining the Aggregate Boundaries
 The Submittal class has its own identity and is definitely the root of its own Aggregate. All of the other
classes in the diagram in Figure 5.3 , except for ProjectContact and Employee, belong to the Submittal
Aggregate. As shown in earlier chapters, ProjectContact belongs to the Project Aggregate, and
Employee is the root of its own Aggregate.

Submittal
Class
 EntityBase

Fields

Methods

Properties

Action
ContractNumber
DateReceived
DateToField
Final
Number
OtherDeliveryMethod
OtherRemainderLocation
PhaseNumber
ProjectKey
Reimbursable
RemainderUnderSubmittalNumber
Remarks
SpecSectionPrimaryIndex
SpecSectionSecondaryIndex
TotalPages

ProjectContact
Class
 EntityBase

Fields

Methods

Properties

Contact
OnFinalDistributionList
Project

Employee
Class
 Person

Fields

Methods

Properties

JobTitle

Status

SpecificationSection
Class

Fields

Methods

Properties

Description
Number
Title

SubmittalStatus
Class

Fields

Methods

Properties

ID
Status

CopyTo
Class

Fields

Methods

Properties

Notes

TrackingItem
Class

Fields

Methods

Properties

DeferredApproval
Description
SubstitutionNumber
TotalItemsReceived
TotalItemsSent

RoutingItem
Class

Fields

Methods

Properties

DateReturned
Contact
DaysLapsed
RoutingOrder

SpecSection SpecSection

RemainderLocation

TrackingItems

CopyToList

Discipline
Class

SubmittalRemainderLocation
Enum

None
RollDrawings
FilingCabinet
FilingCabinetUnderSubmittalNumber
Other

TrackingStatus
Enum

NoExceptionTaken
Mcn
Rr
R
Ssi
ReturnedNoComment
AgencyApproved
Accepted

Delivery
Enum

None
Fax
Overnight
Mail
Hand
Other

Recipient

To

From

RoutingItems

Status

Discipline
DeliveryMethod

Figure 5.2: Classes composing the Submittal Aggregate.

c05.indd 159c05.indd 159 3/18/08 5:15:32 PM3/18/08 5:15:32 PM

Chapter 5: Submittal Transmittals

160

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

ISubmittalRepository
Interface
 IRepository<Submittal>

IRepository<T>
GenericInterface

SubmittalRepository
Class
 SqlCeRepositoryBase<Submittal>

ISubmittalRepository

Figure 5.4: Submittal Aggregate
repository.

Submittal
Class
 EntityBase

Fields

Methods

Properties

Action
ContractNumber
DateReceived
DateToField
Final
Number
OtherDeliveryMethod
OtherRemainderLocation
PhaseNumber
ProjectKey
Reimbursable
RemainderUnderSubmittalNumber
Remarks
SpecSectionPrimaryIndex
SpecSectionSecondaryIndex
TotalPages

ProjectContact
Class
 EntityBase

Fields

Methods

Properties

Contact
OnFinalDistributionList
Project

Employee
Class
 Person

Fields

Methods

Properties

JobTitle

Status

SpecificationSection
Class

Fields

Methods

Properties

Description
Number
Title

SubmittalStatus
Class

Fields

Methods

Properties

ID
Status

CopyTo
Class

Fields

Methods

Properties

Notes

TrackingItem
Class

Fields

Methods

Properties

DeferredApproval
Description
SubstitutionNumber
TotalItemsReceived
TotalItemsSent

RoutingItem
Class

Fields

Methods

Properties

DateReturned
Contact
DaysLapsed
RoutingOrder

SpecSection SpecSection

RemainderLocation

TrackingItems

CopyToList

Discipline
Class

SubmittalRemainderLocation
Enum

None
RollDrawings
FilingCabinet
FilingCabinetUnderSubmittalNumber
Other

TrackingStatus
Enum

NoExceptionTaken
Mcn
Rr
R
Ssi
ReturnedNoComment
AgencyApproved
Accepted

Delivery
Enum

None
Fax
Overnight
Mail
Hand
Other

Recipient

To

From

RoutingItems

Status

Discipline
DeliveryMethod

Project
Aggregate

Submittal
Aggregate

Employee
Aggregate

Figure 5.3: Submittal Aggregate boundaries.

 Designing the Repository
 Since Submittal is its own Aggregate root, it will have its own repository, as shown in Figure 5.4 .

c05.indd 160c05.indd 160 3/18/08 5:15:32 PM3/18/08 5:15:32 PM

Chapter 5: Submittal Transmittals

161

 Although the Project Aggregate and the Employee Aggregate are part of the Submittal Aggregate, I will
not be covering their respective repositories here because they have already been covered in Chapter 3 .
I will only be covering the Submittal repository in this chapter.

 The ISubmittalRepository interface is the interface into instances of Submittal repositories. Here
is the ISubmittalRepository interface:

using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;

namespace SmartCA.Model.Submittals
{
 public interface ISubmittalRepository : IRepository < Submittal >
 {
 IList < Submittal > FindBy(Project project);
 IList < SpecificationSection > FindAllSpecificationSections();
 IList < SubmittalStatus > FindAllSubmittalStatuses();
 IList < Discipline > FindAllDisciplines();
 }
}

 The first method, FindBy , will be called fairly often, as most Submittals will only be looked at on a
per - project basis. The FindAllSpecificationSections , FindAllSubmittalStatuses , and
 FindAllDisciplines methods all return lists of their respective Value objects from the data store.
These lists will be used later in the UI for lookup purposes.

 Writing the Unit Tests
 In this section, I will be writing some unit tests of what I expect of the Submittal repository
implementation. As noted before, these tests will compile correctly, but they will also fail until I write the
code for the Repository implementation later on in the Solution section.

 There will be more unit tests in the accompanying code for this chapter, but for brevity ’ s sake I am
showing the tests that I think are important here.

 The FindSubmittalsByProjectTest Method
 The purpose of the FindSubmittalsByProjectTest method is to validate that the correct number of
 Submittal instances have been returned by the Submittal repository for a given Project:

 /// < summary >
 /// A test for FindBy(Project project)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindSubmittalsByProjectTest()
 {
 // Get a Project reference
 Project project =
 ProjectService.GetProject(“5704f6b9-6ffa-444c-9583-35cc340fce2a”);

(continued)

c05.indd 161c05.indd 161 3/18/08 5:15:33 PM3/18/08 5:15:33 PM

Chapter 5: Submittal Transmittals

162

 // FIns all of the Submittals for the Project
 IList < Submittal > submittals = this.repository.FindBy(project);

 // Verify that at least one Submittal was returned
 Assert.IsTrue(submittals.Count > 0);
 }

 This method starts out by getting a Project instance from the ProjectService class. It then calls
the FindBy method on the repository to get the list of Submittals for the given Project instance. The
method finishes by checking that the repository returned at least one Submittal .

The AddSubmittalTest Method
 The purpose of the AddSubmittalTest method is to test adding a new Submittal to the Submittal
repository:

 /// < summary >
 ///A test for Add(Submittal item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void AddSubmittalTest()
 {
 // Create a new Submittal
 IList < SpecificationSection > specSections =
 this.repository.FindAllSpecificationSections();
 Guid projectKey = new Guid(“5704f6b9-6ffa-444c-9583-35cc340fce2a”);
 Submittal submittal = new Submittal(specSections[0], projectKey);
 submittal.To = ProjectService.GetProject(projectKey).Contacts[0];
 submittal.From = EmployeeService.GetEmployees()[0];
 IList < SubmittalStatus > statuses =
 this.repository.FindAllSubmittalStatuses();
 submittal.Status = statuses[0];

 // Add the Submittal to the Repository
 this.repository.Add(submittal);

 // Commit the transaction
 this.unitOfWork.Commit();

 // Reload the Submittal and verify it’s number
 Submittal savedSubmittal = this.repository.FindBy(submittal.Key);
 Assert.AreEqual(“00 11 13.01.00”, savedSubmittal.Number);

 // Clean up
 this.repository.Remove(savedSubmittal);
 this.unitOfWork.Commit();
 }

 This test is a little bit more involved than the previous test. It starts out by getting the list of
all SpecificationSection instances. It then creates a Project Key value, and then passes the first
 SpecificationSection from the specSections list variable as well as the Project Key value into the

(continued)

c05.indd 162c05.indd 162 3/18/08 5:15:33 PM3/18/08 5:15:33 PM

Chapter 5: Submittal Transmittals

163

constructor of the Submittal class. The next step is to initialize the To and From properties of the
 Submittal instance with a ProjectContact instance and an Employee instance. Once those properties
are set, the next property that needs to be set is the Status property. The Status property is set the
value of the first SubmittalStatus in the list of all SubmittalStatus instances.

 The next step is to add the Submittal to the repository, and then to commit the transaction by calling the
 Commit method on the IUnitOfWork instance. The Commit method is important because that method
calls back into the Submittal repository to tell it to write the Submittal ’ s data to the data store.

 Once the Submittal has been saved, it is then reloaded, and the Submittal ’ s Number property is checked
to verify that the Add and Commit methods worked properly. The last task that the method needs to
perform is to remove the Submittal. Removing the Submittal that was just created leaves the data store in
the same state it was in before the method started, which is important for the rest of the tests that may
depend on a known state of the data store. Otherwise, some of the other tests may fail because there was
unexpected Submittal ’ s data in the data store.

The UpdateSubmittalTest Method
 The purpose of the UpdateTest method is to find a Submittal and update it with a different
 DateReceived property value and then verify that the change was persisted properly:

 /// < summary >
 ///A test for Updating a Submittal
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void UpdateSubmittalTest()
 {
 // Get the list of all Submittals
 IList < Submittal > submittals = this.repository.FindAll();

 // Change the first Submittal’s DateReceived value
 DateTime dateReceived = DateTime.Now;
 submittals[0].DateReceived = dateReceived;

 // Update the Repository
 this.repository[submittals[0].Key] = submittals[0];

 // Commit the transaction
 this.unitOfWork.Commit();

 // Verify that the change was saved
 IList < Submittal > refreshedSubmittals = this.repository.FindAll();
 Assert.AreEqual(dateReceived.Date,
 refreshedSubmittals[0].DateReceived.Value.Date);
 }

 In this method I start out by getting the entire list of Submittals from the data store. I then proceed to
change the DateReceived property value on the first Submittal in the list, and then call the indexer
method of the ISubmittalRepository . After the call to the indexer, I then use the IUnitOfWork
interface to commit the transaction. Last, I verify that the change actually made it to the data store by
reloading the same Submittal and checking to see if its DateReceived property value is the same
calendar date that I just assigned to the Submittal earlier in the method.

c05.indd 163c05.indd 163 3/18/08 5:15:33 PM3/18/08 5:15:33 PM

Chapter 5: Submittal Transmittals

164

The RemoveSubmittalTest Method
 The purpose of the RemoveTest method is to test the process of removing a Submittal from the
data store:

 /// < summary >
 ///A test for Remove(Submittal item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void RemoveSubmittalTest()
 {
 // Get the list of all Submittals
 IList < Submittal > submittals = this.repository.FindAll();

 // Remove the Submittal from the Repository
 this.repository.Remove(submittals[0]);

 // Commit the transaction
 this.unitOfWork.Commit();

 // Verify that there is now one less Submittal in the data store
 IList < Submittal > refreshedSubmittals = this.repository.FindAll();
 Assert.AreEqual(0, refreshedSubmittals.Count);

 // Reset the state
 this.AddSubmittalTest();
 }

 The first line of this method should look familiar; I am getting the entire list of Submittals from the data
store. I then remove the first Submittal in the list from the repository. After removing the Submittal from
the repository, I then use the IUnitOfWork interface to commit the transaction. Last, I verify that the
change actually made it to the data store by using the repository to find all of the Submittal instances
and making sure there is now one less Submittal than before. Last, I call the AddSubmittalTest method
to add the Submittal I just deleted back into the data store in order to reset the original state of the
data store.

 The Solution
 Now that the design is in place for the Submittal domain model, the Submittal Aggregate has been
defined and its boundaries have been determined, and the repository has been designed with its
associated tests, it is time to start the code implementation. In this section, I will be implementing these
designs, as well as implementing the ViewModel and the View for Submittals.

 Implementing the Submittal Class Private Fields and Constructors
 There are two constructors for the Submittal class, and they both take a projectKey parameter of type
 System.Object and a specSection parameter of type SpecificationSection . Every Submittal
must be associated with a Specification Section. That is why it is in both constructors. The projectKey
parameter links the Submittal with a particular Project.

c05.indd 164c05.indd 164 3/18/08 5:15:34 PM3/18/08 5:15:34 PM

Chapter 5: Submittal Transmittals

165

 I decided to use a key value for a Project instead of a full blown Project instance, since I can always get
to the Project via the ProjectService class. The second constructor takes a key argument of type
 System.Object , thus following the pattern I have laid out before for creating instances of existing
Entity classes.

using System;
using System.Collections.Generic;
using System.Text;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Employees;
using SmartCA.Model.Projects;

namespace SmartCA.Model.Submittals
{
 public class Submittal : EntityBase
 {
 private object projectKey;
 private SpecificationSection specSection;
 private string specSectionPrimaryIndex;
 private string specSectionSecondaryIndex;
 private ProjectContact to;
 private DateTime transmittalDate;
 private Employee from;
 private int totalPages;
 private Delivery deliveryMethod;
 private string otherDeliveryMethod;
 private string phaseNumber;
 private bool reimbursable;
 private bool final;
 private List < CopyTo > copyToList;
 private DateTime? dateReceived;
 private string contractNumber;
 private List < TrackingItem > trackingItems;
 private List < RoutingItem > routingItems;
 private string remarks;
 private ActionStatus action;
 private SubmittalStatus status;
 private DateTime? dateToField;
 private SubmittalRemainderLocation remainderLocation;
 private string remainderUnderSubmittalNumber;
 private string otherRemainderLocation;

 public Submittal(SpecificationSection specSection, object projectKey)
 : this(null, specSection, projectKey)
 {
 }

 public Submittal(object key, SpecificationSection specSection,
 object projectKey) : base(key)
 {
 this.projectKey = projectKey;

(continued)

c05.indd 165c05.indd 165 3/18/08 5:15:34 PM3/18/08 5:15:34 PM

Chapter 5: Submittal Transmittals

166

 this.specSection = specSection;
 this.specSectionPrimaryIndex = “01”;
 this.specSectionSecondaryIndex = “00”;
 this.to = null;
 this.transmittalDate = DateTime.Now;
 this.from = null;
 this.totalPages = 1;
 this.deliveryMethod = Delivery.None;
 this.otherDeliveryMethod = string.Empty;
 this.phaseNumber = string.Empty;
 this.reimbursable = false;
 this.final = false;
 this.copyToList = new List < CopyTo > ();
 this.dateReceived = null;
 this.contractNumber = string.Empty;
 this.trackingItems = new List < TrackingItem > ();
 this.routingItems = new List < RoutingItem > ();
 this.remarks = string.Empty;
 this.action = ActionStatus.NoExceptionTaken;
 this.status = null;
 this.dateToField = null;
 this.remainderLocation = SubmittalRemainderLocation.None;
 this.remainderUnderSubmittalNumber = string.Empty;
 this.otherRemainderLocation = string.Empty;
 this.Validate();
 }

 All of the data for the Submittal class are initialized and validated in the second constructor, which gets
called by the first constructor. The default value for specSectionPrimaryIndex is “ 01 ” ; this signifies
the first submittal associated with a particular Specification Section. The default value for
 specSectionSecondaryIndex is “ 00 ” ; the default value is retained unless another Submittal is created
for the same Specification Section.

 The Submittal Properties
 The Submittal class does not have much behavior yet, aside from the getter for the Number property,
which concatenates values in the submittal in order to produce a Submittal Number:

public object ProjectKey
 {
 get { return this.projectKey; }
 }

 public SpecificationSection SpecSection
 {
 get { return this.specSection; }
 set { this.specSection = value; }
 }

 public string SpecSectionPrimaryIndex

(continued)

c05.indd 166c05.indd 166 3/18/08 5:15:34 PM3/18/08 5:15:34 PM

Chapter 5: Submittal Transmittals

167

 {
 get { return this.specSectionPrimaryIndex; }
 set { this.specSectionPrimaryIndex = value; }
 }

 public string SpecSectionSecondaryIndex
 {
 get { return this.specSectionSecondaryIndex; }
 set { this.specSectionSecondaryIndex = value; }
 }

 public string Number
 {
 get
 {
 return string.Format(“{0}.{1}.{2}”,
 this.specSection.Number, this.specSectionPrimaryIndex,
 this.specSectionSecondaryIndex);
 }
 }

 public ProjectContact To
 {
 get { return this.to; }
 set { this.to = value; }
 }

 public DateTime TransmittalDate
 {
 get { return this.transmittalDate; }
 set { this.transmittalDate = value; }
 }

 public Employee From
 {
 get { return this.from; }
 set { this.from = value; }
 }

 public int TotalPages
 {
 get { return this.totalPages; }
 set { this.totalPages = value; }
 }

 public Delivery DeliveryMethod
 {
 get { return this.deliveryMethod; }
 set { this.deliveryMethod = value; }
 }

 public string OtherDeliveryMethod

(continued)

c05.indd 167c05.indd 167 3/18/08 5:15:35 PM3/18/08 5:15:35 PM

Chapter 5: Submittal Transmittals

168

 {
 get { return this.otherDeliveryMethod; }
 set { this.otherDeliveryMethod = value; }
 }

 public string PhaseNumber
 {
 get { return this.phaseNumber; }
 set { this.phaseNumber = value; }
 }

 public bool Reimbursable
 {
 get { return this.reimbursable; }
 set { this.reimbursable = value; }
 }

 public bool Final
 {
 get { return this.final; }
 set { this.final = value; }
 }

 public IList < CopyTo > CopyToList
 {
 get { return this.copyToList; }
 }

 public DateTime? DateReceived
 {
 get { return this.dateReceived; }
 set { this.dateReceived = value; }
 }

 public string ContractNumber
 {
 get { return this.contractNumber; }
 set { this.contractNumber = value; }
 }

 public IList < TrackingItem > TrackingItems
 {
 get { return this.trackingItems; }
 }

 public IList < RoutingItem > RoutingItems
 {
 get { return this.routingItems; }
 }

(continued)

c05.indd 168c05.indd 168 3/18/08 5:15:35 PM3/18/08 5:15:35 PM

Chapter 5: Submittal Transmittals

169

 public string Remarks
 {
 get { return this.remarks; }
 set { this.remarks = value; }
 }

 public ActionStatus Action
 {
 get { return this.action; }
 set { this.action = value; }
 }

 public SubmittalStatus Status
 {
 get { return this.status; }
 set { this.status = value; }
 }

 public DateTime? DateToField
 {
 get { return this.dateToField; }
 set { this.dateToField = value; }
 }

 public SubmittalRemainderLocation RemainderLocation
 {
 get { return this.remainderLocation; }
 set { this.remainderLocation = value; }
 }

 public string RemainderUnderSubmittalNumber
 {
 get { return this.remainderUnderSubmittalNumber; }
 set { this.remainderUnderSubmittalNumber = value; }
 }

 public string OtherRemainderLocation
 {
 get { return this.otherRemainderLocation; }
 set { this.otherRemainderLocation = value; }
 }

 Actually, this code could be simplified considerably because the properties currently do nothing other
than setting or getting the backing field. In C# 3.0 the backing field can be created automatically by the
compiler in these situations; however, I do actually want the private fields in this class because later
I intend to add more behavior to this class and that behavior will be acting on the private fields.

c05.indd 169c05.indd 169 3/18/08 5:15:35 PM3/18/08 5:15:35 PM

Chapter 5: Submittal Transmittals

170

 The SpecSection Property
 The SpecSection property represents a SpecificationSection class instance. The
 SpecificationSection class is a value class composed of a number, a title, and a description:

using System;

namespace SmartCA.Model.Projects
{
 public class SpecificationSection
 {
 private string number;
 private string title;
 private string description;

 public SpecificationSection(string number, string title,
 string description)
 {
 this.number = number;
 this.title = title;
 this.description = description;
 }

 public string Number
 {
 get { return this.number; }
 }

 public string Title
 {
 get { return this.title; }
 }

 public string Description
 {
 get { return this.description; }
 }
 }
}

 Although the concept of a Specification Section is very important to Submittals, it is still a value class
because it is only representing values. This may change later, but, for now, it makes things simple to
keep this as a Value class.

The DeliveryMethod Property
 The DeliveryMethod property of the Submittal class is represented by the Delivery enumeration:

using System;

namespace SmartCA.Model.Submittals
{
 [Flags]
 public enum Delivery

c05.indd 170c05.indd 170 3/18/08 5:15:36 PM3/18/08 5:15:36 PM

Chapter 5: Submittal Transmittals

171

 {
 None = 0,
 Fax = 1,
 Overnight = 2,
 Mail = 4,
 Hand = 8,
 Other = 16
 }
}

 Take a look at the Flags attribute on the enumeration. This means that the values of this enumeration
can be combined, and when ToString() is called on the enumeration, it will render a comma - separated
list of enumeration values, such as “ Fax, Mail. ”

 This is very handy when displaying the combination of values selected. I could do the same thing
without the Flags attribute, but then the ToString() method would only render the value 5.

 Using the enumeration in this way shows that the same Submittal can be delivered in a combination of
ways, such as Fax and Mail, or Hand and Overnight.

 The CopyToList Property
 The CopyToList property represents all of the people that get a copy of the Submittal once it is
transmitted. It is actually a List of type CopyTo . The CopyTo class is also a value class, containing
read - only properties for a ProjectContact and notes about the ProjectContact being copied:

using SmartCA.Model.Projects;

namespace SmartCA.Model.Submittals
{
 public class CopyTo
 {
 private ProjectContact contact;
 private string notes;

 public CopyTo(ProjectContact contact, string notes)
 {
 this.contact = contact;
 this.notes = notes;
 }

 public ProjectContact Contact
 {
 get { return this.contact; }
 }

 public string Notes
 {
 get { return this.notes; }
 }

 public override bool Equals(object obj)

(continued)

c05.indd 171c05.indd 171 3/18/08 5:15:36 PM3/18/08 5:15:36 PM

Chapter 5: Submittal Transmittals

172

 {
 return obj != null
 & & obj.GetType() == typeof(CopyTo)
 & & this == (CopyTo)obj;
 }

 public static bool operator ==(CopyTo one, CopyTo other)
 {
 // check for both null (cast to object to avoid recursive loop)
 if ((object)one == null & & (object)other == null)
 {
 return true;
 }

 // check for either of them equal to null
 if ((object)one == null || (object)other == null)
 {
 return false;
 }

 if (one.Contact != other.Contact
 || one.Notes != other.Notes)
 {
 return false;
 }

 return true;
 }

 public static bool operator !=(CopyTo one, CopyTo other)
 {
 return !(one == other);
 }

 public override int GetHashCode()
 {
 return this.contact.GetHashCode()
 ^ this.notes.GetHashCode();
 }

 public override string ToString()
 {
 return string.Format(“{0} - {1}”,
 this.contact.Contact.LastName, this.notes);
 }
 }
}

 As you will see in later chapters, it makes sense to have this class as a Value class, especially since it will
be reused later in other parts of the domain model.

(continued)

c05.indd 172c05.indd 172 3/18/08 5:15:36 PM3/18/08 5:15:36 PM

Chapter 5: Submittal Transmittals

173

The TrackingItems Property
 The TrackingItems property represents a List of type TrackingItem . The TrackingItem class is not a
Value class, but it must be constructed with a SpecificationSection instance.

namespace SmartCA.Model.Submittals
{
 public class TrackingItem
 {
 private int totalItemsReceived;
 private int totalItemsSent;
 private int deferredApproval;
 private int substitutionNumber;
 private string description;
 private ActionStatus status;

 public TrackingItem()
 {
 this.totalItemsReceived = 0;
 this.totalItemsSent = 0;
 this.deferredApproval = 0;
 this.description = string.Empty;
 this.status = ActionStatus.NoExceptionTaken;
 }

 public int TotalItemsReceived
 {
 get { return this.totalItemsReceived; }
 set
 {
 if (value != this.totalItemsReceived)
 {
 this.totalItemsReceived = value;
 // Default to making the total number
 // of items sent equal to what was received
 this.totalItemsSent = value;
 }
 }
 }

 public int TotalItemsSent
 {
 get { return this.totalItemsSent; }
 set { this.totalItemsSent = value; }
 }

 public int DeferredApproval
 {
 get { return this.deferredApproval; }
 set { this.deferredApproval = value; }
 }

 public int SubstitutionNumber

(continued)

c05.indd 173c05.indd 173 3/18/08 5:15:37 PM3/18/08 5:15:37 PM

Chapter 5: Submittal Transmittals

174

 {
 get { return this.substitutionNumber; }
 set { this.substitutionNumber = value; }
 }

 public string Description
 {
 get { return this.description; }
 set { this.description = value; }
 }

 public ActionStatus Status
 {
 get { return this.status; }
 set { this.status = value; }
 }
 }
}

 The Constructor

 The reason the TrackingItem class must be passed a SpecificationSection instance in its
constructor is because that is what the TrackingItem class is providing information about, and it must
have a value in order to do that.

The TotalItemsSent and TotalItemsReceived Properties

 The TotalItemsSent property has logic in its setter to update automatically the TotalItemsReceived
property to the same value as was received. This is a business rule specified by the Smart Design firm,
and one that used to reside in the user interface code of the legacy application.

The DeferredApproval Property

 There is nothing special, codewise, about this property, except that I need to explain the concept of
Deferred Approval. The Deferred Approvals are documents that are prepared by others that are
 “ deferred ” agency submittal until the manufacturer is selected. These could be things like fire sprinkler
systems, bleachers, and elevator guide rails. Once those plans are approved they become part of the
Contract Documents.

 They are typically listed on the General Sheet of the Smart Design firm ’ s Drawings under a Deferred
Approval section and are listed like:

 1. Fire Sprinkler System

 2. Bleachers

 3. Elevator Guide Rails

 The number they assign follows the number listed on the General Sheet. So, in this case, Fire Sprinkler
System would have a Deferred Approval value of 1, Bleachers would have a value of 2, and so on.

(continued)

c05.indd 174c05.indd 174 3/18/08 5:15:37 PM3/18/08 5:15:37 PM

Chapter 5: Submittal Transmittals

175

 The Status Property

 The Status property is using the ActionStatus enumeration type. This type is fairly self - evident:

using System;

namespace SmartCA.Model.Submittals
{
 public enum ActionStatus
 {
 Accepted,
 AgencyApproved,
 MakeCorrectionsNoted,
 NoExceptionTaken,
 ReceiptAcknowledgedNoActionTaken,
 Rejected,
 ReturnedNoComment,
 ReviseResubmit,
 SubmitSpecificItem,
 }
}

 The RoutingItems Property
 The RoutingItems property represents a List of type RoutingItem . The RoutingItem class keeps
track of who has seen a particular document, when the document was seen, and how long the document
was held before it was returned. The RoutingItem class is not a Value class, but it must be constructed
with the discipline of the person being routed to, who the person is and in what order they are in the
routing, and when the item was sent to them.

using System;
using SmartCA.Model.Projects;

namespace SmartCA.Model.Submittals
{
 public class RoutingItem
 {
 private object key;
 private Discipline discipline;
 private int routingOrder;
 private ProjectContact recipient;
 private DateTime dateSent;
 private DateTime? dateReturned;
 private int daysLapsed;

 public RoutingItem(object key, Discipline discipline,
 int routingOrder, ProjectContact recipient,
 DateTime dateSent)
 {
 this.key = key;
 this.discipline = discipline;
 this.routingOrder = routingOrder;
 this.recipient = recipient;

(continued)

c05.indd 175c05.indd 175 3/18/08 5:15:37 PM3/18/08 5:15:37 PM

Chapter 5: Submittal Transmittals

176

 this.dateSent = dateSent;
 this.dateReturned = null;
 this.daysLapsed = 0;
 }

 public object Key
 {
 get { return this.key; }
 }

 public Discipline Discipline
 {
 get { return this.discipline; }
 }

 public int RoutingOrder
 {
 get { return this.routingOrder; }
 }

 public ProjectContact Recipient
 {
 get { return this.recipient; }
 }

 public DateTime DateSent
 {
 get { return this.dateSent; }
 }

 public DateTime? DateReturned
 {
 get { return this.dateReturned; }
 set
 {
 if (value != this.dateReturned & & value.HasValue)
 {
 this.dateReturned = value;
 this.CalculateDaysLapsed();
 }
 }
 }

 public int DaysLapsed
 {
 get { return this.daysLapsed; }
 }

 private void CalculateDaysLapsed()
 {
 if (this.dateReturned.HasValue & &
 this.dateReturned.Value > this.dateSent)

(continued)

c05.indd 176c05.indd 176 3/18/08 5:15:38 PM3/18/08 5:15:38 PM

Chapter 5: Submittal Transmittals

177

 {
 this.daysLapsed =
 this.dateReturned.Value.Subtract(this.dateSent).Days;
 }
 }
 }
}

 The Constructor

 The reason that the RoutingItem class must pass a Discipline instance, a RoutingOrder value, a
 ProjectContact instance, and a DateTime value in its constructor is that the RoutingItem class needs
to know who the item is being routed to (ProjectContact recipient), what that person ’ s discipline
(Discipline discipline) is, and when (DateTime dateSent) it was sent to them. Without these
values, the RoutingItem instance is useless.

The Properties

 The Discipline , RoutingOrder , Recipient , and DateSent properties are all read - only, as their values
can only be set in the constructor. In order to change these values, you must construct a new RoutingItem
instance. The DateReturned value is the only property in the class that is not read - only, and when it is
changed, it calls the CalculateDaysLapsed method if the value being passed to it is different from the
original value. The CalculateDaysLapsed method figures out the number of days between when the item
was sent and when it was returned, and then updates the value for the read - only DaysLapsed property.

The Status Property
 The Status property indicates the overall status of the Submittal, such as whether it is complete or
whether it has even been accepted yet. The Status property is represented by a SubmittalStatus
instance. The SubmittalStatus class is a Value class, composed of an integer identification value and a
status value of type string.

using System;

namespace SmartCA.Model.Submittals
{
 public class SubmittalStatus
 {
 private int id;
 private string status;

 public SubmittalStatus(int id, string status)
 {
 this.id = id;
 this.status = status;
 }

 public int Id
 {
 get { return this.id; }
 }

 public string Status

(continued)

c05.indd 177c05.indd 177 3/18/08 5:15:38 PM3/18/08 5:15:38 PM

Chapter 5: Submittal Transmittals

178

 {
 get { return this.status; }
 }
 }
}

 The values for the SubmittalStatus class will come from the database.

The RemainderLocation Property
 The RemainderLocation property is represented by the SubmittalRemainderLocation enumeration:

using System;

namespace SmartCA.Model.Submittals
{
 [Flags]
 public enum SubmittalRemainderLocation
 {
 None,
 RollDrawings,
 FilingCabinet,
 FilingCabinetUnderSubmittalNumber,
 Other
 }
}

 This property indicates the location of the rest of the items associated with the Submittal. This is for
Smart Design ’ s use only and is not to be seen by third parties. This property allows Smart Design to tie
together papers associated with the electronic Submittal in a timely fashion. They are not ready to go
paperless just yet, and so this process is one way to allow them at least to track the location of their
Submittal paper documents.

 The Submittal Repository Implementation
 After going over the ISubmittalRepository interface in the Design section, it is now time to explain
how the Submittal class actually gets persisted to and from the data store by the Submittal repository.
In this section, I will be writing the code for the Submittal repository.

 Most of the work for building a Submittal instance from the data store is done in the
 SqlCeReposiotryBase < T > class. If you recall, the Template Method pattern I have been using in the
repositories for getting Entity Root instances, the BuildChildCallbacks method, must be overridden
in the SubmittalRepository .

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(SubmittalFactory.FieldNames.EmployeeId,
 this.AppendFrom);

(continued)

c05.indd 178c05.indd 178 3/18/08 5:15:38 PM3/18/08 5:15:38 PM

Chapter 5: Submittal Transmittals

179

 this.ChildCallbacks.Add(SubmittalFactory.FieldNames.ProjectContactId,
 this.AppendTo);
 this.ChildCallbacks.Add(“CopyToList”,
 delegate(Submittal submittal, object childKeyName)
 {
 this.AppendCopyToList(submittal);
 });
 this.ChildCallbacks.Add(“TrackingItems”,
 delegate(Submittal submittal, object childKeyName)
 {
 this.AppendTrackingItems(submittal);
 });
 this.ChildCallbacks.Add(“RoutingItems”,
 delegate(Submittal submittal, object childKeyName)
 {
 this.AppendRoutingItems(submittal);
 });
 }

 #endregion

 The AppendFrom Callback

 The first entry made in the ChildCallbacks dictionary is for the AppendFrom method. Thanks to the
 EmployeeService class ’s GetEmployee method, this method ’ s code is very simple:

 private void AppendFrom(Submittal submittal, object fromEmployeeId)
 {
 submittal.From = EmployeeService.GetEmployee(fromEmployeeId);
 }

 You may recall the GetEmployee private method in the ProjectRepository class from Chapter 3 .
I have since refactored the code from the GetEmployee method into the EmployeeService class where
it really belongs:

 public static Employee GetEmployee(object employeeKey)
 {
 return EmployeeService.repository.FindBy(employeeKey);
 }

 This method simply delegates to the IEmployeeRepository interface instance to find an Employee by
the method ’ s employeeKey argument.

The AppendTo Callback

 This method is very similar to the AppendFrom method; instead of retrieving an Employee, however, it
retrieves and adds a ProjectContact to the Submittal:

private void AppendTo(Submittal submittal, object fromProjectContactKey)
 {
 submittal.To = ProjectService.GetProjectContact(submittal.ProjectKey,
 fromProjectContactKey);
 }

c05.indd 179c05.indd 179 3/18/08 5:15:38 PM3/18/08 5:15:38 PM

Chapter 5: Submittal Transmittals

180

 This uses the ProjectContactService ’ s class newly added GetProjectContact method to find the
right ProjectContact based on the key value:

 public static ProjectContact GetProjectContact(object projectKey,
 object projectContactKey)
 {
 // Get the list of contacts for the project
 List < ProjectContact > contacts = new List < ProjectContact > (
 ProjectService.projectRepository.FindBy(projectKey).Contacts);
 // Return the one that matches the key
 return contacts.Where(c = > c.Key.Equals(projectContactKey)).Single();
 }

 The GetProjectContact method first uses the ProjectRepository ’ s FindBy method to get the correct
Project instance, and it then gets the Contacts property (which is an IList < ProjectContact > type)
of the found Project. I then take the IList < ProjectContact > instance and use it to initialize
a List < ProjectContact > type. I then turn the IList < ProjectContact > type into a
 List < ProjectContact > type. The reason why I do this is so that I can use a LINQ query
on the List < ProjectContact > instance to easily find the ProjectContact I am trying to traverse to:

// Return the one that matches the key
return contacts.Where(c = > c.Key.Equals(projectContactKey)).Single();

 The above code uses a lambda expression (c = > c.Key.Equals(projectContactKey)) as an
argument for the Where extension method on the List < T > class to return a type of IEnumerable
 < ProjectContactContact > . The Single extension method of the IEnumerable < T > class is then used
to return a single ProjectContact instance. Pretty cool, huh? That LINQ query saved me several lines of
code, and I think that it makes the intent of what I am trying to do much more obvious.

 The AppendCopyToList Callback

 The AppendCopyToList method has to perform a query on the database to get a list of CopyTo instances
and then adds the items from the list to the CopyToList property on the Submittal class:

 private void AppendCopyToList(Submittal submittal)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT * FROM SubmittalCopyList”);
 builder.Append(string.Format(“ WHERE SubmittalID = ‘{0}’;”,
 submittal.Key));
 using (IDataReader reader = this.ExecuteReader(builder.ToString()))
 {
 while (reader.Read())
 {
 submittal.CopyToList.Add(SubmittalFactory.BuildCopyTo(
 submittal.ProjectKey, reader));
 }
 }
 }

c05.indd 180c05.indd 180 3/18/08 5:15:39 PM3/18/08 5:15:39 PM

Chapter 5: Submittal Transmittals

181

 As the code iterates through the IDataReader results of the query, I use the SubmittalFactory ’ s
 BuildCopyTo method to build the CopyTo instance from the IDataReader ’ s current position.
The BuildCopyTo method is also fairly interesting, as it uses the ProjectContactService class to help
it get its job done:

 internal static CopyTo BuildCopyTo (object projectKey , IDataReader reader)
 {
 ProjectContact contact = ProjectService.GetProjectContact(projectKey,
 reader[FieldNames.ProjectContactId]);
 return new CopyTo(contact, reader[FieldNames.Notes].ToString());
 }

 The GetProjectContact method being called should look familiar, since I just showed that earlier in
the chapter. Notice, also, that the CopyTo class is a Value class, as evidenced by having to supply all
of the data for the class to its constructor.

 The AppendTrackingItems Callback

 This method is very similar to the AppendCopyToList method just shown:

 private void AppendTrackingItems(Submittal submittal)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT * FROM SubmittalTrackingItem”);
 builder.Append(string.Format(“ WHERE SubmittalID = ‘{0}’;”,
 submittal.Key));
 using (IDataReader reader = this.ExecuteReader(builder.ToString()))
 {
 while (reader.Read())
 {
 submittal.TrackingItems.Add(
 SubmittalFactory.BuildTrackingItem(reader));
 }
 }
 }

 It also uses a StringBuilder to build up a SQL statement, and then uses SqlCeRepositoryBase < T > to
get an IDataReader instance. While iterating through the IDataReader , it also uses the
 SubmittalFactory , this time calling the BuildTrackingItem method.

 private void AppendTrackingItems(Submittal submittal)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT * FROM SubmittalTrackingItem sti”);
 builder.Append(“ INNER JOIN SpecificationSection ss”);
 builder.Append(“ ON sti.SpecificationSectionID =”);
 builder.Append(“ss.SpecificationSectionID”);
 builder.Append(string.Format(“ WHERE SubmittalID = ‘{0}’;”,
 submittal.Key));
 using (IDataReader reader = this.ExecuteReader(builder.ToString()))
 {
 while (reader.Read())

(continued)

c05.indd 181c05.indd 181 3/18/08 5:15:39 PM3/18/08 5:15:39 PM

Chapter 5: Submittal Transmittals

182

 {
 submittal.TrackingItems.Add(
 SubmittalFactory.BuildTrackingItem(reader));
 }
 }
 }

 The BuildTrackingItem method first builds a SpecificationSection object to pass in to the
 TrackingItem class ’ s constructor, and then it populates the rest of the class ’ s properties:

 internal static TrackingItem BuildTrackingItem(IDataReader reader)
 {
 TrackingItem item = new TrackingItem(
 SubmittalFactory.BuildSpecSection(reader));
 item.TotalItemsReceived = DataHelper.GetInteger(
 reader[FieldNames.TotalItemsReceived]);
 item.TotalItemsSent = DataHelper.GetInteger(
 reader[FieldNames.TotalItemsSent]);
 item.DeferredApproval = DataHelper.GetInteger(
 reader[FieldNames.DeferredApproval]);
 item.SubstitutionNumber = DataHelper.GetInteger(
 reader[FieldNames.SubstitutionNumber]);
 item.Description = reader[FieldNames.Description].ToString();
 item.Status = DataHelper.GetEnumValue < ActionStatus > (
 reader[FieldNames.Status].ToString());
 return item;
 }

 I get some nice code reuse when building the SpecificationSection instance via the
 BuildSpecSection method of the factory. The rest of this factory method is just setting properties on
the TrackingItem from the IDataReader instance.

The AppendRoutingItems Callback

 This method is also similar to the previous callback methods, following the same pattern of executing a
SQL statement and delegating to the factory to build RoutingItem instances:

 private void AppendRoutingItems(Submittal submittal)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT * FROM SubmittalRoutingItem sri “);
 builder.Append(“ INNER JOIN RoutingItem ri ON”);
 builder.Append(“ sri.RoutingItemID = ri.RoutingItemID”);
 builder.Append(“ INNER JOIN Discipline d ON”);
 builder.Append(“ ri.DisciplineID = d.DisciplineID”);
 builder.Append(string.Format(“ WHERE sri.SubmittalID = ‘{0}’;”,
 submittal.Key));
 using (IDataReader reader = this.ExecuteReader(builder.ToString()))

(continued)

c05.indd 182c05.indd 182 3/18/08 5:15:40 PM3/18/08 5:15:40 PM

Chapter 5: Submittal Transmittals

183

 {
 while (reader.Read())
 {
 submittal.RoutingItems.Add(SubmittalFactory.BuildRoutingItem(
 submittal.ProjectKey, reader));
 }
 }
 }

 This code should look very familiar to you by now, except for the SQL statement requiring a few more
joins to get all of the necessary data into the IDataReader instance. I am not going to show the
 BuildRoutingItem method of the SubmittalFactory class, since it is very similar to the
 BuildCopyTo method just shown.

 Unit of Work Implementation
 Following the same steps that I have shown before to implement the Unit of Work pattern, I only need to
override three methods, PersistNewItem(Submittal item) , PersistUpdatedItem(Submittal
item) , and PersistDeletedItem(Submittal item) .

The PersistNewItem Method

 The first method override for the SubmittalRepository ’ s Unit of Work implementation is the
 PersistNewItem method:

protected override void PersistNewItem(Submittal item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO Submittal
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},
{18},{19},{20},{21}) “,
 SubmittalFactory.FieldNames.SubmittalId,
 ProjectFactory.FieldNames.ProjectId,
 SubmittalFactory.FieldNames.SpecificationSectionId,
 SubmittalFactory.FieldNames.SpecificationSectionPrimaryIndex,
 SubmittalFactory.FieldNames.SpecificationSectionSecondaryIndex,
 SubmittalFactory.FieldNames.ProjectContactId,
 SubmittalFactory.FieldNames.EmployeeId,
 SubmittalFactory.FieldNames.TotalPages,
 SubmittalFactory.FieldNames.DeliveryMethod,
 SubmittalFactory.FieldNames.OtherDeliveryMethod,
 SubmittalFactory.FieldNames.PhaseNumber,
 SubmittalFactory.FieldNames.Reimbursable,
 SubmittalFactory.FieldNames.Final,
 SubmittalFactory.FieldNames.DateReceived,
 SubmittalFactory.FieldNames.ContractNumber,
 SubmittalFactory.FieldNames.Remarks,
 SubmittalFactory.FieldNames.Action,
 SubmittalFactory.FieldNames.SubmittalStatusId,
 SubmittalFactory.FieldNames.DateToField,
 SubmittalFactory.FieldNames.RemainderLocation,
 SubmittalFactory.FieldNames.RemainderUnderSubmittalNumber,

(continued)

c05.indd 183c05.indd 183 3/18/08 5:15:40 PM3/18/08 5:15:40 PM

Chapter 5: Submittal Transmittals

184

 SubmittalFactory.FieldNames.OtherRemainderLocation));
 builder.Append(string.Format(“VALUES ({0},{1},{2},{3},{4},{5},{6},{7},
{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},{18},{19},{20},{21});”,
 DataHelper.GetSqlValue(item.Key),
 DataHelper.GetSqlValue(item.ProjectKey),
 DataHelper.GetSqlValue(item.SpecSection.Key),
 DataHelper.GetSqlValue(item.SpecSectionPrimaryIndex),
 DataHelper.GetSqlValue(item.SpecSectionSecondaryIndex),
 DataHelper.GetSqlValue(item.To.Key),
 DataHelper.GetSqlValue(item.From.Key),
 DataHelper.GetSqlValue(item.TotalPages),
 DataHelper.GetSqlValue(item.DeliveryMethod),
 DataHelper.GetSqlValue(item.OtherDeliveryMethod),
 DataHelper.GetSqlValue(item.PhaseNumber),
 DataHelper.GetSqlValue(item.Reimbursable),
 DataHelper.GetSqlValue(item.Final),
 DataHelper.GetSqlValue(item.DateReceived),
 DataHelper.GetSqlValue(item.ContractNumber),
 DataHelper.GetSqlValue(item.Remarks),
 DataHelper.GetSqlValue(item.Action),
 DataHelper.GetSqlValue(item.Status.Id),
 DataHelper.GetSqlValue(item.DateToField),
 DataHelper.GetSqlValue(item.RemainderLocation),
 DataHelper.GetSqlValue(item.RemainderUnderSubmittalNumber),
 DataHelper.GetSqlValue(item.OtherRemainderLocation)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects
 this.InsertCopyToList(item);
 this.InsertRoutingItems(item);
 this.InsertTrackingItems(item);
 }

 The code builds up a large insert statement composed of the values from the Submittal instance, and
then executes the query using the Microsoft Enterprise Library ’ s Database object. After the insert
statement has been executed, I also need to insert the CopyTo , RoutingItem , and TrackingItem
instances for the Submittal. I do this by calling the InsertCopyToList , InsertRoutingItems ,
and InsertTrackingItems methods, which all take a Submittal instance as an argument.
The InsertCopyToList method saves all of the Submittal ’ s CopyTo items in the database:

 private void InsertCopyToList(Submittal submittal)
 {
 foreach (CopyTo copyTo in submittal.CopyToList)
 {
 this.InsertCopyTo(copyTo, submittal.Key);
 }
 }

(continued)

c05.indd 184c05.indd 184 3/18/08 5:15:40 PM3/18/08 5:15:40 PM

Chapter 5: Submittal Transmittals

185

 The InsertCopyToList method just iterates the CopyToList property of the Submittal instance and
calls InsertCopyTo on each item in the list. InsertCopyTo then saves the CopyTo instance to the
database:

 private void InsertCopyTo(CopyTo copyTo, object key)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO SubmittalCopyList
({0},{1},{2}) “,
 SubmittalFactory.FieldNames.SubmittalId,
 SubmittalFactory.FieldNames.ProjectContactId,
 SubmittalFactory.FieldNames.Notes));
 builder.Append(string.Format(“VALUES ({0},{1},{2});”,
 DataHelper.GetSqlValue(key),
 DataHelper.GetSqlValue(copyTo.Contact.Key),
 DataHelper.GetSqlValue(copyTo.Notes)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));
 }

 The code for InsertCopyTo should look very familiar; it follows the same pattern of building a SQL
insert string and then executing it against the database.

 I am not going to show the code for the InsertRoutingItems and InsertTrackingItems methods
because they and their helper methods are almost identical to the InsertCopyToList method and its
helper methods.

The PersistUpdatedItem Method

 PersistUpdatedItem first does an update to the Submittal table:

protected override void PersistUpdatedItem(Submittal item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“UPDATE Submittal SET “);

 builder.Append(string.Format(“{0} = {1}” ,
 SubmittalFactory.FieldNames.SpecificationSectionId,
 DataHelper.GetSqlValue(item.SpecSection.Key)));

 builder.Append(string.Format(“,{0} = {1}” ,
 SubmittalFactory.FieldNames.SpecificationSectionPrimaryIndex,
 DataHelper.GetSqlValue(item.SpecSectionPrimaryIndex)));

 **

 builder.Append(string.Format(“,{0} = {1}” ,
 SubmittalFactory.FieldNames.OtherRemainderLocation,
 DataHelper.GetSqlValue(item.OtherRemainderLocation)));

(continued)

c05.indd 185c05.indd 185 3/18/08 5:15:41 PM3/18/08 5:15:41 PM

Chapter 5: Submittal Transmittals

186

 builder.Append(“ “);
 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects

 // First, delete the existing ones
 this.DeleteCopyToList(item);
 this.DeleteRoutingItems(item);
 this.DeleteTrackingItems(item);

 // Now, add the current ones
 this.InsertCopyToList(item);
 this.InsertRoutingItems(item);
 this.InsertTrackingItems(item);
 }

 I have omitted several lines of repetitive code building the SQL update statement in the middle of the
code in order save you from the boring code. The omitted lines are represented by the stars (***********).

 The second part of the method uses the DeleteCoyToList , DeleteRoutingItems , and
 DeleteTrackingItems helper methods to delete all of the child objects of the Submittal, and then uses
the familiar InsertCopyToList , InsertRoutingItems , and InsertTrackingItems helper methods
to add the existing child objects from the Submittal to the database. DeleteCopyToList runs a query
against the SubmittalCopyList table to remove all entries with a matching SubmittalID field value.

 private void DeleteCopyToList(Submittal submittal)
 {
 string query = string.Format(“DELETE FROM SubmittalCopyList {0}”,
 this.BuildBaseWhereClause(submittal.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

 The DeleteRoutingItems and DeleteTrackingItems are very similar to the DeleteCopyToList
method, so I will not show the code for those methods here.

The PersistDeletedItem Method

 The last method in SubmittalRepository to override, PersistDeletedItem , follows the same
pattern that I have shown for the PersistDeletedItem override in the other Repository classes:

 protected override void PersistDeletedItem(Submittal item)
 {
 // Delete the child objects first
 this.DeleteCopyToList(item);
 this.DeleteRoutingItems(item);

(continued)

c05.indd 186c05.indd 186 3/18/08 5:15:41 PM3/18/08 5:15:41 PM

Chapter 5: Submittal Transmittals

187

 this.DeleteTrackingItems(item);

 // Now delete the submittal
 string query = string.Format(“DELETE FROM Submittal {0}” ,
 this.BuildBaseWhereClause(item.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

 This code deletes all of the child objects from the Submittal first, and then deletes the Submittal record
from the database.

 The Submittal Service Implementation
 The only Service classes I have implemented up to this point are the Service classes that live in the
domain model layer and act as facades for their respective Repository interfaces.

 The SubmittalService class is responsible for retrieving and saving Submittal instances:

using System.Collections.Generic;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;

namespace SmartCA.Model.Submittals
{
 public static class SubmittalService
 {
 private static ISubmittalRepository repository;
 private static IUnitOfWork unitOfWork;

 static SubmittalService()
 {
 SubmittalService.unitOfWork = new UnitOfWork();
 SubmittalService.repository =
 RepositoryFactory.GetRepository < ISubmittalRepository,
 Submittal > (SubmittalService.unitOfWork);
 }

 public static IList < Submittal > GetSubmittals(Project project)
 {
 return SubmittalService.repository.FindBy(project);
 }

 public static IList < SpecificationSection > GetSpecificationSections()
 {
 return SubmittalService.repository.FindAllSpecificationSections();
 }

(continued)

c05.indd 187c05.indd 187 3/18/08 5:15:41 PM3/18/08 5:15:41 PM

Chapter 5: Submittal Transmittals

188

 public static IList < SubmittalStatus > GetSubmittalStatuses()
 {
 return SubmittalService.repository.FindAllSubmittalStatuses();
 }

 public static void SaveSubmittal(Submittal submittal)
 {
 SubmittalService.repository[submittal.Key] = submittal;
 SubmittalService.unitOfWork.Commit();
 }

 public static IList < Discipline > GetDisciplines()
 {
 return SubmittalService.repository.FindAllDisciplines();
 }
 }
}

 This class, like the other Service classes in the application, is just acting as a fa ç ade for the
 ISubmittalRepository instance. All of the methods from the ISubmittalRepository interface are
now exposed as static methods, which, as you will see in the next section covering the
 SubmittalViewModel class, make it very easy to interact with the repository.

 The Submittal View Model
 Following the same patterns as before, the SubmittalViewModel class adapts the Submittal
Aggregate from the domain model to the UI. Like all previously shown ViewModel classes, I start out
by inheriting from the ViewModel abstract class:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.UI;
using SmartCA.Model.Submittals;
using System.Windows.Data;
using SmartCA.Application;
using SmartCA.Model.Employees;
using System.ComponentModel;
using SmartCA.Model.Projects;

namespace SmartCA.Presentation.ViewModels
{
 public class SubmittalViewModel : ViewModel
 {

 The Constructor
 As you have already seen in the CompanyViewModel and ProjectContactViewModel classes,
anywhere that there is a parent - child relationship in the Aggregate, such as Company and Addresses, a
 BindingList < T > must be used to represent the child list in the ViewModel. This is because the Xceed
DataGrid needs to bind to the IBindingList < T > interface to be able to add records to the grid
dynamically. In the SubmittalViewModel , that means I need to use a BindingList < T > for the
 CopyToList , RoutingItems , and TrackingItems Submittal properties.

(continued)

c05.indd 188c05.indd 188 3/18/08 5:15:42 PM3/18/08 5:15:42 PM

Chapter 5: Submittal Transmittals

189

 #region Constructors

 public SubmittalViewModel()
 : this(null)
 {
 }

 public SubmittalViewModel(IView view)
 : base(view)
 {
 this.currentSubmittal = null;
 this.submittalsList = new List < Submittal > (
 SubmittalService.GetSubmittals(
 UserSession.CurrentProject));
 this.submittals = new CollectionView(this.submittalsList);
 this.specificationSections
 = SubmittalService.GetSpecificationSections();
 this.submittalStatuses = SubmittalService.GetSubmittalStatuses();
 this.toList = UserSession.CurrentProject.Contacts;
 this.mutableCopyToList = new BindingList < MutableCopyTo > ();
 this.routingItems = new BindingList < RoutingItem > ();
 this.trackingItems = new BindingList < TrackingItem > ();
 this.fromList = EmployeeService.GetEmployees();
 this.trackingStatusValues = new CollectionView(
 Enum.GetNames(typeof(ActionStatus)));
 this.deliveryMethods = new CollectionView(
 Enum.GetNames(typeof(Delivery)));
 this.disciplines = SubmittalService.GetDisciplines();
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 this.deleteCopyToCommand =
 new DelegateCommand(this.DeleteCopyToCommandHandler);
 this.deleteRoutingItemCommand =
 new DelegateCommand(this.DeleteRoutingItemCommandHandler);
 this.deleteTrackingItemCommand =
 new DelegateCommand(this.DeleteTrackingItemCommandHandler);
 }

 #endregion

 The MutableCopyTo type is very similar to the MutableAddress type shown in previous chapters, and
it is used to edit the values for the CopyTo Value type. Remember, in WPF, I cannot use two - way binding
with read - only objects, so the MutableCopyTo gives me that flexibility without changing any of my
domain objects.

 Similarly to what I did to maintain the list of Contacts and Companies in the last chapter, I am again
maintaining both a List < Submittal > variable (submittalsList) and the CollectionView variable
(submittals) of the list. This allows me the benefit of using the CollectionView to know when a
Submittal has been selected from the CollectionView (without having to write any code) and to be
able to add new Submittals, which need to be added to the list. Using the List < Submittal > type, I am
easily able to add new Submittal instances and then subsequently refresh the CollectionView . The
other pattern I am following in this constructor is to initialize all of my property data, such as the data
used to display all of the dropdowns in the UI (i.e., Employees, ProjectContacts, etc.). The rest of the
constructor code is the standard wire - up code for the DelegateCommand instances.

c05.indd 189c05.indd 189 3/18/08 5:15:42 PM3/18/08 5:15:42 PM

Chapter 5: Submittal Transmittals

190

 The Properties
 The CurrentSubmittal property indicates the current Submittal instance that is being edited:

 public Submittal CurrentSubmittal
 {
 get { return this.currentSubmittal; }
 set
 {
 if (this.currentSubmittal != value)
 {
 this.currentSubmittal = value;
 this.OnPropertyChanged(Constants.CurrentSubmittalPropertyName);
 this.saveCommand.IsEnabled = (this.currentSubmittal != null);
 this.PopulateSubmittalChildren();
 }
 }
 }

 Just as with Contacts and Companies, whenever a Submittal is selected from the list box in the UI, the
property ’ s setter is called. Once that has happened, the PropertyChanged event for the
 CurrentSubmittal property is raised, letting the UI know to refresh itself. The next thing to happen is
to set the SaveCommand ’ s IsEnabled property to true if the current Submittal is null; otherwise, it is
set to false . Then the PopulateSubmittalChildren method is called:

 private void PopulateSubmittalChildren()
 {
 this.PopulateMutableCopyToList();
 this.PopulateRoutingItems();
 this.PopulateTrackingItems();
 }

 This is essentially a controller method, as it calls three more methods to populate the collections
representing the children of the Submittal Aggregate.

 The PopulateMutableCopyToList method is very similar to the PopulateAddresses method used in
the last chapter:

 private void PopulateMutableCopyToList()
 {
 if (this.currentSubmittal != null)
 {
 this.mutableCopyToList.Clear();
 foreach (CopyTo copyTo in this.currentSubmittal.CopyToList)
 {
 this.mutableCopyToList.Add(new MutableCopyTo(copyTo));
 }
 this.OnPropertyChanged(Constants.MutableCopyToListPropertyName);
 }
 }

c05.indd 190c05.indd 190 3/18/08 5:15:42 PM3/18/08 5:15:42 PM

Chapter 5: Submittal Transmittals

191

 This is necessary because the CopyTo instances contained in the Submittal ’ s CopyToList property are
the immutable CopyTo types, and in order to be able to edit the CopyToList , I have to convert them into
 MutableCopyTo types. Once this is done, the PropertyChanged event for the MutableCopyToList
property is raised so that the UI can refresh itself.

 The PopulateRoutingItems and PopulateTrackingItems methods are almost identical, so I will just
show PopulateRoutingItems method:

 private void PopulateRoutingItems()
 {
 if (this.currentSubmittal != null)
 {
 this.routingItems.Clear();
 foreach (RoutingItem item in this.currentSubmittal.RoutingItems)
 {
 this.routingItems.Add(item);
 }
 this.OnPropertyChanged(Constants.RoutingItemsPropertyName);
 }
 }

 You may be asking yourself, “ Why can ’ t we just use the RoutingItems property of the Submittal class?
Why do we have to create a whole new separate property for that and have to maintain the state
between the two? ” That ’ s a good question, and the answer is because I need the RoutingItems property
to be in the form of a BindingList < RoutingItem > rather than an IList < RoutingItem > . The reason
I need it to be in that form is because that is the type that my data grid (Xceed Data Grid for WPF) is
looking for in order to get the nice functionality of adding rows to the grid at run time without writing
any code.

 The rest of the properties in the SubmittalViewModel class are simple read - only properties
representing lookup lists, and the DelegateCommand instances for creating New Submittals, saving
Submittals, and deleting RoutingItems , TrackingItems , and CopyTo instances from the Submittal
Aggregate.

 Command Handler Methods
 The handlers for the DelegateCommand properties are pretty interesting. The NewCommandHandler
method has to do a lot of housekeeping:

private void NewCommandHandler(object sender, EventArgs e)
 {
 Submittal newSubmittal = new Submittal(
 this.currentSubmittal.SpecSection,
 this.currentSubmittal.ProjectKey);
 newSubmittal.SpecSectionSecondaryIndex = “01”;

 this.currentSubmittal = null;
 this.mutableCopyToList.Clear();
 this.routingItems.Clear();
 this.trackingItems.Clear();

(continued)

c05.indd 191c05.indd 191 3/18/08 5:15:43 PM3/18/08 5:15:43 PM

Chapter 5: Submittal Transmittals

192

 this.CurrentObjectState = ObjectState.New;
 this.OnPropertyChanged(
 Constants.CurrentSubmittalPropertyName);

 this.submittalsList.Add(newSubmittal);
 this.submittals.Refresh();
 this.submittals.MoveCurrentToLast();
 }

 It first has to create a new instance of a Submittal and initialize its SpecSection constructor argument
to be the same as the current Submittal, as well as feed it the same Project key as the current Submittal.
This is necessary because a Submittal cannot be created without knowing the Specification Section or to
what Project it belongs. The Specification Section value can be changed via a property setter later, but
to start I need to put something there. As far as the Project key, that cannot be changed unless a different
project is selected altogether. Once the Submittal has been created, it is given a default Specification
Section Secondary Index of “ 01 ” . This is to prevent any duplicate entries, and once again, can be changed
via property setters later.

 The next steps are to clear the current Submittal data and then to clear out the MutableCopyToList ,
 RoutingItems , and TrackingItems lists. Once that is done, the state of the ViewModel is set to New ,
and the PropertyChanged event is raised for the UI to refresh itself.

 Next, the newly created Submittal is added to the current list of Submittals, and then the Refresh
method is called on the CollectionView submittals variable in order to have the UI refreshed. Finally,
by calling the MoveCurrentToLast method on the CollectionView , the Submittal will appear last in
the list in the UI.

 The DeleteCopyToCommandHandler method is interesting because it gets the MutableCopyTo instance
that must be deleted passed to it from the DelegateCommandEventArgs parameter:

 private void DeleteCopyToCommandHandler(object sender,
 DelegateCommandEventArgs e)
 {
 MutableCopyTo copyTo = e.Parameter as MutableCopyTo;
 if (copyTo != null)
 {
 this.mutableCopyToList.Remove(copyTo);
 }
 }

 It then checks to see whether the MutableCopyTo instance is null, and if it is not, it removes it from the
 BindingList < MutableCopyTo > collection (the mutableCopyToList variable). Once this happens,
the data grid that is bound to it is automatically updated. The DeleteCopyToCommandHandler and
 DeleteCopyToCommandHandler methods are almost identical to the DeleteCopyToCommandHandler
method, so I will not show them here.

 The Submittal View
 The View for Submittals is the most complicated view encountered so far, because it has to manage all
of the parent - child relationships in the Aggregate. Before diving into the XAML for the SubmittalView ,
take a look at Figure 5.5 , which shows what the form looks like at run time:

(continued)

c05.indd 192c05.indd 192 3/18/08 5:15:43 PM3/18/08 5:15:43 PM

Chapter 5: Submittal Transmittals

193

Figure 5.5: The Submittal view.

 The form is not the most elegant looking in the world, but it is functional.

 Like the form for Companies and Contacts, this form is split into two parts: the one on the left is for
selecting a Submittal to edit and the one on the right is for editing the selected Submittal. The New
button adds a new Submittal to the list. The Save and Cancel buttons both deal with the currently
selected Submittal.

 In the form, you will see three grid areas, one for the CopyToList , one for TrackingItems , and one for
 RoutingItems . These have all been implemented as separate user controls, so that they may be reused
in other parts of the UI that require routing, tracking, and copying.

 The XAML for this form is pretty large, so I am only going to show the sections that are implemented
differently from what has been done so far in the UI.

 Using the StackPanel Element
 The first interesting part WPF - wise is the very top field, the Submittal Number field:

 < Label Grid.Row=”0” Grid.Column=”0” Content=”Submittal Number:”
 Style=”{StaticResource baseLabelStyle}”/ >

 < StackPanel Orientation=”Horizontal” Grid.Row=”0” Grid.Column=”1” >
 < ComboBox SelectedItem=”{Binding Path=CurrentSubmittal.SpecSection}”
 IsSynchronizedWithCurrentItem=”True”
 DisplayMemberPath=”Number”
 ItemsSource=”{Binding Path=SpecificationSections}” >
 < /ComboBox >

(continued)

c05.indd 193c05.indd 193 3/18/08 5:15:43 PM3/18/08 5:15:43 PM

Chapter 5: Submittal Transmittals

194

 < TextBox
 Text=”{Binding Path=CurrentSubmittal.SpecSectionPrimaryIndex}”/ >
 < TextBox
 Text=”{Binding Path=CurrentSubmittal.SpecSectionSecondaryIndex}”/ >
 < /StackPanel >

 The first part is just the label for the field. The second part needs to squeeze a combo box and two
textboxes right next to each other. In WPF, this is not possible to do in a single cell of a Grid , but the way
around that limitation is to wrap a StackPanel around the three elements, and then the StackPanel
becomes the only child element in the grid cell. StackPanel elements allow you to group more than one
element together. This is a good thing to remember when building WPF applications.

 Using the Xceed DatePicker Control
 In order to allow users to edit date fields, I am using the Xceed DatePicker control, which comes for free
with the free WPF Data Grid control. The first occasion I need to use it is for the Transmittal Date field:

 < Label Grid.Row=”2” Grid.Column=”0” Content=”Transmittal Date:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < xcdg:DatePicker Grid.Row=”2” Grid.Column=”1”
 SelectedDate=”{Binding Path=CurrentSubmittal.TransmittalDate}”
 SyncCalendarWithSelectedDate=”True” / >

 The first part of the XAML is just for the label, but the second part contains the DatePicker element,
which supports binding to DateTime properties (in this case, I am binding to the TransmittalDate
property of the Submittal). Also, it has a nice feature that syncs the calendar with the selected date,
which looks like Figure 5.6 .

(continued)

Figure 5.6: The DatePicker control.

 This is great, because once again, I do not have to write that UI plumbing code, Xceed has already done a
great job for me.

c05.indd 194c05.indd 194 3/18/08 5:15:48 PM3/18/08 5:15:48 PM

Chapter 5: Submittal Transmittals

195

 The CopyToList Section
 The next interesting part of the XAML for the form is the section that displays the CopyTo child items, as
shown in Figure 5.7 .

Figure 5.7: The CopyToList section.

 This requires using a StackPanel element again in order to stack the Final checkbox field next to the grid:

 < Border BorderBrush=”Black” Padding=”1” BorderThickness=”1”
 Grid.Row=”8” Grid.Column=”1” >
 < StackPanel Orientation=”Horizontal” >
 < Label Content=”Final: “ Style=”{StaticResource baseLabelStyle}”/ >
 < CheckBox IsChecked=”{Binding Path=CurrentSubmittal.Final}” / >
 < presentation:CopyToList DataContext=”{Binding Path=MutableCopyToList}”/ >
 < /StackPanel >
 < /Border >

 Also included in the mix for this section is the Border element that wraps the StackPanel . This is what
gives the border line around the controls. Then, inside of the StackPanel is the label for the checkbox,
the actual checkbox itself, and then the CopyTo grid. The CopyTo grid is actually a new user control, the
 CopyToList user control. Here is the XAML for the CopyToList control:

 < UserControl x:Class=”SmartCA.Presentation.Views.CopyToList”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:xcdg=”http://schemas.xceed.com/wpf/xaml/datagrid”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 < xcdg:DataGridControl ItemsSource=”{Binding}” >
 < xcdg:DataGridControl.Columns >
 < xcdg:Column Width=”50” FieldName=”DeleteButton”
 DisplayMemberBinding=”{Binding .}” >
 < xcdg:Column.CellContentTemplate >
 < DataTemplate >
 < Button Content=”Delete”
 Command=”{Binding
 RelativeSource=
 {RelativeSource FindAncestor,
 AncestorType={x:Type Window}},
 Path=DataContext.DeleteCopyToCommand}” >
 < Button.CommandParameter >
 < Binding Path=”.”/ >
 < /Button.CommandParameter >
 < /Button >
 < /DataTemplate >
 < /xcdg:Column.CellContentTemplate >
 < /xcdg:Column >

(continued)

c05.indd 195c05.indd 195 3/18/08 5:15:48 PM3/18/08 5:15:48 PM

Chapter 5: Submittal Transmittals

196

 < xcdg:Column FieldName=”ProjectContact” Title=”Name” >
 < xcdg:Column.CellContentTemplate >
 < DataTemplate >
 < ComboBox
 ItemsSource=”{Binding
 RelativeSource=
 {RelativeSource FindAncestor,
 AncestorType={x:Type Window}},
 Path=DataContext.ToList}”
 SelectedItem=”{Binding .}”
 IsSynchronizedWithCurrentItem=”True” >
 < ComboBox.ItemTemplate >
 < DataTemplate >
 < Grid >

 < Grid.ColumnDefinitions >

 < ColumnDefinition / >

 < ColumnDefinition / >

 < ColumnDefinition / >

 < /Grid.ColumnDefinitions >

 < TextBlock Grid.Column=”0” Text=”{Binding Path=Contact.FirstName}”/ >
 < TextBlock Grid.Column=”1” Text=” “ / >
 < TextBlock Grid.Column=”2” Text=”{Binding Path=Contact.LastName}”/ >
 < /Grid >
 < /DataTemplate >
 < /ComboBox.ItemTemplate >
 < /ComboBox >
 < /DataTemplate >
 < /xcdg:Column.CellContentTemplate >
 < /xcdg:Column >
 < xcdg:Column FieldName=”Notes”
 Title=”Notes” Width=”100” TextWrapping=”Wrap”/ >
 < /xcdg:DataGridControl.Columns >
 < xcdg:DataGridControl.View >
 < xcdg:TableView HorizontalGridLineThickness=”1”
 VerticalGridLineThickness=”1” >
 < xcdg:TableView.HorizontalGridLineBrush >
 < SolidColorBrush Color=”Orange”/ >
 < /xcdg:TableView.HorizontalGridLineBrush >
 < xcdg:TableView.VerticalGridLineBrush >
 < SolidColorBrush Color=”Orange”/ >
 < /xcdg:TableView.VerticalGridLineBrush >
 < xcdg:TableView.Footers >
 < DataTemplate >
 < xcdg:InsertionRow/ >
 < /DataTemplate >
 < /xcdg:TableView.Footers >

(continued)

c05.indd 196c05.indd 196 3/18/08 5:15:49 PM3/18/08 5:15:49 PM

Chapter 5: Submittal Transmittals

197

 < xcdg:TableView.FixedHeaders >
 < xcdg:ClearHeadersFooters/ >
 < DataTemplate >
 < xcdg:ColumnManagerRow/ >
 < /DataTemplate >
 < /xcdg:TableView.FixedHeaders >
 < /xcdg:TableView >
 < /xcdg:DataGridControl.View >
 < /xcdg:DataGridControl >
 < / UserControl >

 The XAML for this control is very similar to the XAML for the Addresses user control shown in the
previous chapter. Probably the most important things to pay attention to here are the bindings for the
various elements in the control. The Delete button is pretty much the same as the Addresses control ’ s
delete button, but this is the first time that I have had to use a nested combo box inside of the Xceed
DataGrid. I have to say that it handled it very well, with the only caveat that you have to make sure that
you specify the binding for the SelectedItem property like this: SelectedItem= “ {Binding .} ” .
Other than having to figure that out, it was pretty easy to put together and use.

 The Routing Items and Tracking Items sections both follow the same pattern used for the CopyToList
section, so I am not going to show the code for those here.

 Summary
 In this chapter, I introduced the concept of a Submittal Transmittal in the construction industry, and then
I used that concept to model the Submittal Aggregate. I then defined the boundaries for the Submittal
Aggregate, as well as implemented all of the necessary domain model and Infrastructure classes
necessary to work with those classes. A new concept was added to the both the domain layer and
infrastructure layer, and that was how to deal with saving child collections from the Entity Root
repository. The concept was demonstrated by the techniques I used to save CopyTo , RoutingItem , and
 TrackingItem instances of the Submittal Aggregate. I also covered how to deal with CopyTo Value
objects using the Xceed DataGrid control, and I showed how to wrap this functionality up into a reusable
 UserControl for the CopyToList, RoutingItems and Tacking Items. On top of those items, I threw
in a few little WPF UI tricks. There was also some refactoring again in this chapter, particularly
with the service classes being used almost like a fa ç ade in front of the repositories from all of the
 ViewModel classes.

c05.indd 197c05.indd 197 3/18/08 5:15:49 PM3/18/08 5:15:49 PM

c05.indd 198c05.indd 198 3/18/08 5:15:49 PM3/18/08 5:15:49 PM

 Requests for Information

 In the last chapter, I dove into some of the important domain logic for the SmartCA application by
covering Submittal Transmittals. In this chapter, I will continue that trend by introducing another
important new concept to the domain, the Request for Information (RFI). As you will see, the RFI
is similar to a Submittal Transmittal in that they share a lot of the same classes: this will also
prompt some refactoring.

 The Problem
 Contractors can have many questions throughout a project that may concern documents,
construction, materials, and so on. In the old days, these questions were answered with a phone
call or an informal conversation with the architect in charge. Nowadays, however, it is necessary to
document every request and reply between project contractors and the firm that is running the
project, which in this case is Smart Design. This documentation is necessary because significant
costs and complications may arise during the question/answer process, and the RFI can be used as
a tool to shape the project ’ s direction.

 Some of the uses of RFIs do not have cost implications, such as a simple non - change request for
more information about something shown in the specifications. They can also be used to let the
architect know about an occurrence of something on the job site, or to let the architect know about
latent or unknown conditions. The most important rule for an RFI is that it must contain all of the
necessary information and not be too brief. If a contractor has a question for the architect, the
architect needs to know exactly what the question is so that it may be answered properly.

 Each RFI needs to be numbered in the sequence issued, per project. The RFI number is later used
as a reference for members of the project when the architect answers the questions or resolves the
issues. The RFI is a time - sensitive document, and it must include the date that it was sent, as well
as the date that a response is needed. It is important that there are no duplicate RFI numbers per
project and that there are no gaps between RFI numbers. RFI numbers can be reused across
other projects.

c06.indd 199c06.indd 199 3/18/08 5:16:25 PM3/18/08 5:16:25 PM

Chapter 6: Requests for Information

200

 The Design
 In the SmartCA domain, an RFI contains several important business concepts that must be closely
followed. In the next few sections, I will be designing the domain model, determining the RFI Aggregate
and its boundaries, and designing the Repository for RFI s.

 Designing the Domain Model
 As stated earlier, the most important parts of the RFI are the Date Received, Date Requested By, Date to
Field, Question, and Answer properties. Since these are properties, it is a little bit difficult to model their
expected behavior in a diagram. This can be remedied by using a Specification (Evans, Domain - Driven
Design, Tackling Complexity in the Heart of Software , 225) class to specify the rules for these properties, and
actually make the specification part of the domain. This helps convey to the business domain experts
what the intended logic is instead of burying it inside of the Request for Information class.

 Figure 6.1 shows a drawing showing the relationships among the classes that combine to make up a
Request for Information.

ContractStatus From

Copy To
*

Routing Item

*

Discipline Recipient

Specification
Section

Date to Field
Specification

RFI Number
Specification

Question/Answer
Specification

Request for
Information

 Figure 6.1: RFI Aggregate.

 Obviously, the root of this aggregate is the Request for Information class. Note the relationships to the
Question/Answer Specification, Date to Field Specification, and RFI Number Specification. These
relationships make it very clear to the domain experts that there are rules being modeled for
these important concepts.

 The relationship to the Status class shows exactly what state the RFI is in, such as completed, pending an
architect review, and so on. The relationship to the “ From ” class represents who the RFI is from, and to
go along with who it is from is what Contract is associated with the RFI. The relationship to the

c06.indd 200c06.indd 200 3/18/08 5:16:25 PM3/18/08 5:16:25 PM

Chapter 6: Requests for Information

201

Specification Section is not as important for an RFI as it was for a Submittal Transmittal. It is quite
possible that the RFI may not require a reference to a Specification Section, as the RFI could be
requesting information about something else that may have nothing to do with a Specification Section,
such as an incident.

 The next important part of the diagram is the RFI ’ s relationship to the Routing Item. This is how Smart
Design knows to whom each RFI has been routed for action, and the Discipline of that person, such as
architect, engineer, or construction administrator. Just like the Submittal Transmittal Aggregate, there is a
Copy To relationship from an RFI which represents the list of Recipients who need to be copied on all
correspondence having to do with the RFI.

 Defining the RFI Aggregate
 As you can see from the diagram of the RFI Aggregate in Figure 6.2 , there are a lot of moving parts.

RequestForInformation
Class
 EntityBase

Fields

Methods

Properties

Cause
Change
ContractorProposedSolution
DateReceived
DateRequestedBy
DateToField
DaysLapsed
Description
Final
LongAnswer
Number
Origin
OtherDeliveryMethod
PhaseNumber
ProjectKey
Question
Reimbursable
Remarks
ShortAnswer
TotalPages
TransmittalDate

RequestForInformationDateSpecification
Class

Properties
Methods

IsSatisfiedBy

ISpecification<RequestForInformation>

RequestForInformationQuestionAnswerSpecification
Class

Properties
Methods

IsSatisfiedBy

ISpecification<RequestForInformation>

RoutingItem
Class

ProjectContact
Class
 EntityBase

Company
Class
 EntityBase

Delivery
Enum

CopyTo
Class

ItemStatus
Class

SpecificationSection
Class

Contractor

From

QuestionAnswerSpecification

RoutingItems

DateToFieldSpecification

DeliveryMethod

Status

SpecSection

NumberSpecification

CopyToList

RequestForInformationNumberSpecification
Class

Properties
Methods

IsSatisfiedBy

ISpecification<RequestForInformation>

 Figure 6.2: Classes constituting the RFI Aggregate.

c06.indd 201c06.indd 201 3/18/08 5:16:26 PM3/18/08 5:16:26 PM

Chapter 6: Requests for Information

202

 Notice how I am starting to make use of some of the other Entities introduced in previous chapters, such
as the ProjectContact class, which is used to represent the To property of the Submittal class, the
Recipient property of the RoutingItem class, and the Contact property of the CopyTo class. Also, the
 ProjectContact class is used in the RFI ’ s From property to represent the person originating the RFI.

 Defining the Aggregate Boundaries

RequestForInformation
Class
 EntityBase

Fields

Methods

Properties

Cause
Change
ContractorProposedSolution
DateReceived
DateRequestedBy
DateToField
DaysLapsed
Description
Final
LongAnswer
Number
Origin
OtherDeliveryMethod
PhaseNumber
ProjectKey
Question
Reimbursable
Remarks
ShortAnswer
TotalPages
TransmittalDate

RequestForInformationDateSpecification
Class

Properties
Methods

IsSatisfiedBy

ISpecification<RequestForInformation>

RequestForInformationQuestionAnswerSpecification
Class

Properties
Methods

IsSatisfiedBy

ISpecification<RequestForInformation>

RoutingItem
Class

ProjectContact
Class
 EntityBase

Company
Class
 EntityBase

Delivery
Enum

CopyTo
Class

ItemStatus
Class

SpecificationSection
Class

Contractor

From

QuestionAnswerSpecification

RoutingItems

DateToFieldSpecification

DeliveryMethod

Status

SpecSection

NumberSpecification

CopyToList

Project Aggregate

RFI Aggregate

Submittal Aggregate

Company Aggregate

RequestForInformationNumberSpecification
Class

Properties
Methods

IsSatisfiedBy

ISpecification<RequestForInformation>

 Figure 6.3: RFI Aggregate boundaries.

 The RequestForInformation class has its own identity and is definitely the root of its own Aggregate
(see Figure 6.3). All of the other classes in the diagram, except for ProjectContact, Company, and
SpecificationSection, belong to the RFI Aggregate. As shown in earlier chapters, ProjectContact belongs
to the Project Aggregate, Company is the root of its own Aggregate, and the SpecificationSection class is
part of the Submittal Aggregate.

c06.indd 202c06.indd 202 3/18/08 5:16:26 PM3/18/08 5:16:26 PM

Chapter 6: Requests for Information

203

 Designing the Repository
 Since the RequestForInformation class is its own Aggregate root, it will have its own Repository, as
shown in Figure 6.4 .

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

IRequestForInformationReposito...
Interface
 IRepository<RequestForInformation>

IRepository<T>
GenericInterface

RequestForInformationRepository
Class
 SqlCeRepositoryBase<RequestForInformation>

IRequestForInformationRepository

 Figure 6.4: RFI Aggregate Repository.

 Although the Project Aggregate, Company Aggregate, and Submittal Aggregate are part of the RFI
Aggregate, I will not be covering their respective Repositories here because they have already been
covered in the previous chapters. I will only be covering the RFI Repository in this chapter.

 The IRequestForInformationRepository interface provides access to instances of RFI Repositories.
Here is the IRequestForInformationRepository interface:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;

namespace SmartCA.Model.RFI
{
 public interface IRequestForInformationRepository
 : IRepository < RequestForInformation >
 {
 IList < RequestForInformation > FindBy(Project project);
 }
}

 Its only unique method, FindBy , should be called fairly often, as almost all of the time RFIs will only be
looked at on a per - project basis.

c06.indd 203c06.indd 203 3/18/08 5:16:26 PM3/18/08 5:16:26 PM

Chapter 6: Requests for Information

204

 Writing the Unit Tests
 In this section, I will be writing some unit tests of what I expect of the Submittal Repository
implementation. As noted before, these tests will compile correctly, but they will also fail until I write the
code for the Repository implementation later on in the Solution section.

 Please note that there will be more unit tests in the accompanying code for this chapter, but for brevity’s
sake I am showing the tests that I think are important here.

 The FindRfisByProjectTest Method
 The purpose of the FindSubmittalsByProjectTest method is to validate that the correct number of
 Submittal instances have been returned by the Submittal Repository for a given Project.

 /// < summary >
 /// A test for FindBy(Project project)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindRfisByProjectTest()
 {
 // Get a Project reference
 Project project =
 ProjectService.GetProject(“5704f6b9-6ffa-444c-9583-35cc340fce2a”);

 // Find all of the RFI’s for the Project
 IList < RequestForInformation > rfis = this.repository.FindBy(project);

 // Verify that at least one RFI was returned
 Assert.IsTrue(rfis.Count > 0);
 }

 This method starts out by getting a Project instance from the ProjectService class. It then calls the
 FindBy method on the repository to get the list of RFI ’ s for the given Project instance. The method
finishes by checking that the repository returned at least one RequestForInformation .

The AddRfiTest Method
 The purpose of the AddRfiTest method is to test adding a new RFI to the RFI Repository:

 /// < summary >
 ///A test for Add(RequestForInformation item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void AddRfiTest()
 {
 // Create a new RequestForInformation
 Guid projectKey = new Guid(“5704f6b9-6ffa-444c-9583-35cc340fce2a”);
 RequestForInformation rfi = new RequestForInformation(projectKey, 2);
 IList < ItemStatus > statuses = SubmittalService.GetItemStatuses();
 rfi.From = ProjectService.GetProject(projectKey).Contacts[0];
 rfi.Status = statuses[0];
 rfi.Contractor = CompanyService.GetAllCompanies()[0];
 IList < SpecificationSection > specSections =

c06.indd 204c06.indd 204 3/18/08 5:16:27 PM3/18/08 5:16:27 PM

Chapter 6: Requests for Information

205

 SubmittalService.GetSpecificationSections();
 rfi.SpecSection = specSections[0];

 // Add the RFI to the Repository
 this.repository.Add(rfi);

 // Commit the transaction
 this.unitOfWork.Commit();

 // Reload the RFI and verify it’s number
 RequestForInformation savedRfi = this.repository.FindBy(rfi.Key);
 Assert.AreEqual(2, savedRfi.Number);

 // Clean up
 this.repository.Remove(savedRfi);
 this.unitOfWork.Commit();
 }

 This test is a little more complicated than the last test. It starts out by creating a Project Key
value, and then passes the Project Key value as well as an RFI number into the constructor of the
 RequestForInformation class. Now that I have an initialized the RequestForInformation
instance, the next step is to set the From property of the RequestForInformation instance with a
 ProjectContact instance. The next property that needs to be set is the Status property. The Status
property is set to the value of the first ItemStatus in the list of all ItemStatus instances. I then set the
 Contractor property with a Company instance that is retrieved by the CompanyService class. Last,
I get the list of all Specification Sections from the SubmittalService class and set the RFI ’ s
 SpecSection property to the first value in the list of Specification Sections.

 The next step is to add the RFI to the repository, and then to commit the transaction by calling the
 Commit method on the IUnitOfWork instance. The Commit method is important because that method
calls back into the RFI Repository to tell it to write the RFI ’ s data to the data store.

 Once the RFI has been saved, it is then reloaded and the RFI ’ s Number property is checked to verify that
the Add and Commit methods worked properly. The last task that the method needs to perform is to
remove the RFI. Removing the RFI that was just created leaves the data store in the same state as it was
in before the method started, which is important for the rest of the tests that may depend on a known
state of the data store.

 The UpdateRfiTest Method
 The purpose of the UpdateTest method is to find an RFI and update it with a different DateReceived
property value, and then verify that the change was persisted properly.

 /// < summary >
 ///A test for Updating an RFI
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void UpdateRfiTest()
 {
 IList < RequestForInformation > rfis = this.repository.FindAll();

 // Change the RFI’s DateReceived value

(continued)

c06.indd 205c06.indd 205 3/18/08 5:16:27 PM3/18/08 5:16:27 PM

Chapter 6: Requests for Information

206

 DateTime dateReceived = DateTime.Now;
 rfis[0].DateReceived = dateReceived;

 // Update the Repository
 this.repository[rfis[0].Key] = rfis[0];

 // Commit the transaction
 this.unitOfWork.Commit();

 // Verify that the change was saved
 IList < RequestForInformation > refreshedRfis = this.repository.FindAll();
 Assert.AreEqual(dateReceived.Date,
 refreshedRfis[0].DateReceived.Value.Date);
 }

 In this method I start out by getting the entire list of RFI s from the data store. I then proceed to change
the DateReceived property value on the first RFI in the list, and then call the indexer method of the
 IRequestForInformationRepository . After the call to the indexer, I then use the IUnitOfWork
interface to commit the transaction. Last, I verify that the change actually made it to the data store by
reloading the same RFI and checking to see if its DateReceived property value is the same calendar
date that I just assigned to the RFI earlier in the method.

The RemoveRfiTest Method
 The purpose of the RemoveRfiTest method is to test the process of removing an RFI from the data store.

 /// < summary >
 ///A test for Remove(RequestForInformation item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void RemoveRfiTest()
 {
 IList < RequestForInformation > rfis = this.repository.FindAll();

 // Remove the RFI from the Repository
 this.repository.Remove(rfis[0]);

 // Commit the transaction
 this.unitOfWork.Commit();

 // Verify that there is now one less RFI in the data store
 IList < RequestForInformation > refreshedRfis = this.repository.FindAll();
 Assert.AreEqual(0, refreshedRfis.Count);

 // Reset the state
 this.AddRfiTest();
 }

 The first line of this method should look familiar; I am getting the entire list of RFI s from the data store.
I then remove the first RFI in the list from the repository. After removing the RFI from the repository, I then
use the IUnitOfWork interface to commit the transaction. Next, I verify that the change actually made it to

(continued)

c06.indd 206c06.indd 206 3/18/08 5:16:28 PM3/18/08 5:16:28 PM

Chapter 6: Requests for Information

207

the data store by using the repository to find all of the RFI instances and making sure there is now one less
RFI than before. Last, I call the AddRfiTest method to add the RFI I just deleted back into the data store
in order to reset the original state of the data store.

 The Solution
 Now that I have finished going over the design the RFI domain model, Aggregate, and repository, it ’ s
time to do my favorite thing: write some code! In this section I will be implementing these designs, as
well as implementing the ViewModel and the View for RFI s.

 The RFI Class Private Fields and Constructors
 There are two constructors for the RFI class, and they both take a projectKey parameter of type
 System.Object and a number (integer) parameter. Every RFI must have a number and belong to a
Project, so that is why those arguments are in both constructors.

 Again, as in the last chapter, I am using a key value for a Project instead of a full blown Project instance,
since I can always get to the Project via the ProjectService class. The second constructor takes a key
argument of type System.Object , thus following the existing pattern for creating instances of existing
Entity classes.

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Submittals;
using SmartCA.Model.Employees;
using SmartCA.Model.Projects;
using System.Collections.Generic;
using System.Text;
using SmartCA.Model.Companies;

namespace SmartCA.Model.RFI
{
 public class RequestForInformation : EntityBase
 {
 private object projectKey;
 private int number;
 private DateTime transmittalDate;
 private ProjectContact from;
 private int totalPages;
 private Delivery deliveryMethod;
 private string otherDeliveryMethod;
 private string phaseNumber;
 private bool reimbursable;
 private bool final;
 private List < CopyTo > copyToList;
 private DateTime? dateReceived;
 private DateTime? dateRequestedBy;
 private Company contractor;

(continued)

c06.indd 207c06.indd 207 3/18/08 5:16:28 PM3/18/08 5:16:28 PM

Chapter 6: Requests for Information

208

 private SpecificationSection specSection;
 private List < RoutingItem > routingItems;
 private string question;
 private string description;
 private string contractorProposedSolution;
 private bool change;
 private int cause;
 private int origin;
 private ItemStatus status;
 private DateTime? dateToField;
 private string shortAnswer;
 private string longAnswer;
 private string remarks;
 private RequestForInformationNumberSpecification numberSpecification;
 private RequestForInformationDateSpecification dateToFieldSpecification;
 private RequestForInformationQuestionAnswerSpecification
questionAnswerSpecification;

 public RequestForInformation(object projectKey, int number)
 : this(null, projectKey, number)
 {
 }

 public RequestForInformation(object key, object projectKey,
 int number) : base(key)
 {
 this.projectKey = projectKey;
 this.number = number;
 this.transmittalDate = DateTime.Now;
 this.from = null;
 this.totalPages = 1;
 this.deliveryMethod = Delivery.None;
 this.otherDeliveryMethod = string.Empty;
 this.phaseNumber = string.Empty;
 this.reimbursable = false;
 this.final = false;
 this.copyToList = new List < CopyTo > ();
 this.dateReceived = null;
 this.dateRequestedBy = null;
 this.contractor = null;
 this.specSection = null;
 this.routingItems = new List < RoutingItem > ();
 this.question = string.Empty;
 this.description = string.Empty;
 this.contractorProposedSolution = string.Empty;
 this.change = false;
 this.cause = 0;
 this.origin = 0;
 this.status = null;
 this.dateToField = null;
 this.shortAnswer = string.Empty;
 this.longAnswer = string.Empty;

(continued)

c06.indd 208c06.indd 208 3/18/08 5:16:28 PM3/18/08 5:16:28 PM

Chapter 6: Requests for Information

209

 this.remarks = string.Empty;
 this.numberSpecification = new
RequestForInformationNumberSpecification();
 this.dateToFieldSpecification = new
RequestForInformationDateSpecification();
 this.questionAnswerSpecification = new
RequestForInformationQuestionAnswerSpecification();
 this.Validate();
 }

 All of the data for the RequestForInformation class is initialized and validated in the second
constructor, which is called by the first constructor.

 The RFI Properties
 The properties of the RequestForInformation class are very similar to those of the Submittal class,
so I am only going to show the differences here. Most of the properties in this class are fairly
straightforward.

 public DateTime? DateRequestedBy
 {
 get { return this.dateRequestedBy; }
 set { this.dateRequestedBy = value; }
 }

 public int DaysLapsed
 {
 get
 {
 int daysLapsed = 0;
 if (this.dateReceived.HasValue & &
 this.dateToField.HasValue)
 {
 daysLapsed =
this.dateToField.Value.Subtract(this.dateReceived.Value).Days;
 }
 return daysLapsed;
 }
 }

 public Company Contractor
 {
 get { return this.contractor; }
 set { this.contractor = value; }
 }

 public string Question
 {
 get { return this.question; }
 set { this.question = value; }
 }

(continued)

c06.indd 209c06.indd 209 3/18/08 5:16:29 PM3/18/08 5:16:29 PM

Chapter 6: Requests for Information

210

 public string Description
 {
 get { return this.description; }
 set { this.description = value; }
 }

 public string ContractorProposedSolution
 {
 get { return this.contractorProposedSolution; }
 set { this.contractorProposedSolution = value; }
 }

 public bool Change
 {
 get { return this.change; }
 set { this.change = value; }
 }

 public int Cause
 {
 get { return this.cause; }
 set { this.cause = value; }
 }

 public int Origin
 {
 get { return this.origin; }
 set { this.origin = value; }
 }

 public string ShortAnswer
 {
 get { return this.shortAnswer; }
 set { this.shortAnswer = value; }
 }

 public string LongAnswer
 {
 get { return this.longAnswer; }
 set { this.longAnswer = value; }
 }

 public RequestForInformationNumberSpecification NumberSpecification
 {
 get { return this.numberSpecification; }
 }

 public RequestForInformationDateSpecification DateToFieldSpecification
 {
 get { return this.dateToFieldSpecification; }
 }

(continued)

c06.indd 210c06.indd 210 3/18/08 5:16:29 PM3/18/08 5:16:29 PM

Chapter 6: Requests for Information

211

 public RequestForInformationQuestionAnswerSpecification
QuestionAnswerSpecification
 {
 get { return this.questionAnswerSpecification; }
 }

 The DaysLapsed Property
 This read - only property represents the difference in time from when the RFI was received to when it was
sent to the field.

 The NumberSpecification Property
 This property is designed to model the business rules about the proper numbering of RFIs. The
 NumberSpecification property is represented by the RequestForInformationNumberSpecification
class. Its only job is to validate that the RFI adheres to the numbering rules, which are, if you remember,
that all RFIs must be numbered consecutively within a Project, and there cannot be duplicate RFI numbers
within a Project.

using System;
using SmartCA.Infrastructure.Specifications;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using System.Linq;

namespace SmartCA.Model.RFI
{
 public class RequestForInformationNumberSpecification
 : Specification < RequestForInformation >
 {
 public override bool IsSatisfiedBy(RequestForInformation candidate)
 {
 bool isSatisfiedBy = true;

 // Make sure that the same RFI number has not been used for the
 // current project, and that there are no gaps between RFI numbers

 // First get the project associated with the RFI
 Project project = ProjectService.GetProject(candidate.ProjectKey);

 // Next get the list of RFIs for the project
 IList < RequestForInformation > requests =
RequestForInformationService.GetRequestsForInformation(project);

 // Determine if the RFI number has been used before
 isSatisfiedBy = (requests.Where(rfi = >
rfi.Number.Equals(candidate.Number)).Count() < 1);

 // See if the candidate passed the first test
 if (isSatisfiedBy)

(continued)

c06.indd 211c06.indd 211 3/18/08 5:16:29 PM3/18/08 5:16:29 PM

Chapter 6: Requests for Information

212

 {
 // First test passed, now make sure that there are no gaps
 isSatisfiedBy = (candidate.Number - requests.Max(rfi = >
rfi.Number) == 1);
 }

 return isSatisfiedBy;
 }
 }
}

 This code starts out by getting the list of RFIs for the current Project, which is the Project that is
associated with the RFI. Once it has the list of RFIs, it then uses a LINQ query to determine whether the
count of RFIs in the list that matches the candidate RFI ’ s Number property is less than one. If the count is
less than one, then the test passes.

 The next test is to make sure that the candidate RFI will not introduce any numbering gaps within RFIs
of the current Project. This is done with another LINQ query to get the highest RFI number (Max) in the
list; then that number is subtracted from the candidate RFI ’ s Number property. If the result equals one,
then the test passes.

 The DateToFieldSpecification Property
 This property is designed to model the business rule about the dates associated with RFIs. The
 DateToFieldSpecification property is represented by the RequestForInformationDateSpecification
class. Its only job is to validate that the RFI has both a date received value and a date requested by value.

using System;
using SmartCA.Infrastructure.Specifications;

namespace SmartCA.Model.RFI
{
 public class RequestForInformationDateSpecification
 : Specification < RequestForInformation >
 {
 public override bool IsSatisfiedBy(RequestForInformation candidate)
 {
 // Each RFI must have a date received and a date
 // that the response is needed
 return (candidate.DateReceived.HasValue & &
 candidate.DateRequestedBy.HasValue);
 }
 }
}

 This code is much simpler than the first Specification class, as it only needs to perform two simple
 Boolean checks for the two dates.

(continued)

c06.indd 212c06.indd 212 3/18/08 5:16:30 PM3/18/08 5:16:30 PM

Chapter 6: Requests for Information

213

The QuestionAnswerSpecification Property
 This property is designed to model the business rule question and answer associated with RFIs.
The QuestionAnswerSpecification property is represented by the
 RequestForInformationQuestionAnswerSpecification class. Its only job is to validate that
the RFI has a question entered and either a short answer or a long answer entered.

using System;
using SmartCA.Infrastructure.Specifications;

namespace SmartCA.Model.RFI
{
 public class RequestForInformationQuestionAnswerSpecification
 : Specification < RequestForInformation >
 {
 public override bool IsSatisfiedBy(RequestForInformation candidate)
 {
 // The RFI must have a question and answer

 // The answer could be the short answer or
 // the long answer
 return (!string.IsNullOrEmpty(candidate.Question) & &
 (!string.IsNullOrEmpty(candidate.ShortAnswer) ||
 !string.IsNullOrEmpty(candidate.LongAnswer)));
 }
 }
}

 This code is also performing Boolean comparisons by ensuring that the Question property is valid and
that either the ShortAnswer or the LongAnswer property is valid.

 The RFI Repository Implementation
 After going over the IRequestForInformationRepository interface in the Design section, it is now
time to explain how the RequestForInformation class is actually persisted to and from the data store
by the RFI Repository. In this section, I will be writing the code for the RFI Repository.

 The BuildChildCallbacks Method
 If you have been following along, you know that the application ’ s Template Method pattern
implementation that I have been using in the repositories for getting Entity Root instances, the
 BuildChildCallbacks method, must be overridden in the RequestForInformationRepository .

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(ProjectFactory.FieldNames.ProjectContactId,
 this.AppendFrom);
 this.ChildCallbacks.Add(“CopyToList”,
 delegate(RequestForInformation rfi, object childKeyName)

(continued)

c06.indd 213c06.indd 213 3/18/08 5:16:30 PM3/18/08 5:16:30 PM

Chapter 6: Requests for Information

214

 {
 this.AppendCopyToList(rfi);
 });
 this.ChildCallbacks.Add(“RoutingItems”,
 delegate(RequestForInformation rfi, object childKeyName)
 {
 this.AppendRoutingItems(rfi);
 });
 }

 #endregion

 The AppendFrom Callback
 The first entry made in the ChildCallbacks dictionary is for the AppendFrom method. Thanks to the
 ProjectService class ’ s GetProjectContact method, this method ’ s code is very simple:

private void AppendFrom(RequestForInformation rfi, object fromProjectContactKey)
{
 rfi.From = ProjectService.GetProjectContact(rfi.ProjectKey,
 fromProjectContactKey);
}

 The AppendCopyToList and AppendRoutingItems Callbacks
 You have probably noticed that the AppendCopyToList and AppendRoutingItems callbacks look
identical to those from the Submittal Repository. Well, you are right! This signals me that I need to do
some refactoring of classes and methods. In order to prevent code duplication, I have identified the
 “ area ” that needs refactoring, and that “ area ” is any code that deals with the transmittal aspect of a
Submittal or an RFI. I will cover this refactoring in the next few paragraphs.

 The Transmittal Refactoring
 The whole reason for needing to do a refactoring was the RFI Repository was just about ready to
have the same code as the Submittal Repository, and that code was for handling the CopyTo list and the
 RoutingItems list associated with the RFI. Looking at this a little bit further, it seems as if there is more
in common between Submittals and RFIs. They both happen to be a document transmittal, and there is
certain data around that transmittal that is common. The first step to refactor this was to put everything
they have in common into an interface, and I decided to name this interface the ITransmittal interface.

using System;
using System.Collections.Generic;
using SmartCA.Model;

namespace SmartCA.Model.Transmittals
{
 public interface ITransmittal
 {
 object ProjectKey { get; }
 DateTime TransmittalDate { get; set; }
 int TotalPages { get; set; }
 Delivery DeliveryMethod { get; set; }

(continued)

c06.indd 214c06.indd 214 3/18/08 5:16:30 PM3/18/08 5:16:30 PM

Chapter 6: Requests for Information

215

 string OtherDeliveryMethod { get; set; }
 string PhaseNumber { get; set; }
 bool Reimbursable { get; set; }
 bool Final { get; set; }
 IList < CopyTo > CopyToList { get; }
 }
}

 This interface contains all of the common properties associated with a document Transmittal, including
the associated Project.

 You may have noticed that there are no Routing Items in this interface, and that is because when I did
my analysis of the existing application, I noticed that not all transmittals were always routable. To
account for transmittals that could be routed, I created another interface, the IRoutableTransmittal
interface:

using System;
using System.Collections.Generic;

namespace SmartCA.Model.Transmittals
{
 public interface IRoutableTransmittal : ITransmittal
 {
 IList < RoutingItem > RoutingItems { get; }
 }
}

 This interface simply adds to the existing ITransmittal interface and adds a property for the Routing
Items. The next step in the refactoring was to modify the Submittal and RequestForInformation
classes to implement these interfaces. Luckily, these classes already contain all of these properties, so it
was a very simple refactoring to change the class signatures:

public class RequestForInformation : EntityBase , IRoutableTransmittal

public class Submittal : EntityBase , IRoutableTransmittal

 Remember, in the .NET Framework, you can only inherit from one base class, but you can implement as
many interfaces as you like.

 The next step was to add a new Repository to the inheritance chain so that the Transmittal - related behavior
could be shared by both the SubmittalRepository and the RequestForInformationRepository
classes. So I made a new Repository and called it SqlCeTransmittalRepository < T > . This Repository is
an abstract class that inherits from SqlCeRepositoryBase < T > .

 Here is the signature for the Repository:

public abstract class SqlCeTransmittalRepository < T > : SqlCeRepositoryBase < T >
 where T : EntityBase, ITransmittal

c06.indd 215c06.indd 215 3/18/08 5:16:31 PM3/18/08 5:16:31 PM

Chapter 6: Requests for Information

216

 The next thing to add to this new class was the pass - through constructors to the
 SqlCeRepositoryBase < T > class:

 #region Constructors

 protected SqlCeTransmittalRepository()
 : this(null)
 {
 }

 protected SqlCeTransmittalRepository(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 }

 #endregion

 Figure 6.5 shows a diagram of what the new RFI Aggregate Repository inheritance chain looks like now.

SqlCeRoutableTransmittalRepository<T>
GenericAbstractClass
 SqlCeTransmittalRepository<T>

IRequestForInformationReposito...
Interface
 IRepository<RequestForInformation>

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

IRepository<T>
GenericInterface

RequestForInformationRepository
Class
 SqlCeRoutableTransmittalRepository<RequestForInf...

IRequestForInformationRepository

Methods

SqlCeTransmittalRepository<T>
GenericAbstractClass
 SqICeRepositoryBase<T>

 Figure 6.5: Newly refactored RFI Aggregate
Repository.

c06.indd 216c06.indd 216 3/18/08 5:16:31 PM3/18/08 5:16:31 PM

Chapter 6: Requests for Information

217

 The next function that I needed to perform was splitting out the code that deals with the
 CopyTo instances.

The AppendCopyToList Method
 This method is now refactored to take a type of EntityBase and ITransmittal for its arguments:

 protected void AppendCopyToList(T transmittal)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“SELECT * FROM {0}CopyList”,
 this.EntityName));
 builder.Append(string.Format(“ WHERE {0} = ‘{1}’;”,
 this.KeyFieldName,
 transmittal.Key));
 using (IDataReader reader = this.ExecuteReader(builder.ToString()))
 {
 while (reader.Read())
 {
 transmittal.CopyToList.Add(TransmittalFactory.BuildCopyTo(
 transmittal.ProjectKey, reader));
 }
 }
 }

 This code is essentially the same as the code from the old version of the SubmittalRepository , but
instead of being hard - coded to a Submittal instance or a RequestForInformation instance, it now
only relies upon EntityBase and ITransmittal . The queries have been changed to be more
generic as well. An important thing to note about this change is that I needed also to refactor the
 SqlCeRepositoryBase < T > class a little bit, with the addition of the EntityName and KeyFieldName
properties. Also, all classes deriving from SqlCeRepositoryBase < T > now need to implement the
following new abstract methods:

protected abstract string GetEntityName();
protected abstract string GetKeyFieldName();

 Here is an example of how the RequestForInformationRepository class is implementing
the methods:

 #region GetEntityName

 protected override string GetEntityName()
 {
 return “RequestForInformation”;
 }

 #endregion

 #region GetKeyFieldName

 protected override string GetKeyFieldName()

(continued)

c06.indd 217c06.indd 217 3/18/08 5:16:31 PM3/18/08 5:16:31 PM

Chapter 6: Requests for Information

218

 {
 return RequestForInformationFactory.FieldNames.RequestForInformationId;
 }

 #endregion

 These follow the same Template Method Pattern that the SqlCeRepositoryBase < T > class has been
implementing all along, as two more calls have been added to its constructor:

 protected SqlCeRepositoryBase(IUnitOfWork unitOfWork)
 : base(unitOfWork)
 {
 this.database = DatabaseFactory.CreateDatabase();
 this.entityFactory = EntityFactoryBuilder.BuildFactory < T > ();
 this.childCallbacks = new Dictionary < string, AppendChildData > ();
 this.BuildChildCallbacks();
 this.baseQuery = this.GetBaseQuery();
 this.baseWhereClause = this.GetBaseWhereClause();

 this.entityName = this.GetEntityName();
 this.keyFieldName = this.GetKeyFieldName();

 }

 The DeleteCopyToList Method
 This method has been refactored very similarly to the AppendCopyToList method.

 protected void DeleteCopyToList(T transmittal)
 {
 string query = string.Format(“DELETE FROM {0}CopyList {1}”,
 this.EntityName, this.BuildBaseWhereClause(transmittal.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

 The only change in this method is that, just like the AppendCopyToList method, it has been made
more generic and relies upon the EntityBase class as well as the ITransmittal interface in order to
build its SQL query.

The InsertCopyToList and InsertCopyTo Methods
 These methods keep following the same pattern in their refactoring as the others:

 protected void InsertCopyToList(T transmittal)
 {
 foreach (CopyTo copyTo in transmittal.CopyToList)
 {
 this.InsertCopyTo(copyTo, transmittal.Key);
 }
 }
 private void InsertCopyTo(CopyTo copyTo, object key)

(continued)

c06.indd 218c06.indd 218 3/18/08 5:16:32 PM3/18/08 5:16:32 PM

Chapter 6: Requests for Information

219

 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO {0}CopyList ({1},{2},{3}) “,
 this.EntityName,
 this.KeyFieldName,
 TransmittalFactory.FieldNames.ProjectContactId,
 TransmittalFactory.FieldNames.Notes));
 builder.Append(string.Format(“VALUES ({0},{1},{2});”,
 DataHelper.GetSqlValue(key),
 DataHelper.GetSqlValue(copyTo.Contact.Key),
 DataHelper.GetSqlValue(copyTo.Notes)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));
 }

 Like the other methods, these methods are also aided by the new interface and the new properties and
abstract methods of the SqlCeRepositoryBase < T > class.

 The next piece of functionality that needed refactoring was the notion of routable Transmittals. As shown
earlier, the IRoutableTransmital interface shows that a routable Transmittal is one that has
 RoutingItems associated with it.

 public interface IRoutableTransmittal : ITransmittal
 {
 IList < RoutingItem > RoutingItems { get; }
 }

 So the next logical step was to add a new abstract Repository to house the necessary code for
 RoutingItems . That class is the SqlCeRoutableTransmittalRepository < T > class, and its signature
is shown here:

public abstract class SqlCeRoutableTransmittalRepository < T > :
 SqlCeTransmittalRepository < T >
 where T : EntityBase, IRoutableTransmittal

 I am not going to show its pass - through constructors, since they are almost identical to the
constructors in the SqlCeTransmittalRepository < T > class. As you might expect, this class is
intended to isolate the code that deals with RoutingItem instances. It has three protected methods in it,
 AppendRoutingItems , DeleteRoutingItems , and InsertRoutingItems , and two private methods,
 DeleteRoutingItem and InsertRoutingItem . I am not going to show the code for these methods, as
they are nearly identical to the old methods, and they have simply been modified, like all of the other
newly refactored methods, to be more generic. Instead of depending upon the ITransmittal interface,
the new methods in the SqlCeRoutableTransmittalRepository < T > class depend upon the
 IRoutableTransmittal interface.

 Unit of Work Implementation
 Following the same steps that I have shown before to implement the Unit of Work pattern, I need
to override the following three methods: PersistNewItem(RequestForInformation item) ,
 PersistUpdatedItem(RequestForInformation item) , and
PersistDeletedItem(RequestForInformation item) .

c06.indd 219c06.indd 219 3/18/08 5:16:32 PM3/18/08 5:16:32 PM

Chapter 6: Requests for Information

220

The PersistNewItem Method
 The first method override for the RequestForInformationRepository ’ s Unit of Work implementation
is the PersistNewItem method:

 protected override void PersistNewItem(RequestForInformation item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO RequestForInformation
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},
{18},{19},{20},{21},{22},{23},{24},{25}) “,
 RequestForInformationFactory.FieldNames.RequestForInformationId,
 ProjectFactory.FieldNames.ProjectId,
 RequestForInformationFactory.FieldNames.RequestForInformationNumber,
 RequestForInformationFactory.FieldNames.TransmittalDate,
 RequestForInformationFactory.FieldNames.ProjectContactId,
 RequestForInformationFactory.FieldNames.TotalPages,
 RequestForInformationFactory.FieldNames.DeliveryMethod,
 RequestForInformationFactory.FieldNames.OtherDeliveryMethod,
 RequestForInformationFactory.FieldNames.PhaseNumber,
 RequestForInformationFactory.FieldNames.Reimbursable,
 RequestForInformationFactory.FieldNames.Final,
 RequestForInformationFactory.FieldNames.DateReceived,
 RequestForInformationFactory.FieldNames.DateRequestedBy,
 CompanyFactory.FieldNames.CompanyId,
 SubmittalFactory.FieldNames.SpecificationSectionId,
 RequestForInformationFactory.FieldNames.Question,
 RequestForInformationFactory.FieldNames.Description,
 RequestForInformationFactory.FieldNames.ContractorProposedSolution,
 RequestForInformationFactory.FieldNames.NoChange,
 RequestForInformationFactory.FieldNames.Cause,
 RequestForInformationFactory.FieldNames.Origin,
 RequestForInformationFactory.FieldNames.ItemStatusId,
 RequestForInformationFactory.FieldNames.DateToField,
 RequestForInformationFactory.FieldNames.ShortAnswer,
 RequestForInformationFactory.FieldNames.LongAnswer,
 RequestForInformationFactory.FieldNames.Remarks
));
 builder.Append(string.Format(“VALUES
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},
{18},{19},{20},{21},{22},{23},{24},{25});”,
 DataHelper.GetSqlValue(item.Key),
 DataHelper.GetSqlValue(item.ProjectKey),
 DataHelper.GetSqlValue(item.Number),
 DataHelper.GetSqlValue(item.TransmittalDate),
 DataHelper.GetSqlValue(item.From.Key),
 DataHelper.GetSqlValue(item.TotalPages),
 DataHelper.GetSqlValue(item.DeliveryMethod),
 DataHelper.GetSqlValue(item.OtherDeliveryMethod),
 DataHelper.GetSqlValue(item.PhaseNumber),
 DataHelper.GetSqlValue(item.Reimbursable),
 DataHelper.GetSqlValue(item.Final),
 DataHelper.GetSqlValue(item.DateReceived),
 DataHelper.GetSqlValue(item.DateRequestedBy),

c06.indd 220c06.indd 220 3/18/08 5:16:32 PM3/18/08 5:16:32 PM

Chapter 6: Requests for Information

221

 DataHelper.GetSqlValue(item.Contractor),
 DataHelper.GetSqlValue(item.SpecSection),
 DataHelper.GetSqlValue(item.Question),
 DataHelper.GetSqlValue(item.Description),
 DataHelper.GetSqlValue(item.ContractorProposedSolution),
 DataHelper.GetSqlValue(item.Change),
 DataHelper.GetSqlValue(item.Cause),
 DataHelper.GetSqlValue(item.Origin),
 DataHelper.GetSqlValue(item.Status.Id),
 DataHelper.GetSqlValue(item.DateToField),
 DataHelper.GetSqlValue(item.ShortAnswer),
 DataHelper.GetSqlValue(item.LongAnswer),
 DataHelper.GetSqlValue(item.Remarks)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects
 this.InsertCopyToList(item);
 this.InsertRoutingItems(item);
 }

 The code builds up a large insert statement composed of the values from the RequestForInformation
instance and then executes the query using the Microsoft Enterprise Library ’ s Database object.
After the insert statement has been executed, I have to account for inserting the CopyTo and
 RoutingItem instances for the RFI. I do this by calling the newly refactored InsertCopyToList
and InsertRoutingItems methods, which all take an IRoutableTransmittal instance (which the
RFI class implements) as their only argument.

The PersistUpdatedItem Method
 PersistUpdatedItem first does an update to the RequestForInformation table:

 protected override void PersistUpdatedItem(RequestForInformation item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“UPDATE RequestForInformation SET “);

 builder.Append(string.Format(“{0} = {1}”,
 RequestForInformationFactory.FieldNames
.RequestForInformationNumber,
 DataHelper.GetSqlValue(item.Number)));

 builder.Append(string.Format(“,{0} = {1}”,
 RequestForInformationFactory.FieldNames.TransmittalDate,
 DataHelper.GetSqlValue(item.TransmittalDate)));
**
builder.Append(string.Format(“,{0} = {1}”,
 RequestForInformationFactory.FieldNames.Remarks,
 DataHelper.GetSqlValue(item.Remarks)));

 builder.Append(“ “);

(continued)

c06.indd 221c06.indd 221 3/18/08 5:16:33 PM3/18/08 5:16:33 PM

Chapter 6: Requests for Information

222

 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects

 // First, delete the existing ones
 this.DeleteCopyToList(item);
 this.DeleteRoutingItems(item);

 // Now, add the current ones
 this.InsertCopyToList(item);
 this.InsertRoutingItems(item);
 }

 I have omitted several lines of repetitive code building the SQL update statement in the middle of
the code in order save you from the boring code. The removed lines are represented by a single line
of asterisks.

 The second part of the method then uses the newly refactored DeleteCopyToList and
 DeleteRoutingItems helper methods to delete all of the child objects of the RFI, and then uses the also
newly refactored InsertCopyToList and InsertRoutingItems helper methods to add the existing
child objects from the RFI to the database.

PersistDeletedItem
 As I was writing the last method in RequestForInformationRepository to override,
 PersistDeletedItem , I realized that I could refactor that back into the base classes as well. Originally,
the code I wrote looked like this:

 protected override void PersistDeletedItem(RequestForInformation item)
 {
 // Delete the child objects first
 this.DeleteCopyToList(item);
 this.DeleteRoutingItems(item);

 // Now delete the RFI
 string query = string.Format(“DELETE FROM RequestForInformation {0}”,
 this.BuildBaseWhereClause(item.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

 After analyzing the code, I saw another opportunity to refactor it back into the
 SqlCeRepositoryBase < T > and SqlCeRoutableTransmittalRepository < T > classes. I will start
with the SqlCeRepositoryBase < T > implementation:

 protected override void PersistDeletedItem(T item)
 {
 // Delete the Entity
 string query = string.Format(“DELETE FROM {0} {1}”,

(continued)

c06.indd 222c06.indd 222 3/18/08 5:16:33 PM3/18/08 5:16:33 PM

Chapter 6: Requests for Information

223

 this.entityName,
 this.BuildBaseWhereClause(item.Key));
 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(query));
 }

 This was made possible by the Template Method Pattern implemented in the earlier refactoring for the
 EntityName and EntityKey properties of the SqlCeRepositoryBase < T > class. This method is now
generic enough to delete any Entity from the database. So the logical question now is, “ what about when
the Entity has children that must be deleted first? ” The answer comes in overriding the
 PersistDeletedItem method in derived classes. I took this a step further with the concept of deleting
Transmittals and added functionality in the SqlCeRoutableTransmittalRepository < T > class to do
just this:

 protected override void PersistDeletedItem(T transmittal)
 {
 // Delete the child objects first
 this.DeleteCopyToList(transmittal);
 this.DeleteRoutingItems(transmittal);

 // Delete the transmittal entity
 base.PersistDeletedItem(transmittal);
 }

 This is great because now I can delete whatever child objects I want to delete first, and then call the base
class, in this case SqlCeRepositoryBase < T > , to do the rest. So in the SubmittalRepository , the
implementation now becomes:

 protected override void PersistDeletedItem(Submittal item)
 {
 // Delete the child objects first
 this.DeleteTrackingItems(item);

 // Now delete the submittal and its associated
 // transmittal objects
 base.PersistDeletedItem(item);
 }

 Because Tracking Items are not part of the ITransmittal interface, I needed to delete these first, and
then by calling the base class, in this case the SqlCeRoutableTransmittalRepository < T > class, I am
able to delete the rest of the child objects (the CopyToList and the RoutingItems) as well as the Entity
itself. What is even better is that in the RequestForInformationRepository class (and in a few other
repositories), the need to override the PersistDeletedItem method goes away completely!

 The RFI Service Implementation
 Still in this application, the only Service classes I have implemented up to this point are all Service
classes that live in the domain model layer and are acting as facades to their respective Repository
interfaces.

c06.indd 223c06.indd 223 3/18/08 5:16:33 PM3/18/08 5:16:33 PM

Chapter 6: Requests for Information

224

 The RequestForInformationService class is responsible for retrieving and saving
 RequestForInformation instances.

using System;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;
using System.Collections.Generic;

namespace SmartCA.Model.RFI
{
 public static class RequestForInformationService
 {
 private static IRequestForInformationRepository repository;
 private static IUnitOfWork unitOfWork;

 static RequestForInformationService()
 {
 RequestForInformationService.unitOfWork = new UnitOfWork();
 RequestForInformationService.repository =
 RepositoryFactory.GetRepository < IRequestForInformationRepository,
 RequestForInformation > (RequestForInformationService.unitOfWork);
 }

 public static IList < RequestForInformation >
 GetRequestsForInformation(Project project)
 {
 return RequestForInformationService.repository.FindBy(project);
 }

 public static void SaveRequestForInformation(RequestForInformation rfi)
 {
 RequestForInformationService.repository[rfi.Key] = rfi;
 RequestForInformationService.unitOfWork.Commit();
 }
 }
}

 This class is mainly just acting as a fa ç ade in front of the IRequestForInformationRepository
instance. There is nothing really new in this Service class compared to the other ones.

 The RFI ViewModel Classes
 Following the same patterns for all ViewModel classes as before, the
 RequestForInformationViewModel class adapts the RFI Aggregate from the domain model to the UI.
When I started coding the ViewModel for the RFI I noticed that there was a lot in common between the
 SubmittalViewModel and the RequestForInformationViewModel , so I did another major
refactoring and created a new abstract ViewModel class called, you guessed it, the
 TransmittalViewModel < T > class.

c06.indd 224c06.indd 224 3/18/08 5:16:34 PM3/18/08 5:16:34 PM

Chapter 6: Requests for Information

225

 The TransmittalViewModel < T > Class
 This class is very similar to the SqlCeTransmittalRepository < T > and
 SqlCeRoutableTransmittalRepository < T > classes that I showed earlier. It is the same concept
again, which is to refactor common functionality into an abstract base class and have future classes
that share the same functionality inherit them from the new base class. In this case, just like with the
 Repository classes and the SqlCeRepositoryBase < T > class, there is already an abstract base class that
my ViewModel classes inherit from, and that is the ViewModel class. The TransmittalViewModel < T >
class will be extending this class and it will be abstract as well. Here is the signature for the class:

public abstract class TransmittalViewModel < T > : ViewModel
 where T : EntityBase, IRoutableTransmittal

 This is following the same pattern as the SqlCeTransmittalRepository < T > and
 SqlCeRoutableTransmittalRepository < T > classes, since it is a generic class and is using constraints
to make sure that the generic class is an EntityBase that implements the IRoutableTransmittal
interface.

The Constructor
 My goal with this class was to lift all of the Transmittal behavior out of the SubmittalViewModel class
and put it into this class. Therefore, the constructor code you see below should look very much like the
old SubmittalViewModel code, with all references to anything named “ submittal ” changed to
 “ transmittal. ”

 #region Constructors

 public TransmittalViewModel()
 : this(null)
 {
 }

 public TransmittalViewModel(IView view)
 : base(view)
 {
 this.currentTransmittal = null;
 this.transmittalList = this.GetTransmittals();
 this.transmittals = new CollectionView(this.transmittalList);

 this.specificationSections
 = SubmittalService.GetSpecificationSections();
 this.itemStatuses = SubmittalService.GetItemStatuses();
 this.mutableCopyToList = new BindingList < MutableCopyTo > ();
 this.routingItems = new BindingList < RoutingItem > ();
 this.deliveryMethods = new CollectionView(
 Enum.GetNames(typeof(Delivery)));
 this.disciplines = SubmittalService.GetDisciplines();
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 this.deleteCopyToCommand =
 new DelegateCommand(this.DeleteCopyToCommandHandler);
 this.deleteRoutingItemCommand =
 new DelegateCommand(this.DeleteRoutingItemCommandHandler);

 }

 #endregion

c06.indd 225c06.indd 225 3/18/08 5:16:34 PM3/18/08 5:16:34 PM

Chapter 6: Requests for Information

226

 I was able to reuse almost everything in the old constructor, except for the Tracking Items, which are not
part of what I have defined for a Transmittal. I decided for now to leave the calls in to the
 SubmittalService , although that class is also a candidate for refactoring.

 Notice how the GetTransmittals method is called in order to initialize the list of Transmittals. This is
an abstract method of the TransmittalViewModel < T > class, and thus I am once again using the
Template Method pattern. I will show more on this method later.

The Properties
 The CurrentTransmittal property is extremely similar to the old CurrentSubmittal property of the
 SubmitalViewModel class:

 public T CurrentTransmittal
 {
 get { return this.currentTransmittal; }
 set
 {
 if (this.currentTransmittal != value)
 {
 this.currentTransmittal = value;
 this.OnPropertyChanged(Constants
.CurrentTransmittalPropertyName);
 this.OnPropertyChanged(“Status”);
 this.saveCommand.IsEnabled = (this.currentTransmittal != null);
 this.PopulateTransmittalChildren();
 }
 }
 }

 The only difference between this code and the SubmitalViewModel CurrentTransmittal property
code is that this code is more generic. Don ’ t you just love Generics? I bet you can ’ t tell that I do!

 The PopulateSubmittalChildren method has been changed to the PopulateSubmittalChildren
method. Here is the old method:

 private void PopulateSubmittalChildren()
 {
 this.PopulateMutableCopyToList();
 this.PopulateRoutingItems();
 this.PopulateTrackingItems();
 }

 And here is the new method:

 protected virtual void PopulateTransmittalChildren()
 {
 this.PopulateMutableCopyToList();
 this.PopulateRoutingItems();
 }

c06.indd 226c06.indd 226 3/18/08 5:16:34 PM3/18/08 5:16:34 PM

Chapter 6: Requests for Information

227

 The only difference in this method is that it no longer tries to populate the Tracking Items data, and that
is exactly why I made it virtual, because derived classes may need to override this method in order to
populate their own child objects as necessary.

 The PopulateMutableCopyToList method has been changed from this:

 private void PopulateMutableCopyToList()
 {
 if (this.currentSubmittal != null)
 {
 this.mutableCopyToList.Clear();
 foreach (CopyTo copyTo in this.currentSubmittal.CopyToList)
 {
 this.mutableCopyToList.Add(new MutableCopyTo(copyTo));
 }
 this.OnPropertyChanged(Constants.MutableCopyToListPropertyName);
 }
 }

 To this:

 private void PopulateMutableCopyToList()
 {
 if (this.currentTransmittal != null)
 {
 this.mutableCopyToList.Clear();
 foreach (CopyTo copyTo in this.currentTransmittal.CopyToList)
 {
 this.mutableCopyToList.Add(new MutableCopyTo(copyTo));
 }
 this.OnPropertyChanged(Constants.MutableCopyToListPropertyName);
 }
 }

 I am not going to show the PopulateRoutingItems method because it follows the exact same pattern
as the PopulateMutableCopyToList method.

The Command Handler Methods
 Refactoring the Command Handler methods was a little bit trickier than some of the other methods in
the TransmittalViewModel class. The SaveCommandHandler and the NewCommandHandler methods
both had to be marked as virtual, and that is because I could only pull so much out of them into this, and
the rest that is specific to the derived class must be overridden.

 For example, the NewCommandHandler went from this:

 private void NewCommandHandler(object sender, EventArgs e)
 {
 Submittal newSubmittal = new Submittal(
 this.currentSubmittal.SpecSection,
 this.currentSubmittal.ProjectKey);

(continued)

c06.indd 227c06.indd 227 3/18/08 5:16:35 PM3/18/08 5:16:35 PM

Chapter 6: Requests for Information

228

 newSubmittal.SpecSectionSecondaryIndex = “01”;

 this.currentSubmittal = null;
 this.mutableCopyToList.Clear();
 this.routingItems.Clear();
 this.trackingItems.Clear();
 this.CurrentObjectState = ObjectState.New;
 this.OnPropertyChanged(
 Constants.CurrentSubmittalPropertyName);

 this.submittalsList.Add(newSubmittal);
 this.submittals.Refresh();
 this.submittals.MoveCurrentToLast();
 }

 To this:

 protected virtual void NewCommandHandler(object sender, EventArgs e)
 {
 this.currentTransmittal = null;
 this.mutableCopyToList.Clear();
 this.routingItems.Clear();
 this.CurrentObjectState = ObjectState.New;
 this.OnPropertyChanged(
 Constants.CurrentTransmittalPropertyName);
 }

 The code that initializes the new Entity (i.e., the Submittal class in the first example above) had to be
removed and must be overridden in the derived ViewModel . I also needed to remove the code that
added the Submittal to the list of Submittals because I needed that to happen last in the derived class,
after this code executes.

The GetTransmittals Template Pattern Method
 As seen in the constructor, the GetTransmittals abstract method is called in order to initialize the list of
Transmittals for the class. Here is the signature of this method:

protected abstract List < T > GetTransmittals();

 This is great because by doing this I am delegating the derived class to get the right list of objects, yet I
can still code against that list in my base class. Combining the Template Method pattern with Generics is
a great thing!

 The RequestForInformationViewModel Class
 Now the fruits of our ViewModel refactoring labor start to pay off. The code inside of the
 RequestForInformationViewModel and SubmittalViewModel classes has been reduced significantly.
Here is what the signature of the RequestForInformationViewModel class looks like when deriving
from the TransmittalViewModel < T > class:

public class RequestForInformationViewModel
 : TransmittalViewModel < RequestForInformation >

(continued)

c06.indd 228c06.indd 228 3/18/08 5:16:35 PM3/18/08 5:16:35 PM

Chapter 6: Requests for Information

229

 Notice how the generic parameter from the TransmittalViewModel < T > class is replaced by the
 RequestForInformation class.

 The Constructor
 The constructors for the RequestForInformationViewModel class now are mostly pass - through.
Here is the old SubmittalViewModel constructor:

 #region Constructors

 public SubmittalViewModel()
 : this(null)
 {
 }

 public SubmittalViewModel(IView view)
 : base(view)
 {
 this.currentSubmittal = null;
 this.submittalsList = new List < Submittal > (
 SubmittalService.GetSubmittals(
 UserSession.CurrentProject));
 this.submittals = new CollectionView(this.submittalsList);
 this.specificationSections
 = SubmittalService.GetSpecificationSections();
 this.submittalStatuses = SubmittalService.GetSubmittalStatuses();
 this.toList = UserSession.CurrentProject.Contacts;
 this.mutableCopyToList = new BindingList < MutableCopyTo > ();
 this.routingItems = new BindingList < RoutingItem > ();
 this.trackingItems = new BindingList < TrackingItem > ();
 this.fromList = EmployeeService.GetEmployees();
 this.trackingStatusValues = new CollectionView(
 Enum.GetNames(typeof(ActionStatus)));
 this.deliveryMethods = new CollectionView(
 Enum.GetNames(typeof(Delivery)));
 this.disciplines = SubmittalService.GetDisciplines();
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 this.deleteCopyToCommand =
 new DelegateCommand(this.DeleteCopyToCommandHandler);
 this.deleteRoutingItemCommand =
 new DelegateCommand(this.DeleteRoutingItemCommandHandler);
 this.deleteTrackingItemCommand =
 new DelegateCommand(this.DeleteTrackingItemCommandHandler);
 }

 #endregion

c06.indd 229c06.indd 229 3/18/08 5:16:35 PM3/18/08 5:16:35 PM

Chapter 6: Requests for Information

230

 Here are the new constructors for the RequestForInformationViewModel class:

 #region Constructors

 public RequestForInformationViewModel()
 : this(null)
 {
 }

 public RequestForInformationViewModel(IView view)
 : base(view)
 {
 this.toList = UserSession.CurrentProject.Contacts;
 this.fromList = UserSession.CurrentProject.Contacts;
 }

 #endregion

 That ’ s quite a reduction in code! The toList and fromList private fields are not contained in the base
class and therefore need to be initialized here.

The Properties
 There are not many properties left to implement in the RequestForInformationViewModel class. Here
is all of the code for the properties:

 #region Properties

 public IList < ProjectContact > ToList
 {
 get { return this.toList; }
 }

 public IList < ProjectContact > FromList
 {
 get { return this.fromList; }
 }

 #endregion

 The Command Handler Methods
 The only command handler methods that I need to override in the RequestForInformationViewModel
class are the NewCommandHandler and SaveCommandHandler methods. The DeleteCommandHandler
method is completely taken care of by the base class.

c06.indd 230c06.indd 230 3/18/08 5:16:36 PM3/18/08 5:16:36 PM

Chapter 6: Requests for Information

231

 Because the NewCommandHandler method in the base class was marked as virtual, I am still able to use it
as well as add my own functionality:

 protected override void NewCommandHandler(object sender, EventArgs e)
 {
 base.NewCommandHandler(sender, e);
 RequestForInformation newRfi = new RequestForInformation(
 this.CurrentTransmittal.ProjectKey,
 this.CurrentTransmittal.Number + 1);
 this.TransmittalList.Add(newRfi);
 this.Transmittals.Refresh();
 this.Transmittals.MoveCurrentToLast();
 }

 Notice how on the first line of the method I call the same method in the base class. This allows me to
reuse the common code yet gives me the flexibility to do my own housekeeping when creating the new
 RequestForInformation instance.

The GetTransmittals Template Pattern Method
 As I mentioned before, the GetTransmittals method is overridden in the derived classes because only
they know where to get their data; the base class does not need to know about that:

#region GetTransmittals

 protected override List < RequestForInformation > GetTransmittals()
 {
 return new
List < RequestForInformation > (RequestForInformationService.GetRequestsForInformation(
 UserSession.CurrentProject));
 }

 #endregion

 In this case of the RequestForInformationViewModel class ’ s override, I am simply calling out to the
 RequestForInformationService to get the list of RequestForInformation instances.

 The RFI View
 The View for RFIs is almost exactly identical to that for Submittals. Figure 6.6 shows what the form looks
like at run time.

c06.indd 231c06.indd 231 3/18/08 5:16:36 PM3/18/08 5:16:36 PM

Chapter 6: Requests for Information

232

 Following the same pattern as before, the form is split into two parts: the one on the left is for selecting
an RFI to edit, and the one on the right is for editing the selected RFI. The New button adds a new RFI to
the list. The Save and Cancel buttons both deal with the currently selected RFI.

 I really do not need to show any of the XAML code for this form because there is really not much in it
that is different from the Submittal form.

 Summary
 In this chapter, I introduced the concept of a Request for Information (RFI) in the construction industry
and then used that concept to model the RFI Aggregate. I also introduced a new concept into the
domain, called the Specification Pattern. This made some of the business rule modeling very clear by
bringing business rules out from underneath class methods and placing them into their own
 Specification classes. I then defined the boundaries for the RFI Aggregate, as well as implementing
all of the necessary domain model and Infrastructure classes necessary to work with those classes.
I also did some major refactoring in this chapter for the repositories and ViewModels dealing with the
new concept of Transmittals.

 Figure 6.6: The RFI View.

c06.indd 232c06.indd 232 3/18/08 5:16:36 PM3/18/08 5:16:36 PM

 Proposal Requests

 In the last chapter, I covered the ins and outs of the Request for Information (RFI) document. In
this chapter, I will cover another concept that is similar to an RFI but has a different intent. That
concept is the Proposal Request.

 The Problem
 In the construction industry, just like the software industry, projects rarely finish exactly as
planned; there are usually changes that have to be made along the way. In software, it could be
that the application you are working on has some features that the business no longer needs, or
doesn ’ t have new features discovered while the application is still in development. Likewise, in
the construction industry, there are many factors in a project that may necessitate a change to the
original contract.

 A Contractor can discover physical or economic situations, usually unanticipated, that may make
it impossible to follow the contract documents. Architects could find it necessary to recommend
changes in the contract documents because of errors in the contract documents. Other sources
of changes could be weather damage such as wind and rain, natural disasters such as an
earthquake, labor and material shortages, and fire and explosion.

 When these types of events occur, it means that there needs to be a Change Order issued for the
project. In the construction industry, there is an action that must occur before the Change Order is
drafted. That action is known officially as the Work Changes Proposal Request. For the purposes of
this chapter, I will refer to this as a Proposal Request.

 A Proposal Request is a one page form that identifies the change and all the parties involved in the
contract. The form is prepared by the architect and is directed to the Contractor. It is essentially a
request for a price and time proposal for carrying out the proposed change. A copy of it should be
sent to all parties involved and a record kept of all recipients. A Proposal Request is not an
authorization to do the work. It is not a Change Order. It is only a special type of request for

c07.indd 233c07.indd 233 3/18/08 5:17:24 PM3/18/08 5:17:24 PM

Chapter 7: Proposal Requests

234

information that will be needed by the owner and architect to decide whether to make the change,
modify it, or to cancel it.

 The form includes a time limit for the Contractor ’ s submission of the proposal or for a commitment of
the date on which the completed Proposal Request will be submitted. Like the RFI, each Proposal
Request should be serially numbered by project.

 The Design
 In the SmartCA domain, an RFI contains several important business concepts that must be closely
followed. In the next few sections, I will be designing the domain model, determining the RFI Aggregate
and its boundaries, and designing the Repository for RFIs.

 Designing the Domain Model
 As stated earlier, the most important parts of the Proposal Request are the Expected Return Date from
the Contractor, the Description of the Proposal Request, and the proper ordering of the Proposal Request
Number. Just as in the last chapter, I will be using the Specification pattern to specify the rules for these
properties, and the specifications that I create will also be part of the domain model.

 Below is a drawing showing the relationships between the classes that combine to make up a Proposal
Request:

ContractorTo From

Copy To
*

Proposal Request
Number Specification

Description
Specification

Proposal
Request

 Figure 7.1: Proposal Request Aggregate.

 In the diagram, it should be pretty clear that the Proposal Request class is the root of the Aggregate. The
relationships to the Description Specification and Proposal Request Number Specification classes help
model the important rules of the Proposal Request.

c07.indd 234c07.indd 234 3/18/08 5:17:30 PM3/18/08 5:17:30 PM

Chapter 7: Proposal Requests

235

 The relationship to the “ From ” class represents from whom the Proposal Request came, and with which
Contractor it is associated. The “ To ” class represents for what Project Contact the Proposal Request is
intended.

 Just as with the Submittal Transmittal and RFI Aggregates, there is a Copy To relationship from a
Proposal Request, which represents the list of Recipients who need to be copied on all correspondence
having to do with the Proposal Request.

 Designing the Proposal Request Aggregate
 You may have expected this, but as I was analyzing the Proposal Request class from Figure 7.1 , I noticed
that it had a lot of the same properties as the RequestForInformation and Submittal classes.
Namely, all of the properties that make up the ITransmittal interface that I introduced in the last
chapter. Instead of having all of these classes implement the ITransmittal interface and have all of that
duplicate code, I decided to refactor the common code into a new abstract class, the Transmittal class.

Transmittal
AbstractClass
 EntityBase

Fields

Methods

Properties

Final
OtherDeliveryMethod
PhaseNumber
ProjectKey
Rembursable
TotalPage
TransmittalDate
TransmittalRemarks

ITransmittal
Interface

Properties

Final
OtherDeliveryMethod

DeliveryMethod
CopyToList

PhaseNumber
ProjectKey
Rembursable
TotalPage
TransmittalDate
TransmittalRemarks

Company
Class
 EntityBase

Contractor

Employee
Class
 Person

From

ProjectContact
Class
 EntityBase

To

Delivery
Enum

DeliveryMethod

CopyTo
Class

CopyToListITransmittal

ProposalReuestDescriptionSpecification
Class
 Specification<ProposalRequest>

Methods

IsSatisfiedBy

NumberSpecification

ProposalReuestNumberSpecification
Class
 Specification<ProposalRequest>

Methods

IsSatisfiedBy

ProposalReauest
Class
 Transmittal

Fields

Properties

Methods

Attachment
Cause
Description
ExpectedContractorReturnDate
Initiator
IssueDate
Number
Origin
Reason
Remarks

ProposalRequest (+1 overload)
Validate

GetExpectedContractorReturnDays

ValidateInitialization

DefaultExpectedContractorReturnDays

DescriptionSpecification

Figure 7.2: Classes constituting the Proposal Request Aggregate.

c07.indd 235c07.indd 235 3/18/08 5:17:31 PM3/18/08 5:17:31 PM

Chapter 7: Proposal Requests

236

 As shown in Figure 7.2 , the ProposalRequest class inherits from the Transmittal class. Since
 ProposalRequest Transmittals do not have Routing Items, and the RequestForInformation and
 Submittal classes do, I made another abstract class for those classes to inherit from, and that class is the
 RoutableTransmittal class. I refactored the RequestForInformation and Submittal classes to
inherit from the RoutableTransmittal class. Figure 7.3 details the relationships and hierarchy between
the Transmittal and Routable Transmittal interfaces and abstract classes.

Transmittal
AbstractClass
 EntityBase

Fields

Methods

Properties

Final
OtherDeliveryMethod

CopyToList
DeliveryMethod

PhaseNumber
ProjectKey
Reimbursable
TotalPages
TransmittalDate
TransmittalRemarks

ITransmittal
Interface

Properties

Final
OtherDeliveryMethod

DeliveryMethod
CopyToList

PhaseNumber
ProjectKey
Reimbursable
TotalPages
TransmittalDate
TransmittalRemarks

ITransmittal

RoutableTransmittal
AbstractClass
 Transmittal

Fields

Methods

Properties

RoutingItems

IRoutableTransmittal
Interface
 ITansmittal

Properties
RoutingItems

IRoutableTransmittal

Figure 7.3: Transmittal and RoutableTransmittal classes.

 Since the Transmittal and RoutableTransmittal classes respectively implement the ITransmittal
and IRoutableTransmittal interfaces, everything will still work as before with their associated
repositories.

 Defining the Aggregate Boundaries
 The ProposalRequest class has its own identity and is definitely the root of its own Aggregate. All of
the other classes in Figure 7.4, except for ProjectContact , Company , and Employee , belong to the

c07.indd 236c07.indd 236 3/18/08 5:17:31 PM3/18/08 5:17:31 PM

Chapter 7: Proposal Requests

237

 Designing the Repository
 This should be getting familiar by now, but I will say it again: since the ProposalRequest class is its
own Aggregate root, it will have its own Repository (as shown in Figure 7.5).

Transmittal
AbstractClass
 EntityBase

Fields

Methods

Properties

Final
OtherDeliveryMethod
PhaseNumber
ProjectKey
Rembursable
TotalPage
TransmittalDate
TransmittalRemarks

ITransmittal
Interface

Properties

Final
OtherDeliveryMethod

DeliveryMethod
CopyToList

PhaseNumber
ProjectKey
Rembursable
TotalPage
TransmittalDate
TransmittalRemarks

Company
Class
 EntityBase

Contractor

Employee
Class
 Person

From

ProjectContact
Class
 EntityBase

To

Delivery
Enum

DeliveryMethod

CopyTo
Class

CopyToListITransmittal

ProposalReuestDescriptionSpecification
Class
 Specification<ProposalRequest>

Methods

IsSatisfiedBy

NumberSpecification

ProposalReuestNumberSpecification
Class
 Specification<ProposalRequest>

Methods

IsSatisfiedBy

ProposalReauest
Class
 Transmittal

Fields

Properties

Methods

Attachment
Cause
Description
ExpectedContractorReturnDate
Initiator
IssueDate
Number
Origin
Reason
Remarks

ProposalRequest (+1 overload)
Validate

GetExpectedContractorReturnDays

ValidateInitialization

DefaultExpectedContractorReturnDays

DescriptionSpecification

Proposal Request Aggregate

Company
Aggregate

Employee
Aggregate

Employee
Aggregate

Figure 7.4: Proposal Request Aggregate boundaries.

Proposal Request Aggregate. As shown in earlier chapters, ProjectContact belongs to the Project
Aggregate, Company is the root of its own Aggregate, and the Employee class is part of the
Employee Aggregate.

c07.indd 237c07.indd 237 3/18/08 5:17:31 PM3/18/08 5:17:31 PM

Chapter 7: Proposal Requests

238

 The IProposalRequestRepository interface is the interface for instances of Proposal Request
Repositories. Here is the IProposalRequestRepository interface:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;

namespace SmartCA.Model.ProposalRequests
{
 public interface IProposalRequestRepository
 : IRepository < ProposalRequest >
 {
 IList < ProposalRequest > FindBy(Project project);
 int GetExpectedContractorReturnDays();
 }
}

 Like the Repository interfaces for Submittals and RFIs, this Repository interface also has a FindBy
method. In addition, it has the GetExpectedContractorReturnDays method, which I will go over in
detail later in the chapter.

SqlCeTransmittalRepository<T>
GenericAbstractClass
 SqlCeRepositoryBase<T>

IProposalRequestRepository
Interface
 IRepository<ProposalRequest>

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

IRepository<T>
GenericInterface

ProposalRequestRepository
Class
 SqlCeTransmittalRepository<ProposalRequest>

IProposalRequestRepository

Figure 7.5: Proposal Request
Repository.

c07.indd 238c07.indd 238 3/18/08 5:17:31 PM3/18/08 5:17:31 PM

Chapter 7: Proposal Requests

239

 Writing the Unit Tests
 In this section, I will be writing some unit tests for what I expect of the Proposal Request Repository
implementation. As noted before, these tests will compile correctly, but they will also fail until I write the
code for the Repository implementation later on, in the Solution section.

 There will be more unit tests in the accompanying code for this chapter, but for brevity ’ s sake I am
showing the tests that I think are important here.

 The FindProposalRequestsByProjectTest Method
 The purpose of the FindProposalRequestsByProjectTest method is to validate that the correct
number of ProposalRequest instances have been returned by the Proposal Request Repository for a
given Project.

 /// < summary >
 /// A test for FindBy(Project project)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindProposalRequestsByProjectTest()
 {
 // Get a Project reference
 Project project =
 ProjectService.GetProject(“5704f6b9-6ffa-444c-9583-35cc340fce2a”);

 // Finds all of the Proposal Requests for the Project
 IList < ProposalRequest > proposalRequests =
 ProposalRequestRepositoryUnitTest.repository.FindBy(project);

 // Verify that at least one ProposalRequest was returned
 Assert.IsTrue(proposalRequests.Count > 0);
 }

 This method starts out by getting a Project instance from the ProjectService class. It then calls the
 FindBy method on the Repository to get the list of Proposal Requests for the given Project instance.
The method finishes by checking that the repository returned at least one ProposalRequest .

The AddProposalRequestTest Method
 The purpose of the AddProposalRequestTest method is to test adding a new Proposal Request to the
Proposal Request Repository.

 /// < summary >
 ///A test for Add(ProposalRequest item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void AddProposalRequestTest()
 {
 IList < ProposalRequest > proposalRequests =
 ProposalRequestRepositoryUnitTest.repository.FindAll();

 // Create a new ProposalRequest

(continued)

c07.indd 239c07.indd 239 3/18/08 5:17:32 PM3/18/08 5:17:32 PM

Chapter 7: Proposal Requests

240

 Guid projectKey = new Guid(“5704f6b9-6ffa-444c-9583-35cc340fce2a”);
 ProposalRequest pr = new ProposalRequest(projectKey, 2);
 pr.From = EmployeeService.GetEmployees()[0];
 pr.Contractor = CompanyService.GetAllCompanies()[0];
 pr.To = ProjectService.GetProject(projectKey).Contacts[0];

 // Add the ProposalRequest to the Repository
 ProposalRequestRepositoryUnitTest.repository.Add(pr);

 // Commit the transaction
 ProposalRequestRepositoryUnitTest.unitOfWork.Commit();

 // Reload the ProposalRequest and verify it’s number
 ProposalRequest savedPr =
 ProposalRequestRepositoryUnitTest.repository.FindBy(pr.Key);
 Assert.AreEqual(2, savedPr.Number);
 }

 This test is a little more complicated than the last test. It starts out by creating a Project Key value, and
then passes the Project Key value as well as a Proposal Request number into the constructor of the
 ProposalRequest class. Now that I have an initialized ProposalRequest instance, the next step is to
set the From property of the ProposalRequest instance with an Employee instance. I then set the
 Contractor property with a Company instance that is retrieved by the CompanyService class. After
those steps, I assign the To property value to the first ProjectContact instance for the Project .

 The next step is to add the Proposal Request to the Repository and then to commit the transaction by
calling the Commit method on the IUnitOfWork instance. The Commit method is important because that
method calls back into the Proposal Request Repository to tell it to write the Proposal Request ’ s data to
the data store.

 Once the Proposal Request has been saved, it is then reloaded and the Proposal Request ’ s Number
property is checked to verify that the Add and Commit methods worked properly.

The UpdateProposalRequestTest Method
 The purpose of the UpdateProposalRequestTest method is to find a Proposal Request and update it
with a different Description property value, and then verify that the change was persisted properly.

 /// < summary >
 ///A test for Updating a Proposal Request
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void UpdateProposalRequestTest()
 {
 IList < ProposalRequest > proposalRequests =
 ProposalRequestRepositoryUnitTest.repository.FindAll();

 // Change the Proposal Request’s Description value
 proposalRequests[0].Description = “Test Description”;

 // Update the Repository

(continued)

c07.indd 240c07.indd 240 3/18/08 5:17:32 PM3/18/08 5:17:32 PM

Chapter 7: Proposal Requests

241

 ProposalRequestRepositoryUnitTest.repository[proposalRequests[0].Key]
 = proposalRequests[0];

 // Commit the transaction
 ProposalRequestRepositoryUnitTest.unitOfWork.Commit();

 // Verify that the change was saved
 IList < ProposalRequest > refreshedProposalRequests =
 ProposalRequestRepositoryUnitTest.repository.FindAll();
 Assert.AreEqual(“Test Description”,
 refreshedProposalRequests[0].Description);
 }

 In this method, I start by getting the entire list of Proposal Requests from the data store. I then change
the Description property value on the first Proposal Request in the list, and then call the indexer
method of the IProposalRequestRepository . After the call to the indexer, I then use the
 IUnitOfWork interface to commit the transaction. Finally, I verify that the change actually made it to the
data store by reloading the same Proposal Request and checking to see whether its Description
property value is the same value as the one I assigned to the Proposal Request earlier in the method.

The RemoveProposalRequestTest Method
 The purpose of the RemoveProposalRequestTest method is to test the process of removing a Proposal
Request from the data store.

 /// < summary >
 ///A test for Remove(ProposalRequest item)
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void RemoveProposalRequestTest()
 {
 IList < ProposalRequest > proposalRequests =
 ProposalRequestRepositoryUnitTest.repository.FindAll();

 int expectedCount = proposalRequests.Count - 1;

 // Remove the Proposal Request from the Repository
 ProposalRequestRepositoryUnitTest.repository.Remove(
 proposalRequests[0]);

 // Commit the transaction
 ProposalRequestRepositoryUnitTest.unitOfWork.Commit();

 // Verify that there is now one less Proposal Request in the data store
 IList < ProposalRequest > refreshedProposalRequests =
 ProposalRequestRepositoryUnitTest.repository.FindAll();
 Assert.AreEqual(expectedCount, refreshedProposalRequests.Count);
 }

 The first line of this method should look familiar; I am getting the entire list of Proposal Requests
from the data store. I then remove the first Proposal Request in the list from the repository. After
removing the Proposal Request from the repository, I use the IUnitOfWork interface to commit the
transaction. Finally, I verify that the change actually made it to the data store by using the repository to
find all of the Proposal Request instances and making sure that there is now one fewer Proposal Request.

c07.indd 241c07.indd 241 3/18/08 5:17:32 PM3/18/08 5:17:32 PM

Chapter 7: Proposal Requests

242

 The Solution
 Now for the fun part! I have just shown some very interesting refactoring taking place in the Proposal
Request domain model, and now I get to show you how those designs are going to be implemented, as
well as how they affect the Proposal Request Repository implementation. In this section, I will also be
implementing the ViewModel and the View for Proposal Requests.

 The Proposal Request Class Private Fields
and Constructors

 The ProposalRequest class inherits from the Transmittal class, and passes its values from its
constructors straight through to the Transmittal base class.

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Transmittals;
using SmartCA.Model.Projects;
using System.Collections.Generic;
using SmartCA.Model.Companies;
using SmartCA.Model.Submittals;
using SmartCA.Model.Employees;
using System.Text;

namespace SmartCA.Model.ProposalRequests
{
 public class ProposalRequest : Transmittal
 {
 private int number;
 private ProjectContact to;
 private Employee from;
 private DateTime? issueDate;
 private DateTime expectedContractorReturnDate;
 private Company contractor;
 private string description;
 private string attachment;
 private string reason;
 private string initiator;
 private int cause;
 private int origin;
 private string remarks;
 private ProposalRequestNumberSpecification numberSpecification;
 private ProposalRequestDescriptionSpecification descriptionSpecification;
 private int expectedContractorReturnDays;

 private const int DefaultExpectedContractorReturnDays = 7;

 public ProposalRequest(object projectKey, int number)
 : this(null, projectKey, number)
 {
 }

 public ProposalRequest(object key, object projectKey,

c07.indd 242c07.indd 242 3/18/08 5:17:33 PM3/18/08 5:17:33 PM

Chapter 7: Proposal Requests

243

 int number) : base(key, projectKey)
 {
 this.number = number;
 this.to = null;
 this.from = null;
 this.issueDate = null;
 this.GetExpectedContractorReturnDays();
 this.expectedContractorReturnDate =
 this.TransmittalDate.AddDays(this.expectedContractorReturnDays);
 this.contractor = null;
 this.description = string.Empty;
 this.attachment = string.Empty;
 this.reason = string.Empty;
 this.initiator = string.Empty;
 this.cause = 0;
 this.origin = 0;
 this.remarks = string.Empty;
 this.numberSpecification =
 new ProposalRequestNumberSpecification();
 this.descriptionSpecification =
 new ProposalRequestDescriptionSpecification();
 this.ValidateInitialization();
 }

 Just as in the Submittal and RequestForInformation classes, all of the data for the
 ProposalRequest class is initialized and validated in the second constructor, which is called by the first
constructor.

 The GetExpectedContractorReturnDays Method
 On the fifth line of the second constructor, there is a call to the GetExpectedContractorReturnDays
method. This private method determines the threshold for how long a Contractor has before he or she
must return the Proposal Request to the issuer:

 private void GetExpectedContractorReturnDays()
 {
 // First go with the default value
 this.expectedContractorReturnDays =
 ProposalRequest.DefaultExpectedContractorReturnDays;

 // Now try to get the real value from the service
 int expectedContractorReturnDays =
 ProposalRequestService.GetExpectedContractorReturnDays();

 // If the service returned a valid value, then use it instead
 // of the default value
 if (expectedContractorReturnDays > 0)
 {
 this.expectedContractorReturnDays =
 expectedContractorReturnDays;
 }
 }

c07.indd 243c07.indd 243 3/18/08 5:17:33 PM3/18/08 5:17:33 PM

Chapter 7: Proposal Requests

244

 To start with, the method sets the class variable, expectedContractorReturnDays , to whatever default
value is defined for it, by accessing the DefaultExpectedContractorReturnDays class constant value.

private const int DefaultExpectedContractorReturnDays = 7;

 In this case, the class default value is seven days. After getting the default value, the next step is to use
the ProposalRequestService class ’ s GetExpectedContractorReturnDays method. I ’ ll cover that
method later in this chapter. For now, I don ’ t really care where the value comes from, as long as I know
that I have a Service method that I can call to get the value.

 After getting the value from the ProposalRequestService class, I then check to see whether it has a
value greater than zero; if it does, then I reset the expectedContractorReturnDays class variable to
use that value. If it does not, then I do nothing, and the class uses the default value.

 Initializing the expectedContractorReturnDate Class Variable
 Now that I have just shown how the expectedContractorReturnDays class variable is set, it is time to
use it to set the value of the expectedContractorReturnDays class variable. That happens in this line
of the second constructor:

this.expectedContractorReturnDate =
 this.TransmittalDate.AddDays(this.expectedContractorReturnDays);

 This line of code sets the expectedContractorReturnDays class variable value to the
 TransmittalDate property value of the base class and adds to it the number from
the expectedContractorReturnDays class variable value. Here is the TransmittalDate property
from the Transmittal base class:

 public DateTime TransmittalDate
 {
 get { return this.transmittalDate; }
 set { this.transmittalDate = value; }
 }

 Here is the code that initializes the TransmittalDate value in the Transmittal base class:

 protected Transmittal(object key, object projectKey)
 : base(key)
 {
 this.projectKey = projectKey;
 this.transmittalDate = DateTime.Now;
 this.totalPages = 1;
 this.deliveryMethod = Delivery.None;
 this.otherDeliveryMethod = string.Empty;
 this.phaseNumber = string.Empty;
 this.reimbursable = false;
 this.final = false;
 this.copyToList = new List < CopyTo > ();
 this.transmittalRemarks = string.Empty;
 }

c07.indd 244c07.indd 244 3/18/08 5:17:33 PM3/18/08 5:17:33 PM

Chapter 7: Proposal Requests

245

 As you can see, the highlighted second line of the Transmittal constructor initializes the
 TransmittalDate property.

 The ValidateInitialization Method
 The last action that happens in the ProposalRequest class initialization process is validation. A check is
made via the ValidateInitialization method to ensure either that the class is passed a key value or
that the class has a valid Proposal Request number and is associated with a Project.

 private void ValidateInitialization()
 {
 if (this.Key == null & &
 (this.number < 1 || this.ProjectKey == null))
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“Invalid Proposal Request. “);
 builder.Append(“The Proposal Request must have “);
 builder.Append(“a valid Proposal Request number “);
 builder.Append(“and be associated with a Project.”);
 throw new InvalidOperationException(builder.ToString());
 }
 }

 The ProposalRequest Properties
 The properties of the ProposalRequest class are very similar to those covered in previous Domain
Model classes, so I am only going to show the differences here. Most of the properties in this class are
fairly straightforward.

 public DateTime? IssueDate
 {
 get { return this.issueDate; }
 set { this.issueDate = value; }
 }

 public DateTime ExpectedContractorReturnDate
 {
 get { return this.expectedContractorReturnDate; }
 }

 public string Description
 {
 get { return this.description; }
 set { this.description = value; }
 }

 public string Attachment
 {
 get { return this.attachment; }
 set { this.attachment = value; }
 }

 public string Reason

(continued)

c07.indd 245c07.indd 245 3/18/08 5:17:34 PM3/18/08 5:17:34 PM

Chapter 7: Proposal Requests

246

 {
 get { return this.reason; }
 set { this.reason = value; }
 }

 public string Initiator
 {
 get { return this.initiator; }
 set { this.initiator = value; }
 }

 public int Cause
 {
 get { return this.cause; }
 set
 {
 // Cause must be a positive number
 if (value > 0)
 {
 this.cause = value;
 }
 }
 }

 public int Origin
 {
 get { return this.origin; }
 set
 {
 // Origin must be a positive number
 if (value > 0)
 {
 this.origin = value;
 }
 }
 }

 public ProposalRequestNumberSpecification NumberSpecification
 {
 get { return this.numberSpecification; }
 }

 public ProposalRequestDescriptionSpecification DescriptionSpecification
 {
 get { return this.descriptionSpecification; }
 }

 The Cause and Origin Properties
 Both of these properties have a check in their setter to make sure that any value entered must be a
positive number. Slowly, I am starting to put more behavior into the Domain Model classes. More
behavior will come with this class in the next few sections.

(continued)

c07.indd 246c07.indd 246 3/18/08 5:17:34 PM3/18/08 5:17:34 PM

Chapter 7: Proposal Requests

247

 The NumberSpecification Property
 This property is designed to model the business rules about the proper numbering of Proposal Requests.
The NumberSpecification property is represented by the ProposalRequestNumberSpecification
class. Its only job is to validate that the Proposal Request adheres to the numbering rules, which are, if
you remember, that all Proposal Requests must be numbered consecutively within a Project, and there
cannot be duplicate Proposal Request numbers within a Project.

using System;
using SmartCA.Infrastructure.Specifications;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using System.Linq;

namespace SmartCA.Model.ProposalRequests
{
 public class ProposalRequestNumberSpecification
 : Specification < ProposalRequest >
 {
 public override bool IsSatisfiedBy(ProposalRequest candidate)
 {
 bool isSatisfiedBy = true;

 // Make sure that the same Proposal Request number has not
 // been used for the current project, and that there are no
 // gaps between Proposal Request numbers

 // First get the project associated with the Proposal Request
 Project project = ProjectService.GetProject(candidate.ProjectKey);

 // Next get the list of Proposal Requests for the project
 IList < ProposalRequest > requests =
 ProposalRequestService.GetProposalRequests(project);

 // Determine if the Proposal Request number has been used before
 isSatisfiedBy =
 (requests.Where(pr = > pr.Number.Equals(candidate.Number)).Count() <
1);

 // See if the candidate passed the first test
 if (isSatisfiedBy)
 {
 // First test passed, now make sure that there are no gaps
 isSatisfiedBy =
 (candidate.Number - requests.Max(pr = > pr.Number) == 1);
 }

 return isSatisfiedBy;
 }
 }
}

c07.indd 247c07.indd 247 3/18/08 5:17:34 PM3/18/08 5:17:34 PM

Chapter 7: Proposal Requests

248

 This code starts out by getting the list of Proposal Requests for the current Project, which is the Project
that is associated with the Proposal Request. Once I have the list of Proposal Requests, I then use a LINQ
query to determine whether the count of Proposal Requests in the list that match the candidate Proposal
Request ’ s Number property is less than one. If the count is less than one, then the test passes.

 The next test is to make sure that the candidate Proposal Request will not introduce any numbering gaps
within Proposal Requests of the current Project. This is done with another LINQ query to get the highest
Proposal Requests number (Max) in the list, and then subtract that from the candidate Proposal Request ’ s
 Number property. If the result equals one, then the test passes.

 The DescriptionSpecification Property
 This property is designed to model the business rule about the dates associated with RFIs. The
 DateToFieldSpecification property is represented by the
 RequestForInformationDateSpecification class. Its only job is to validate that the RFI has both a
date received value and a date requested by value.

using System;
using SmartCA.Infrastructure.Specifications;

namespace SmartCA.Model.ProposalRequests
{
 public class ProposalRequestDescriptionSpecification
 : Specification < ProposalRequest >
 {
 public override bool IsSatisfiedBy(ProposalRequest candidate)
 {
 // The Proposal Request must have a description
 return (!string.IsNullOrEmpty(candidate.Description));
 }
 }
}

 This code is much simpler than the first Specification class, as it only needs to perform two simple
 Boolean checks for the two dates.

 The Validate Method
 Since I have been starting to add more behavior to the Domain Model classes, one of the things that I
really need to add is some type of validation before trying to save an Entity. In the ProposalRequest
class I have added a Validate method to do just this:

 protected override void Validate()
 {
 if (!this.numberSpecification.IsSatisfiedBy(this))
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidNumber);
 }
 if (!this.descriptionSpecification.IsSatisfiedBy(this))
 {

c07.indd 248c07.indd 248 3/18/08 5:17:35 PM3/18/08 5:17:35 PM

Chapter 7: Proposal Requests

249

 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidDescription);
 }
 if (this.to == null)
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidProjectContact);
 }
 if (this.from == null)
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidEmployee);
 }
 if (this.contractor == null)
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidContractor);
 }
 base.Validate();
 }

 Wait a second, why is it an override, and where is the Boolean return value? Ok, I admit it, I did some
more refactoring. I made an abstract method in the EntityBase class called Validate . I also came up
with a little mini - framework for dealing with the concept of Broken Rules, which I am borrowing
(although simplifying it a bit here) from Rocky Lhotka ’ s CSLA Framework (CSLA). Here is the
 BrokenRule class:

using System;

namespace SmartCA.Infrastructure.DomainBase
{
 public class BrokenRule
 {
 private string name;
 private string description;

 public BrokenRule(string name, string description)
 {
 this.name = name;
 this.description = description;
 }

 public string Name
 {
 get { return this.name; }
 }

 public string Description
 {
 get { return this.description; }
 }
 }
}

c07.indd 249c07.indd 249 3/18/08 5:17:35 PM3/18/08 5:17:35 PM

Chapter 7: Proposal Requests

250

 The BrokenRule class is a Value class for holding information about a broken business rule. Next,
I needed some way for my Domain Model classes to get at the list of possible BrokenRule instances,
so I made another class to capture that functionality:

using System;
using System.Collections.Generic;

namespace SmartCA.Infrastructure.DomainBase
{
 public abstract class BrokenRuleMessages
 {
 private Dictionary < string, string > messages;

 protected Dictionary < string, string > Messages
 {
 get { return this.messages; }
 }

 protected BrokenRuleMessages()
 {
 this.messages = new Dictionary < string, string > ();
 this.PopulateMessages();
 }

 protected abstract void PopulateMessages();

 public string GetRuleDescription(string messageKey)
 {
 string description = string.Empty;
 if (this.messages.ContainsKey(messageKey))
 {
 description = this.messages[messageKey];
 }
 return description;
 }
 }
}

 This class is fairly simple; its job is to hold a key - value dictionary of messages, and to provide a way to
get messages out of the dictionary via the GetRuleDescription method. It also calls the abstract
 PopulateMessages method in its constructor, which means that the deriving class is responsible for
putting the messages into the dictionary.

 The BrokenRuleMessages abstract class is then used inside the EntityBase class, and here are the
parts of the EntityBase class that have been refactored to accommodate this new functionality:

 public abstract class EntityBase
 {
 private object key;

 private List < BrokenRule > brokenRules;

 /// < summary >

c07.indd 250c07.indd 250 3/18/08 5:17:35 PM3/18/08 5:17:35 PM

Chapter 7: Proposal Requests

251

 /// Default Constructor.
 /// < /summary >
 protected EntityBase()
 : this (null)
 {
 }

 /// < summary >
 /// Overloaded constructor.
 /// < /summary >
 /// < param name=”key” > An < see cref=”System.Object”/ > that
 /// represents the primary identifier value for the
 /// class. < /param >
 protected EntityBase(object key)
 {
 this.key = key;
 if (this.key == null)
 {
 this.key = EntityBase.NewKey();
 }

 this.brokenRules = new List < BrokenRule > ();

 }

 protected List < BrokenRule > BrokenRules
 {
 get { return this.brokenRules; }
 }

 protected abstract void Validate();

 public ReadOnlyCollection < BrokenRule > GetBrokenRules()
 {
 this.Validate();
 return this.brokenRules.AsReadOnly();
 }
 }

 So now the EntityBase class holds a list of broken business rules and has a public method for
consumers of Entity classes to call, which is the GetBrokenRules method. Notice how the
Validate method is declared as abstract; this is because it is the responsibility of the derived Entity
class to validate itself. The GetBrokenRules method calls the abstract Validate method (which is the
very method in the ProposalRequest class that brought us into this refactoring rant of mine), which
will be implemented in the derived class, and then it returns the list of broken business rules as a
read - only collection.

 So what this design implies is that I can set up a special class in my domain model to hold all of the
particular business rules for a particular Entity, and normally that Entity will be an Aggregate Root.

c07.indd 251c07.indd 251 3/18/08 5:17:36 PM3/18/08 5:17:36 PM

Chapter 7: Proposal Requests

252

In the case of Proposal Requests, the Aggregate Root is the ProposalRequest class, and therefore I have
a ProposalRequestRuleMessages class:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.ProposalRequests
{
 internal class ProposalRequestRuleMessages : BrokenRuleMessages
 {
 internal static class MessageKeys
 {
 public const string InvalidNumber = “Invalid Proposal Request Number”;
 public const string InvalidDescription = “Invalid Proposal Request “ +
 “Description”;
 public const string InvalidProjectContact = “Must Have “ +
 “ProjectContact Assigned”;
 public const string InvalidEmployee = “Must Have Employee Assigned”;
 public const string InvalidContractor = “Must Have Contractor “ +
 “Assigned”;
 }

 protected override void PopulateMessages()
 {
 // Add the rule messages
 this.Messages.Add(MessageKeys.InvalidNumber,
 “The same Proposal Request number cannot be used for the “ +
 “current project, and there cannot be any gaps between “ +
 “Proposal Request numbers.”);

 this.Messages.Add(MessageKeys.InvalidDescription,
 “The Proposal Request must have a description”);

 this.Messages.Add(MessageKeys.InvalidProjectContact,
 “The Proposal Request must have a ProjectContact assigned “ +
 “to the To property.”);

 this.Messages.Add(MessageKeys.InvalidEmployee,
 “The Proposal Request must have an Employee assigned to the “ +
 “From property.”);

 this.Messages.Add(MessageKeys.InvalidContractor,
 “The Proposal Request must have a Company assigned to the “ +
 “Contractor property.”);
 }
 }
}

 This class helps build all of the messages that I will use to represent the broken business rules of a
Proposal Request. This brings us full circle back to the ProposalRequest class ’ s Validate method:

c07.indd 252c07.indd 252 3/18/08 5:17:36 PM3/18/08 5:17:36 PM

Chapter 7: Proposal Requests

253

 protected override void Validate()
 {
 if (!this.numberSpecification.IsSatisfiedBy(this))
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidNumber);
 }
 if (!this.descriptionSpecification.IsSatisfiedBy(this))
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidDescription);
 }
 if (this.to == null)
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidProjectContact);
 }
 if (this.from == null)
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidEmployee);
 }
 if (this.contractor == null)
 {
 this.AddBrokenRule(
 ProposalRequestRuleMessages.MessageKeys.InvalidContractor);
 }
 base.Validate();
 }

 This method makes use of the mini - validation framework that I have just shown. It first uses the
Specification classes and tests to see whether the ProposalRequest instance satisfies its criteria. If not,
the broken rules are added to the class instance. The rest of the validation is making sure that there are
values for the To , From , and Contractor properties. I also added a little helper method to make adding
broken rules a little less repetitive:

 private void AddBrokenRule(string messageKey)
 {
 this.BrokenRules.Add(new BrokenRule(messageKey,
 this.brokenRuleMessages.GetRuleDescription(messageKey)));
 }

 This method just allows me not to have to repeat the same verbose code in each of the validations.

 The Proposal Request Repository Implementation
 After going over the IProposalRequestRepository interface in the Design section, it is now time to
explain how the ProposalRequest class is actually persisted to and from the data store by the Proposal
Request Repository. In this section, I will be writing the code for the Proposal Request Repository.

c07.indd 253c07.indd 253 3/18/08 5:17:36 PM3/18/08 5:17:36 PM

Chapter 7: Proposal Requests

254

 The BuildChildCallbacks Method
 As expected from the previous chapters, the BuildChildCallbacks method must be overridden as part
of the Template Method pattern implementation in the RequestForInformationRepository .

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(
 ProposalRequestFactory.FieldNames.ProjectContactId,
 this.AppendTo);
 this.ChildCallbacks.Add(
 ProposalRequestFactory.FieldNames.EmployeeId,
 this.AppendFrom);
 base.BuildChildCallbacks();
 }

 #endregion

 The AppendTo Callback

 The first entry made in the ChildCallbacks dictionary is for the AppendFrom method. Thanks to the
 ProjectService class ’ s GetProjectContact method, this method ’ s code is very simple:

 private void AppendTo(ProposalRequest proposalRequest,
 object toProjectContactKey)
 {
 proposalRequest.To = ProjectService.GetProjectContact(
 proposalRequest.ProjectKey, toProjectContactKey);
 }

 The AppendFrom Callback

 The first entry made in the ChildCallbacks dictionary is for the AppendFrom method. Thanks to the
 EmployeeService class ’ s GetEmployee method, this method ’ s code is also very simple:

 private void AppendFrom(ProposalRequest proposalRequest,
 object fromEmployeeKey)
 {
 proposalRequest.From =
 EmployeeService.GetEmployee(fromEmployeeKey);
 }

 Unit of Work Implementation
 Following the same steps that I have shown before to implement the Unit of Work pattern, I need to
override the following three methods: PersistNewItem(ProposalRequest item) ,
 PersistUpdatedItem(ProposalRequest item) , and PersistDeletedItem
(ProposalRequest item) .

c07.indd 254c07.indd 254 3/18/08 5:17:37 PM3/18/08 5:17:37 PM

Chapter 7: Proposal Requests

255

The PersistNewItem Method

 The first method override for the Proposal Request ’ s Unit of Work implementation is the
 PersistNewItem method:

 protected override void PersistNewItem(ProposalRequest item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO RequestForInformation ({0},
{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},{18},
{19},{20},{21},{22}) “,
 ProposalRequestFactory.FieldNames.ProposalRequestId,
 ProjectFactory.FieldNames.ProjectId,
 ProposalRequestFactory.FieldNames.ProposalRequestNumber,
 ProposalRequestFactory.FieldNames.TransmittalDate,
 ProposalRequestFactory.FieldNames.ProjectContactId,
 ProposalRequestFactory.FieldNames.EmployeeId,
 ProposalRequestFactory.FieldNames.TotalPages,
 ProposalRequestFactory.FieldNames.DeliveryMethod,
 ProposalRequestFactory.FieldNames.OtherDeliveryMethod,
 ProposalRequestFactory.FieldNames.PhaseNumber,
 ProposalRequestFactory.FieldNames.Reimbursable,
 ProposalRequestFactory.FieldNames.Final,
 ProposalRequestFactory.FieldNames.IssueDate,
 CompanyFactory.FieldNames.CompanyId,
 ProposalRequestFactory.FieldNames.Description,
 ProposalRequestFactory.FieldNames.Attachment,
 ProposalRequestFactory.FieldNames.Reason,
 ProposalRequestFactory.FieldNames.Initiator,
 ProposalRequestFactory.FieldNames.Cause,
 ProposalRequestFactory.FieldNames.Origin,
 ProposalRequestFactory.FieldNames.Remarks,
 ProposalRequestFactory.FieldNames.TransmittalRemarks
));
 builder.Append(string.Format(“VALUES ({0},{1},{2},{3},{4},{5},{6},{7},
{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},{18},{19},{20},{21},{22});”,
 DataHelper.GetSqlValue(item.Key),
 DataHelper.GetSqlValue(item.ProjectKey),
 DataHelper.GetSqlValue(item.Number),
 DataHelper.GetSqlValue(item.TransmittalDate),
 DataHelper.GetSqlValue(item.To.Key),
 DataHelper.GetSqlValue(item.From.Key),
 DataHelper.GetSqlValue(item.TotalPages),
 DataHelper.GetSqlValue(item.DeliveryMethod),
 DataHelper.GetSqlValue(item.OtherDeliveryMethod),
 DataHelper.GetSqlValue(item.PhaseNumber),
 DataHelper.GetSqlValue(item.Reimbursable),
 DataHelper.GetSqlValue(item.Final),
 DataHelper.GetSqlValue(item.IssueDate),
 DataHelper.GetSqlValue(item.Contractor.Key),
 DataHelper.GetSqlValue(item.Description),
 DataHelper.GetSqlValue(item.Attachment),
 DataHelper.GetSqlValue(item.Reason),
 DataHelper.GetSqlValue(item.Initiator),
 DataHelper.GetSqlValue(item.Cause),

(continued)

c07.indd 255c07.indd 255 3/18/08 5:17:37 PM3/18/08 5:17:37 PM

Chapter 7: Proposal Requests

256

 DataHelper.GetSqlValue(item.Origin),
 DataHelper.GetSqlValue(item.Remarks),
 DataHelper.GetSqlValue(item.TransmittalRemarks)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects
 this.InsertCopyToList(item);
 }

 The code builds up a large insert statement composed of the values from the ProposalRequest instance
and then executes the query using the Microsoft Enterprise Library ’ s Database object. After the insert
statement has been executed, I have to account for inserting the CopyTo instances for the ProposalRequest .
I do this by calling the base class InsertCopyToList method, which takes an ITransmittal instance
(which the ProposalRequest ’ s base class, Transmittal , implements) as its only argument.

The PersistUpdatedItem Method

 PersistUpdatedItem first does an update to the ProposalRequest table:

 protected override void PersistUpdatedItem(ProposalRequest item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“UPDATE ProposalRequest SET “);

 builder.Append(string.Format(“{0} = {1}”,
 ProposalRequestFactory.FieldNames.ProposalRequestNumber,
 DataHelper.GetSqlValue(item.Number)));

 builder.Append(string.Format(“,{0} = {1}”,
 ProposalRequestFactory.FieldNames.TransmittalDate,
 DataHelper.GetSqlValue(item.TransmittalDate)));

 **

 builder.Append(string.Format(“,{0} = {1}”,
 ProposalRequestFactory.FieldNames.Remarks,
 DataHelper.GetSqlValue(item.Remarks)));

 builder.Append(string.Format(“,{0} = {1}”,
 ProposalRequestFactory.FieldNames.TransmittalRemarks,
 DataHelper.GetSqlValue(item.TransmittalRemarks)));

 builder.Append(“ “);
 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects

 // First, delete the existing ones

(continued)

c07.indd 256c07.indd 256 3/18/08 5:17:37 PM3/18/08 5:17:37 PM

Chapter 7: Proposal Requests

257

 this.DeleteCopyToList(item);

 // Now, add the current ones
 this.InsertCopyToList(item);
 }

 I have omitted several lines of repetitive code building the SQL update statement in the middle of the
code in order save you from the boring code.

 The second part of the method uses the newly refactored DeleteCopyToList helper method to delete
all of the CopyTo child objects of the Proposal Request and then uses the also newly refactored
 InsertCopyToList helper method to add the existing CopyTo child objects from the Proposal Request
to the database.

 The Proposal Request Service Implementation
 Like the other Service classes shown in the domain model so far, the ProposalRequestService class is
responsible for retrieving and wrapping the methods of its associated Repository interface, in this case
the IProposalRequestRepository instance.

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;

namespace SmartCA.Model.ProposalRequests
{
 public static class ProposalRequestService
 {
 private static IProposalRequestRepository repository;
 private static IUnitOfWork unitOfWork;

 static ProposalRequestService()
 {
 ProposalRequestService.unitOfWork = new UnitOfWork();
 ProposalRequestService.repository =
 RepositoryFactory.GetRepository < IProposalRequestRepository,
 ProposalRequest > (ProposalRequestService.unitOfWork);
 }

 public static IList < ProposalRequest >
 GetProposalRequests(Project project)
 {
 return ProposalRequestService.repository.FindBy(project);
 }

 public static void SaveProposalRequest(ProposalRequest proposalRequest)
 {
 ProposalRequestService.repository[proposalRequest.Key] =
 proposalRequest;

(continued)

c07.indd 257c07.indd 257 3/18/08 5:17:38 PM3/18/08 5:17:38 PM

Chapter 7: Proposal Requests

258

 ProposalRequestService.unitOfWork.Commit();
 }

 public static int GetExpectedContractorReturnDays()
 {
 return ProposalRequestService.repository
.GetExpectedContractorReturnDays();
 }
 }
}

 The Proposal Request View Model Class
 Following the same patterns as before for all ViewModel classes, the ProposalRequestViewModel class
adapts the Proposal Request Aggregate from the domain model to the UI. In the last chapter, I did some
major refactoring and created the TransmittalViewModel < T > class for adapting Transmittal Entities to
the UI, and now I get to use it again.

 Just like the code for the RFI and Submittal ViewModels, the code inside of the
 ProposalRequestViewModel class has been reduced significantly. Here is what the signature
of the ProposalRequestViewModel class looks like when deriving from the
 TransmittalViewModel < T > class:

public class ProposalRequestViewModel
 : TransmittalViewModel < ProposalRequest >

 Notice how the generic parameter from the TransmittalViewModel < T > class is replaced with the
 ProposalRequest class.

 The Constructor
 Because of the recent refactoring, the constructors for the ProposalRequestViewModel class now are
very small. Here are the constructors for the ProposalRequestViewModel class:

 #region Constructors

 public ProposalRequestViewModel()
 : this(null)
 {
 }

 public ProposalRequestViewModel(IView view)
 : base(view)
 {
 this.toList = UserSession.CurrentProject.Contacts;
 this.fromList = EmployeeService.GetEmployees();
 }

 #endregion

(continued)

c07.indd 258c07.indd 258 3/18/08 5:17:38 PM3/18/08 5:17:38 PM

Chapter 7: Proposal Requests

259

 Just like with the RequestForInformationViewModel class, the toList and fromList private fields
are not contained in the base class and therefore need to be initialized here.

 The Properties
 There are not many properties left to implement in the ProposalRequestViewModel class. Here is all of
the code for the properties:

 #region Properties

 public IList < ProjectContact > ToList
 {
 get { return this.toList; }
 }

 public IList < Employee > FromList
 {
 get { return this.fromList; }
 }

 #endregion

 The Command Handler Methods
 The only command handler methods that I need to override in the ProposalRequestViewModel class
are the SaveCommandHandler and NewCommandHandler methods. Again, if you remember from before,
the DeleteCommandHandler method is completely taken care of by the base class.

The NewCommandHandler Method
 Here is the code for the NewCommandHandler method:

 protected override void NewCommandHandler(object sender, EventArgs e)
 {
 base.NewCommandHandler(sender, e);
 ProposalRequest newProposalRequest = new ProposalRequest(
 this.CurrentTransmittal.ProjectKey,
 this.CurrentTransmittal.Number + 1);
 this.TransmittalList.Add(newProposalRequest);
 this.Transmittals.Refresh();
 this.Transmittals.MoveCurrentToLast();
 }

 On the first line of the method, I call the same method of the base class. This allows me to reuse the
common code for managing the new Transmittal state and yet it still gives me the flexibility to do my
own housekeeping for creating the new ProposalRequest instance.

c07.indd 259c07.indd 259 3/18/08 5:17:38 PM3/18/08 5:17:38 PM

Chapter 7: Proposal Requests

260

The SaveCommandHandler Method
 This method is much simpler, since it first calls the same method on the base class, and then proceeds to
save the ProposalRequest instance:

 protected override void SaveCommandHandler(object sender, EventArgs e)
 {
 base.SaveCommandHandler(sender, e);
 ProposalRequestService.SaveProposalRequest(this.CurrentTransmittal);
 }

 Now, one thing that I am not taking advantage of here is the new validation functionality that I just built.
Here is what the call will look like now:

 protected override void SaveCommandHandler(object sender, EventArgs e)
 {

 if (this.CurrentTransmittal.GetBrokenRules().Count == 0)
 {

 base.SaveCommandHandler(sender, e);
 ProposalRequestService.SaveProposalRequest(
 this.CurrentTransmittal);
 }
 }

 This really needs to be refactored a little bit more in order to display the list of broken rules to the user in
an easily consumable manner. I will leave this as an exercise to do later.

 The GetTransmittals Template Pattern Method
 Here is the GetTransmittals method override:

 #region GetTransmittals

 protected override List < ProposalRequest > GetTransmittals()
 {
 return new List < ProposalRequest > (
 ProposalRequestService.GetProposalRequests(
 UserSession.CurrentProject));
 }

 #endregion

 In this method, just as in the last chapter, I am simply calling out to the Service class (the
 ProposalRequestService class) to get the list of instances (ProposalRequest instances).

 The Proposal Request View
 The View for Proposal Requests is almost exactly identical to the ones for Submittals and RFIs. Figure 7.6
shows what the form looks like at run time:

c07.indd 260c07.indd 260 3/18/08 5:17:39 PM3/18/08 5:17:39 PM

Chapter 7: Proposal Requests

261

 Well, I have been doing a lot of refactoring lately regarding the common functionality of Transmittals
and Routable Transmittals, and there is no reason that refactoring cannot continue in the UI. So, instead
of having to repeat the same XAML over and over for Submittals, RFIs, and now Proposal Requests,
I have decided to refactor the XAML that makes up the Transmittal sections of those Entities into some
WPF UserControls. These are very similar to the UserControls that I created for Addresses, CopyToList,
RoutingItems, and TrackingItems; in fact it is the same concept once again.

 The Transmittal User Control
 Once again, there is no code for this User Control, only XAML. The XAML for the Transmittal User
Control is just a Grid element with all of the fields that are part of a Transmittal:

 < UserControl
 x:Class=”SmartCA.Presentation.Views.Transmittal”
 xmlns:presentation=”clr-namespace:SmartCA.Presentation.Views”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:xcdg=”http://schemas.xceed.com/wpf/xaml/datagrid”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Grid >

 < Grid.RowDefinitions >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >

Figure 7.6: Proposal Request View.

(continued)

c07.indd 261c07.indd 261 3/18/08 5:17:39 PM3/18/08 5:17:39 PM

Chapter 7: Proposal Requests

262

 < /Grid.RowDefinitions >

 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”200” / >
 < ColumnDefinition Width=”Auto” / >
 < /Grid.ColumnDefinitions >

 < Label Grid.Row=”0” Grid.Column=”0” Content=”Transmittal Date:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < xcdg:DatePicker Grid.Row=”0” Grid.Column=”1”
 SelectedDate=”{Binding Path=CurrentTransmittal.TransmittalDate}”
 SyncCalendarWithSelectedDate=”True” / >

 < Label Grid.Row=”1” Grid.Column=”0” Content=”Delivery Method:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < ListBox Grid.Row=”1” Grid.Column=”1”
 SelectedItem=”{Binding Path=CurrentTransmittal.DeliveryMethod}”
 IsSynchronizedWithCurrentItem=”True”
 ItemsSource=”{Binding Path=DeliveryMethods}”
 SelectionMode=”Multiple”/ >

 < Label Grid.Row=”2” Grid.Column=”0” Content=”Other Delivery Method:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < TextBox Grid.Row=”2” Grid.Column=”1”
 Text=”{Binding Path=CurrentTransmittal.OtherDeliveryMethod}”/ >

 < Label Grid.Row=”3” Grid.Column=”0” Content=”Phase No.:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < TextBox Grid.Row=”3” Grid.Column=”1”
 Text=”{Binding Path=CurrentTransmittal.PhaseNumber}”/ >

 < Label Grid.Row=”4” Grid.Column=”0” Content=”Reimbursable:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < CheckBox Grid.Row=”4” Grid.Column=”1”
 IsChecked=”{Binding Path=CurrentTransmittal.Reimbursable}”/ >

 < Label Content=”CC:” Grid.Row=”5” Grid.Column=”0”
 Style=”{StaticResource baseLabelStyle}”/ >
 < Border BorderBrush=”Black” Padding=”1” BorderThickness=”1”
 Grid.Row=”5” Grid.Column=”1” >
 < StackPanel Orientation=”Horizontal” >
 < Label Content=”Final: “
 Style=”{StaticResource baseLabelStyle}”/ >
 < CheckBox IsChecked=
 “ {Binding Path=CurrentTransmittal.Final}” / >
 < presentation:CopyToList
 DataContext=”{Binding Path=MutableCopyToList}”/ >
 < /StackPanel >
 < /Border >

< /Grid >

< /UserControl >

(continued)

c07.indd 262c07.indd 262 3/18/08 5:17:40 PM3/18/08 5:17:40 PM

Chapter 7: Proposal Requests

263

 The RoutableTransmittal User Control
 Since a Routable Transmittal is just a Transmittal that contains Routing Items, it should follow that
I should be able to use the Transmittal User Control shown above, plus the RoutingItems User
Control from a few chapters back to make one composite User Control. In fact, that is exactly what I did
for the RoutableTransmittal UserControl:

 < UserControl
 x:Class=”SmartCA.Presentation.Views.RoutableTransmittal”
 xmlns:presentation=”clr-namespace:SmartCA.Presentation.Views”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 < Grid >

 < Grid.RowDefinitions >
 < RowDefinition Height=”Auto” / >
 < RowDefinition Height=”Auto” / >
 < /Grid.RowDefinitions >

 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”200”/ >
 < ColumnDefinition Width=”Auto” / >
 < /Grid.ColumnDefinitions >

 < presentation:Transmittal Grid.Row=”0”
 Grid.Column=”0” Grid.ColumnSpan=”2”
 DataContext=”{Binding Path= .}”/ >

 < Label Grid.Row=”1” Grid.Column=”0” Content=”Routing:”
 Style=”{StaticResource baseLabelStyle}”/ >
 < presentation:RoutingItems Grid.Row=”1” Grid.Column=”1”
 DataContext=”{Binding Path=RoutingItems}”/ >

 < /Grid >
 < /UserControl >

 Nothing really new here, I am just enjoying the fact that not only can I get good code re - use out of my
domain model, but now I can also get it in my UI code as well!

 Summary
 In this chapter, I introduced the concept of a Proposal Request in the construction industry, and then
I used that concept to model the Proposal Request Aggregate. Up until this point, the classes in the
domain model had been a little bit anemic, but by adding lots of behavior to them in this chapter,
they are starting to become rich Domain Model classes. I also introduced a new concept into the
domain this chapter in regard to handling broken business rules inside my Domain Model classes.
Then I put in some validation to exercise both the broken rule functionality as well as the Specification
functionality, showing how the two can play nicely together. I also continued my constant refactoring in
this chapter, only this time I showed how to refactor some of the UI UserControls to handle some of the
Transmittal concepts.

c07.indd 263c07.indd 263 3/18/08 5:17:40 PM3/18/08 5:17:40 PM

c07.indd 264c07.indd 264 3/18/08 5:17:40 PM3/18/08 5:17:40 PM

 Change Orders

 In the last chapter, I covered Proposal Requests, which must precede Change Orders in the
construction industry. In this chapter, I am going to cover the actual Change Order itself.

 The Problem
 If it turns out that a Proposal Request that was submitted was acceptable to the owner, or
becomes acceptable after adjustment of the scope, negotiation of the price, and/or the adjustment
of the Contract time, then a Change Order can be prepared. After execution by the Owner
and Contractor, and countersignature by the Architect, it becomes a modification of the construction
Contract. It authorizes the Contractor to do the work and obligates the Owner to pay for it.

 There are two types of Change Orders:

 1. Change in Contract Price — Any change, up or down, in the Contract price should be
agreed and entered into the Change Order form.

 2. Change in Contract Time — Any change, up or down, in the Contract time should be
agreed on and entered into the Change Order form. If there is no change in time, then the
change order should state that there is no change in Contract time. It is a big mistake to
leave the time blank, as this will often result in a dispute. The Owner will assume that the
blank means no change in time, while the Contractor reasons that the blank means that it
will be discussed later.

 When there is to be a change in Contract time only, but with no change in Contract price, it is good
practice to handle it as a Change Order complete with a Change Order form and signatures of the
Owner and Contractor. The form should clearly state the change in Contract time and that the
Contract price is unchanged.

 Like RFIs and Proposal Requests, each Change Order should be serially numbered by Project.

c08.indd 265c08.indd 265 3/18/08 5:18:30 PM3/18/08 5:18:30 PM

Chapter 8: Change Orders

266

 The Design
 In the SmartCA domain, a Change Order is one of the most important concepts for the entire application,
and it also contains several important business concepts that must be closely tracked. In the next few
sections I will be designing the domain model, determining the Change Order Aggregate and its
boundaries, and designing the Repository for Change Orders.

 Designing the Domain Model
 As stated earlier, the most important parts of the Change Order are the changes in Contract time or price,
as well as the proper ordering of the Change Order Number. I will be using the Specification pattern to
govern the rules for the Number property, and the Specification that I create will also be part of the
domain model. It is very important that the logic inside of the Change Order be correct for calculating
the total price or time whenever one of those items is changed.

 Figure 8.1 shows a drawing showing the relationships between the classes that combine to make up a
Change Order:

Contractor

StatusRouting Items

Time Change Price Change

Change Order

Change Order
Number Specification

*

 Figure 8.1: Change Order Aggregate.

 In the diagram, the Change Order class is clearly the root of the Aggregate. The two most important
attributes of the Change Order are the amount of time being changed and the amount of money being
added. These are both represented in the diagram by the Time Change and Price Change relationships,
respectively. The relationship to the Contractor class shows what Contractor has requested the
Change Order.

 The next important part of the diagram is the Change Order ’ s relationship to the Routing Items. It is
important for Smart Design to know to whom each Change Order has been routed internally for action,
and that person ’ s Discipline, such as architect, engineer, or construction administrator. This was already
created and used in Chapter 6 ; I am just reusing the same concept in this Aggregate.

c08.indd 266c08.indd 266 3/18/08 5:18:32 PM3/18/08 5:18:32 PM

Chapter 8: Change Orders

267

 The relationship to the Status class shows exactly the state of the Change Order, such as completed or
pending an architect review. The relationship to the Change Order Number Specification helps model
the numbering rules of the Change Order.

 Designing the Change Order Aggregate
 The Change Order Aggregate does not have as many classes in it as some of the other Aggregates, but it
does contain some important concepts that I will show later in the Solution section (see Figure 8.2).

INumberedProjectChild
Interface

Properties

ProjectKey
Number
Key

NumberSpecification<TCandidate>
GenericClass
 Specification<TCandidate>

Methods

IsSatisfiedBy

NumberSpecification

ChangeOrder
Class
 EntityBase

Fields

Methods

Properties

AgencyApprovedDate
AmountChanged
ArchitectSignatureDate
ContractorSignatureDate
DateOfSubstantialCompletion
DateToField
Description
EffectiveDate
NewConstructionCost
Number
OriginalConstructionCost
OwnerSignatureDate
PreviousAuthorizedChangeOrderAmount
PreviousTimeChangedTotal
ProjectKey
TimeChanged

RoutingItem
Class

Fields

Methods

Properties

DateReturned
DateSent
DaysLapsed
Discipline
Key
Recipient
RoutingOrder

ItemStatus
Class

Fields

Methods

Properties

Id
Status

ChangeDirection
Enum

Increased
Decreased
Unchanged

PriceChangeType
Enum

ContractSum
GuaranteedMaximumPrice

Status

ChangeType

RoutingItems

PriceChangeDirection

TimeChangeDirection

Specification<TCandidate>
GenericAbstractClass

ISpecification<TCandidate>

INumberedProjectChild

Company
Class
 EntityBase

Contractor

 Figure 8.2: Classes Constituting the Change Order Aggregate.

 As shown in the diagram, the ChangeOrder class inherits from the EntityBase class and implements
the INumberedProjectChild interface. I will talk more about this interface and how it is used in
relation to the other parts of the domain model later in the chapter.

c08.indd 267c08.indd 267 3/18/08 5:18:41 PM3/18/08 5:18:41 PM

Chapter 8: Change Orders

268

 The ChangeOrder class has its own identity and is definitely the root of its own Aggregate (see
Figure 8.3). All of the other classes in the diagram, except for the Company class, belong to the Change
Order Aggregate. The Company class is the root of its own Aggregate.

 Designing the Repository
 Since the ChangeOrder class is its own Aggregate root, it will have its own repository (see Figure 8.4).

INumberedProjectChild
Interface

Properties

ProjectKey
Number
Key

NumberSpecification<TCandidate>
GenericClass
 Specification<TCandidate>

Methods

IsSatisfiedBy

NumberSpecification

ChangeOrder
Class
 EntityBase

Fields

Methods

Properties

AgencyApprovedDate
AmountChanged
ArchitectSignatureDate
ContractorSignatureDate
DateOfSubstantialCompletion
DateToField
Description
EffectiveDate
NewConstructionCost
Number
OriginalConstructionCost
OwnerSignatureDate
PreviousAuthorizedChangeOrderAmount
PreviousTimeChangedTotal
ProjectKey
TimeChanged

RoutingItem
Class

Fields

Methods

Properties

DateReturned
DateSent
DaysLapsed
Discipline
Key
Recipient
RoutingOrder

ItemStatus
Class

Fields

Methods

Properties

Id
Status

ChangeDirection
Enum

Increased
Decreased
Unchanged

PriceChangeType
Enum

ContractSum
GuaranteedMaximumPrice

Status

ChangeType

RoutingItems

PriceChangeDirection

TimeChangeDirection

Specification<TCandidate>
GenericAbstractClass

ISpecification<TCandidate>

INumberedProjectChild

Company
Class
 EntityBase

Contractor

 Figure 8.3: Change Order Aggregate boundaries.

INumberedProjectChildRepository<T>
GenericInterface
 IRepository<T>

Methods

FindBY

SqlCeRepositoryBase<T>
GenericAbstractClass
 RepositoryBase<T>

ChangeOrderRepository
Class
 SqlCeRepositoryBase<ChangeOrder>

IRepository<T>
GenericInterface

RespositoryBase<T>
GenericAbstractClass

IChangeOrderRepository
Interface
 INumberedProjectChildRepository<ChangeOrder>
 IRepository<ChangeOrder> IChangeOrderRepository

IRepository<T>
IUnitOfWorkRepository

 Figure 8.4: The Change Order Repository.

 Defining the Aggregate Boundaries

c08.indd 268c08.indd 268 3/18/08 5:18:41 PM3/18/08 5:18:41 PM

Chapter 8: Change Orders

269

 Designing the IChangeOrderRepository Interface
 The IChangeOrderRepository interface is the interface into instances of Change Order Repositories.
Here is the IChangeOrderRepository interface:

using System;
using System.Collections.Generic;

namespace SmartCA.Model.ChangeOrders
{
 public interface IChangeOrderRepository :
 INumberedProjectChildRepository < ChangeOrder >
 {
 decimal GetPreviousAuthorizedAmountFrom(ChangeOrder co);
 int GetPreviousTimeChangedTotalFrom(ChangeOrder co);
 }
}

 The GetPreviousAuthorizedAmountFrom and the GetPreviousTimeChangedTotal methods should
look pretty familiar as the ChangeOrder class implementation has been calling these methods indirectly
via the ChangeOrderService class.

 The most interesting thing to notice about this interface is that it extends the
 INumberedProjectChildRepository < T > interface, as previously shown in Figure 8.4 .

 Designing the INumberedProjectChild Interface
 You probably saw this coming, since I had the INumberedProjectChild interface already. It turned out
that all created instances of the INumberedProjectChild interface were usually a result of the
 FindBy(Project project) method, so I put this method into its own interface and factored it out of
the IChangeOrderRepository interface. As a result, I factored this method out of the
 IProposalRequestRepository and IRequestForInformationRepository interfaces as well. Here
is the INumberedProjectChildRepository < T > interface:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model
{
 public interface INumberedProjectChildRepository < T >
 : IRepository < T > where T : IAggregateRoot, INumberedProjectChild
 {
 IList < T > FindBy(Project project);
 }
}

 Notice how it is extending the IRepository < T > interface; that is expected, but the constraints on the
Generic parameter should look different. I am actually able to constrain the Entity (the T Generic
parameter) that has to implement the INumberedProjectChild interface, as well as the
 IAggregateRoot interface, which I will cover next.

c08.indd 269c08.indd 269 3/18/08 5:18:42 PM3/18/08 5:18:42 PM

Chapter 8: Change Orders

270

 I thought about using a custom attribute instead of an empty interface, but I decided I really like the use
of interfaces more. They seem to me to be much more explicit, and they allow me to use Generic
constraints on them, which I will explain later.

Designing the IAggregateRoot Interface
 This should really jump out at you. What is this IAggregateRoot interface? Here is what it looks like:

using System;

namespace SmartCA.Infrastructure.DomainBase
{
 /// < summary >
 /// This is a marker interface that indicates that an
 /// Entity is an Aggregate Root.
 /// < /summary >
 public interface IAggregateRoot : IEntity
 {
 }
}

 It does not look like much—it is just a marker interface that simply extends the IEntity interface—but
conceptually, this is huge. By using this interface as a constraint on a repository, I can now enforce the
DDD rule that only the Aggregate Root is allowed to have a repository associated with it. This is huge
from a DDD standpoint! I refactored the IRepository < T > interface to make sure that it uses this
constraint as well:

using System;
using SmartCA.Infrastructure.DomainBase;
using System.Collections.Generic;

namespace SmartCA.Infrastructure.RepositoryFramework
{

 public interface IRepository < T > where T : IAggregateRoot

 {
 T FindBy(object key);
 IList < T > FindAll();
 void Add(T item);
 T this[object key] { get; set; }
 void Remove(T item);
 }
}

 I also refactored all of the classes that have been deemed Aggregate Root classes to extend this interface.
I did not mention it earlier in the chapter, but some of you may have noticed that the signature of the
 ChangeOrder class also extends this interface:

public class ChangeOrder : EntityBase , IAggregateRoot , INumberedProjectChild

 I also refactored the RepositoryFactory class to honor this new concept.

c08.indd 270c08.indd 270 3/18/08 5:18:42 PM3/18/08 5:18:42 PM

Chapter 8: Change Orders

271

public static TRepository GetRepository < TRepository, TEntity > (IUnitOfWork
unitOfWork)
 where TRepository : class, IRepository < TEntity >

 where TEntity : IAggregateRoot

 This new interface and subsequent refactoring really helps clarify the domain model and enforce the
DDD concepts that I have been implementing.

 Writing the Unit Tests
 I am not going to show the unit tests here in this section because they are essentially the same as most of
the unit tests written in previous chapters. The main point is that they are there to guide me along my
way as I refactor the code; every time I refactor I try to make sure to run my unit tests in order to make
sure that I do not break any pieces in the application.

 The Solution
 The classes used to make up the Change Order Aggregate should look very familiar to you; I am at the
point in the application architecture where I am starting to reuse many of the classes. The thing that is a
little bit different from previous chapters is that now there is much more business logic to implement
inside of the classes. Change Orders deal with money and time, and these types of documents may
literally be dealing with millions of dollars.

 The Change Order Class Private Fields and Constructors
 The ChangeOrder class inherits from the Transmittal class and passes its values from its constructors
straight through to the Transmittal base class.

using System;
using SmartCA.Model.Companies;
using SmartCA.Infrastructure.DomainBase;
using System.Collections.Generic;
using SmartCA.Model.Transmittals;
using System.Text;
using SmartCA.Model.Projects;

namespace SmartCA.Model.ChangeOrders
{
 public class ChangeOrder : EntityBase, INumberedProjectChild
 {
 #region Private Fields

 private object projectKey;
 private int number;
 private DateTime effectiveDate;
 private Company contractor;
 private string description;
 private Project currentProject;
 private PriceChangeType? changeType;

(continued)

c08.indd 271c08.indd 271 3/18/08 5:18:42 PM3/18/08 5:18:42 PM

Chapter 8: Change Orders

272

 private ChangeDirection priceChangeDirection;
 private decimal? previousAuthorizedChangeOrderAmount;
 private decimal amountChanged;
 private ChangeDirection timeChangeDirection;
 private int? previousTimeChangedTotal;
 private int timeChanged;
 private List < RoutingItem > routingItems;
 private ItemStatus status;
 private DateTime? agencyApprovedDate;
 private DateTime? dateToField;
 private DateTime? ownerSignatureDate;
 private DateTime? architectSignatureDate;
 private DateTime? contractorSignatureDate;
 private NumberSpecification < ChangeOrder > numberSpecification;
 private BrokenRuleMessages brokenRuleMessages;

 #endregion

 #region Constructors

 public ChangeOrder(object projectKey, int number)
 : this(null, projectKey, number)
 {
 }

 public ChangeOrder(object key, object projectKey,
 int number) : base(key)
 {
 this.projectKey = projectKey;
 this.number = number;
 this.effectiveDate = DateTime.Now;
 this.contractor = null;
 this.description = string.Empty;
 this.changeType = null;
 this.priceChangeDirection = ChangeDirection.Unchanged;
 this.previousAuthorizedChangeOrderAmount = 0;
 this.previousTimeChangedTotal = 0;
 this.amountChanged = 0;
 this.timeChangeDirection = ChangeDirection.Unchanged;
 this.timeChanged = 0;
 this.routingItems = new List < RoutingItem > ();
 this.status = null;
 this.agencyApprovedDate = null;
 this.dateToField = null;
 this.ownerSignatureDate = null;
 this.architectSignatureDate = null;
 this.contractorSignatureDate = null;
 this.numberSpecification =
 new NumberSpecification < ChangeOrder > ();
 this.ValidateInitialization();
 this.brokenRuleMessages = new ChangeOrderRuleMessages();
 }

 #endregion

(continued)

c08.indd 272c08.indd 272 3/18/08 5:18:43 PM3/18/08 5:18:43 PM

Chapter 8: Change Orders

273

 Just like the Submittal and RequestForInformation classes, all of the data for the ChangeOrder class
is initialized and validated in the second constructor, which is called by the first constructor.

 The ValidateInitialization Method
 The last action that happens in the ChangeOrder class initialization process is validation. A check is
made via the ValidateInitialization method to ensure that, if the class is not passed in a key value,
then the class has a valid Change Order number and is associated with a Project.

 private void ValidateInitialization()
 {
 NumberedProjectChildValidator.ValidateInitialState(this,
 “Change Order”);
 }

 The old code for this method would have looked like this:

 private void ValidateInitialization()
 {
 if (this.Key == null & &
 (this.number < 1 || this.ProjectKey == null))
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“Invalid Change Order. “);
 builder.Append(“The Change Order must have “);
 builder.Append(“a valid Change Order number “);
 builder.Append(“and be associated with a Project.”);
 throw new InvalidOperationException(builder.ToString());
 }
 }

 This method ’ s code has been factored out into a new class, the NumberedProjectChildValidator
class. This new static class has one method, ValidateInitialState , which helps reduce the repetitive
initialization validation code that I implemented in some of the other Entity classes:

using System;
using System.Text;

namespace SmartCA.Model
{
 public static class NumberedProjectChildValidator
 {
 /// < summary >
 /// This method throws an exception if the initial state is not valid.
 /// < /summary >
 /// < param name=”child” > The Entity instance, which must implement the
 /// INumberedProjectChild interface. < /param >
 /// < param name=”entityFriendlyName” > The friendly name of the Entity,
 /// such as “Change Order”. < /param >
 public static void ValidateInitialState(INumberedProjectChild child,
 string entityFriendlyName)
 {
 if (child.Key == null & &

(continued)

c08.indd 273c08.indd 273 3/18/08 5:18:43 PM3/18/08 5:18:43 PM

Chapter 8: Change Orders

274

 (child.Number < 1 || child.ProjectKey == null))
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“Invalid {0}. “,
 entityFriendlyName));
 builder.Append(string.Format(“The {0} must have “,
 entityFriendlyName));
 builder.Append(string.Format(“a valid {0} number “,
 entityFriendlyName));
 builder.Append(“and be associated with a Project.”);
 throw new InvalidOperationException(builder.ToString());
 }
 }
 }
}

 The logic is exactly the same as before, but this method takes as its arguments an instance of the
 INumberedProjectChild interface and the friendly name of the Entity to validate. By factoring this
logic out into a separate class, I am now able to reuse it across several of the Entity classes that fall into
this category, such as Proposal Requests or RFIs.

 The INumberedProjectChild interface is a nice way to represent all Entities that belong to a Project
and have a Number property. Here is what its signature looks like:

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model
{
 public interface INumberedProjectChild : IEntity
 {
 object ProjectKey { get; }
 int Number { get; set; }
 }
}

 Something that should catch your eye right away is that this interface implements the IEntity interface.
The IEntity interface represents an Entity:

using System;

namespace SmartCA.Infrastructure.DomainBase
{
 public interface IEntity
 {
 object Key { get; }
 }
}

(continued)

c08.indd 274c08.indd 274 3/18/08 5:18:43 PM3/18/08 5:18:43 PM

Chapter 8: Change Orders

275

 This is something I probably should have done before, but I was not quite sure about it. After working
with this domain model for a while now, this just feels like the right thing to do. I have also
refactored the EntityBase class to implement the IEntity interface as well.

public abstract class EntityBase : IEntity

 I did not have to change any of the other code in the EntityBase class, since it already implements the
 Key property required by the IEntity interface.

 I also changed a lot of other places in the code where an EntityBase class was used, in any part of any
method argument or class property, to an IEntity interface instead. When I was first pondering this
change, I thought it might be a risky move, especially since the EntityBase class is referred to almost
everywhere in the code, but it turned out that really the dependency was only on the EntityBase class ’ s
 Key property. When I decided to make the changes, it really was not too big a deal; once I was able to get
everything to compile, I re - ran all of the unit tests until each one passed.

 Making the change to IEntity actually makes the domain model a lot better; for example, when I cover
how to synchronize with the server in Chapter 10 , I introduce a Transaction class that does not need a
lot of validation logic in it. So instead of the Transaction class inheriting from the EntityBase class
and having to implement required functionality for BrokenRule logic, it can simply implement the
 IEntity interface and avoid all of that code that does not quite fit with what it is trying to represent.

 The ChangeOrder Properties
 A lot of the properties of the ChangeOrder class are very similar to those covered in previous Domain
Model classes, so I am only going to cover those that contain behavior here.

The OriginalConstructionCost Property
 The first property I will cover, the OriginalConstructionCost property, represents the original cost of
the Project from the time it started. It is used as a baseline to compare against the sum of the current
Change Orders to date.

 public decimal OriginalConstructionCost
 {
 get
 {
 this.GetCurrentProject();
 return this.currentProject.OriginalConstructionCost;
 }
 }

 This is a read - only property, and it uses the private currentProject field to get the value from the
Project instance. Before doing so, it calls the GetCurrentProject private method to make sure that
the currentProject field has been populated:

 private void GetCurrentProject()
 {
 if (this.currentProject == null)
 {
 this.currentProject = ProjectService.GetProject(this.projectKey);
 }
 }

c08.indd 275c08.indd 275 3/18/08 5:18:44 PM3/18/08 5:18:44 PM

Chapter 8: Change Orders

276

 This method implements lazy - load functionality on the currentProject field; if it is a null value, then
it uses the ProjectService class to load it up via its GetProject method.

 The PreviousAuthorizedAmount Property
 The PreviousAuthorizedAmount property is another read - only property that represents what has
been previously authorized from all of the previous Change Orders before the date of the current
Change Order.

 public decimal PreviousAuthorizedAmount
 {
 get
 {
 this.GetPreviousAuthorizedAmount();
 return this.previousAuthorizedAmount.HasValue ?
 this.previousAuthorizedAmount.Value : 0;
 }
 }

 Very similar to the OriginalConstructionCost property, this property also calls a private method to
get the value in a lazy - load type manner. The previousAuthorizedAmount field is a Nullable type, so if
it has a value, then the value is used; otherwise, the property returns a value of zero. The private method
the property calls is the GetPreviousAuthorizedAmount method:

 private void GetPreviousAuthorizedAmount()
 {
 if (!this.previousAuthorizedAmount.HasValue)
 {
 this.previousAuthorizedAmount =
 ChangeOrderService.GetPreviousAuthorizedAmountFrom(this);
 }
 }

 This method implements its lazy - load functionality by checking to see whether the
 previousAuthorizedAmount field has a value; if it does not have a value, then it sets its value using
the GetPreviousAuthorizedAmountFrom method of the ChangeOrderService .

The NewConstructionCost Property
 This property is read - only and represents what the new construction cost is as of the date of the current
Change Order.

 public decimal NewConstructionCost
 {
 get
 {
 this.GetPreviousAuthorizedAmount();
 return this.OriginalConstructionCost +
 this.PreviousAuthorizedAmount +
 this.amountChanged;
 }
 }

c08.indd 276c08.indd 276 3/18/08 5:18:44 PM3/18/08 5:18:44 PM

Chapter 8: Change Orders

277

 This property starts out by calling the method I just showed, the GetPreviousAuthorizedAmount
method. It then adds up the value of the OriginalConstructionCost property, the
 PreviousAuthorizedAmount property, and the amountChanged private field. The amountChanged
private field is changed by the setter on the AmountChanged property. These values added together
represent the new construction cost of a Project at the particular point in time of the current
Change Order.

The PreviousTimeChangedTotal Property
 This is another read - only property that represents the total amount of days that have been added or
subtracted from the Project as of the date of the current Change Order.

 public int PreviousTimeChangedTotal
 {
 get
 {
 this.GetPreviousTimeChangedTotal();
 return this.previousTimeChangedTotal.HasValue ?
 this.previousTimeChangedTotal.Value : 0;
 }
 }

 The logic for this property is pretty much the same as for the PreviousAuthorizedAmount property.
It also calls a private method to get the value in a lazy - load type manner. The
 previousTimeChangedTotal field is a Nullable type, so if it has a value, then the value is used;
otherwise, the property returns a value of zero. The private method the property calls is the
 GetPreviousTimeChangedTotal method:

 private void GetPreviousTimeChangedTotal()
 {
 if (!this.previousTimeChangedTotal.HasValue)
 {
 this.previousTimeChangedTotal =
 ChangeOrderService.GetPreviousTimeChangedTotalFrom(this);
 }
 }

 As you would expect, the logic for this method is very similar to the logic for the
 GetPreviousAuthorizedAmount method. This method also implements lazy - load functionality by
checking to see whether the previousTimeChangedTotal field has a value; if it does not have a value,
then it sets its value using the GetPreviousTimeChangedTotalFrom method of the
 ChangeOrderService .

 The DateOfSubstantialCompletion Property
 This read - only property represents the date that the Project will be completed as of the current
Change order. This takes into account all of the days added or subtracted from the Project by
previous Change Orders.

c08.indd 277c08.indd 277 3/18/08 5:18:44 PM3/18/08 5:18:44 PM

Chapter 8: Change Orders

278

 public DateTime? DateOfSubstantialCompletion
 {
 get
 {
 DateTime? completionDate = null;
 this.GetCurrentProject();
 if (this.currentProject.EstimatedCompletionDate.HasValue)
 {
 this.GetPreviousTimeChangedTotal();
 completionDate =
 this.currentProject.EstimatedCompletionDate.Value.AddDays(
 this.PreviousTimeChangedTotal + this.timeChanged);
 }
 return completionDate;
 }
 }

 This getter starts by setting up a Nullable DateTime variable to use as the return value and sets it to
null. The next step is to check whether the currentProject instance ’ s EstimatedCompletionDate
property value has a value, but before doing that, I have to call the GetCurrentProject method to
make sure that the currentProject field is properly initialized. If the Project has an
 EstimatedCompletionDate value, I then call the GetPreviousTimeChangedTotal method to get the
number of days that have been added to or subtracted from the current Project as of the date of the
current Change Order. I then add the value of the PreviousTimeChangedTotal property and the
 timeChanged class field value to add the right number of days to the Project ’ s
 EstimatedCompletionDate property and then return that value. The timeChanged field value is set
via the TimeChanged property.

 The NumberSpecification Property
 This property is designed to model the business rules about the proper numbering of Change Orders.
The NumberSpecification property is represented by the ChangeOrderNumberSpecification class.
Its only job is to validate that the Change Order adheres to the numbering rules, which are, if you
remember, that all Change Orders must be numbered consecutively within a Project and that there
cannot be duplicate Change Order numbers within a Project.

 public NumberSpecification < ChangeOrder > NumberSpecification
 {
 get { return this.numberSpecification; }
 }

 This is very similar to the other Number Specification implementations in the last two chapters, so,
seeing that, I felt this needed some more refactoring in order to eliminate the duplicate code.
As a result, I created a generic Number Specification class; actually it is a .NET Generic
NumberSpecification < TCandidate > class.

c08.indd 278c08.indd 278 3/18/08 5:18:45 PM3/18/08 5:18:45 PM

Chapter 8: Change Orders

279

using System;
using System.Collections.Generic;
using System.Linq;
using SmartCA.Infrastructure.Specifications;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model
{
 public class NumberSpecification < TCandidate >
 : Specification < TCandidate > where TCandidate : IAggregateRoot,
 INumberedProjectChild
 {
 public override bool IsSatisfiedBy(TCandidate candidate)
 {
 bool isSatisfiedBy = true;

 // Make sure that the same entity number has not
 // been used for the current project, and that there are no
 // gaps between entity numbers

 // First get the project associated with the entity
 Project project = ProjectService.GetProject(candidate.ProjectKey);

 // Next get the list of items for the project

 // First get the correct Repository
 INumberedProjectChildRepository < TCandidate > repository =
 RepositoryFactory.GetRepository
 < INumberedProjectChildRepository < TCandidate > , TCandidate > ();

 // Now use the Repository to find all of the items by the Project
 IList < TCandidate > items = repository.FindBy(project);

 // Use a LINQ query to determine if the entity number has been
 // used before
 isSatisfiedBy =
 (items.Where(item = > item.Number.Equals(candidate.Number)).Count()
 < 1);

 // See if the candidate passed the first test
 if (isSatisfiedBy)
 {
 // First test passed, now use another LINQ query to make sure that
 // there are no gaps
 isSatisfiedBy =
 (candidate.Number - items.Max(item = > item.Number) == 1);
 }

 return isSatisfiedBy;
 }
 }
}

c08.indd 279c08.indd 279 3/18/08 5:18:45 PM3/18/08 5:18:45 PM

Chapter 8: Change Orders

280

 This code is almost the same as the other Number Specification implementations, only it uses .NET
Generics to give it reusability. Let me start out by comparing the signature of this class to the
non - Generic class that would have been created.

 Here is the old way of implementing this:

public class ChangeOrderNumberSpecification : Specification < ChangeOrder >

 Here, again, is the new way:

public class NumberSpecification < TCandidate > : Specification < TCandidate > where
 TCandidate : IAggregateRoot, INumberedProjectChild

 The trick here is using the constraints on the TCandidate Generic parameter. By declaring that the
 TCandidate Generic parameter has to implement the INumberedProjectChild interface, I now have
strongly typed access to its properties (via the TCandidate candidate argument) in the IsSatisfied
method. I then proceed to use the ProjectKey property to get the correct Project instance via the
 ProjectService class. I get an instance of the INumberedProjectChildRepository interface and
then use that to get the list of all of the items (in this case, it would be ChangeOrder instances) for the
given Project. Finally, in the LINQ queries I use the Number property of the INumberedProjectChild
interface instance to make sure that the Number has not been used before and that there are no gaps
between the last item (in this case ChangeOrder) Number and this item (again, ChangeOrder) Number .

 I also went back and refactored the NumberSpecification properties on the ProposalRequest and
 RequestForInformation classes to use the new NumberSpecification < TCandidate > class.

 The Validate Method
 Taking advantage of the mini - validation framework that was built in the last chapter, here is the
 Validate method override for the ChangeOrder class:

 protected override void Validate()
 {
 if (!this.numberSpecification.IsSatisfiedBy(this))
 {
 this.AddBrokenRule(
 ChangeOrderRuleMessages.MessageKeys.InvalidNumber);
 }
 if (this.contractor == null)
 {
 this.AddBrokenRule(
 ChangeOrderRuleMessages.MessageKeys.InvalidContractor);
 }
 }

 If you remember in the last chapter, there was a little bit more to this implementation than just
overriding the Validate method of the EntityBase class. Well, I know this is hard to believe, but I did
a little bit more refactoring since then. I moved the brokenRuleMessages field into the EntityBase
class, as well as the AddBrokenRule method.

c08.indd 280c08.indd 280 3/18/08 5:18:45 PM3/18/08 5:18:45 PM

Chapter 8: Change Orders

281

 Here are the new changes to the EntityBase class:

 public abstract class EntityBase : IEntity
 {
 private object key;
 private List < BrokenRule > brokenRules;

 private BrokenRuleMessages brokenRuleMessages;

 /// < summary >
 /// Overloaded constructor.
 /// < /summary >
 /// < param name=”key” > An < see cref=”System.Object”/ > that
 /// represents the primary identifier value for the
 /// class. < /param >
 protected EntityBase(object key)
 {
 this.key = key;
 if (this.key == null)
 {
 this.key = EntityBase.NewKey();
 }
 this.brokenRules = new List < BrokenRule > ();

 this.brokenRuleMessages = this.GetBrokenRuleMessages();

 }

 #region Validation and Broken Rules

 protected abstract void Validate();

 protected abstract BrokenRuleMessages GetBrokenRuleMessages();

 protected List < BrokenRule > BrokenRules
 {
 get { return this.brokenRules; }
 }

 public ReadOnlyCollection < BrokenRule > GetBrokenRules()
 {
 this.Validate();
 return this.brokenRules.AsReadOnly();
 }

 protected void AddBrokenRule(string messageKey)
 {
 this.brokenRules.Add(new BrokenRule(messageKey,
 this.brokenRuleMessages.GetRuleDescription(messageKey)));
 }

 #endregion

c08.indd 281c08.indd 281 3/18/08 5:18:46 PM3/18/08 5:18:46 PM

Chapter 8: Change Orders

282

 There is also a new abstract method in the EntityBase class, the GetBrokenRulesMessages method.
This allows the EntityBase class to separate the brokenRuleMessages field completely from the
derived classes; all they have to do is implement the GetBrokenRuleMessages method and return a
 BrokenRuleMessages instance. Here is how it is implemented in the ChangeOrder class:

 protected override BrokenRuleMessages GetBrokenRuleMessages()
 {
 return new ChangeOrderRuleMessages();
 }

 This is another implementation of the Template Method pattern, and as you can see it
really helps to encapsulate the logic of managing BrokenRule instances. Here is the
 ChangeOrderRuleMessages class:

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.ChangeOrders
{
 public class ChangeOrderRuleMessages : BrokenRuleMessages
 {
 internal static class MessageKeys
 {
 public const string InvalidNumber = “Invalid Change Order Number”;
 public const string InvalidDescription = “Invalid Change Order “ +
 “Description”;
 public const string InvalidStatus = “Must Have “ +
 “Status Assigned”;
 public const string InvalidContractor = “Must Have Contractor “ +
 “Assigned”;
 }

 protected override void PopulateMessages()
 {
 // Add the rule messages
 this.Messages.Add(MessageKeys.InvalidNumber,
 “The same Change Order number cannot be used for the “ +
 “current project, and there cannot be any gaps between “ +
 “Change Order numbers.”);

 this.Messages.Add(MessageKeys.InvalidDescription,
 “The Change Order must have a description”);

 this.Messages.Add(MessageKeys.InvalidContractor,
 “The Change Order must have a Company assigned to the “ +
 “Contractor property.”);
 }
 }
}

 The main idea to take away from this class is that it inherits the BrokenRuleMessages class,
and because of this I am able to return an instance of it from the ChangeOrder class ’ s
 GetBrokenRuleMessages method override.

c08.indd 282c08.indd 282 3/18/08 5:18:46 PM3/18/08 5:18:46 PM

Chapter 8: Change Orders

283

 The end result of this refactoring is that now my Entity classes can be validated with even less code
in them, and they are even more focused on nothing but the business logic.

 The Change Order Repository Implementation
 After going over the IChangeOrderRepository interface in the Design section, it is now time to explain
how the ChangeOrder class is actually persisted to and from the data store by the Change Order
Repository. In this section, I will be writing the code for the Change Order Repository.

 The BuildChildCallbacks Method
 It should be like clockwork now: it is time to implement the Template Method pattern that I have
been using in the repositories for getting Entity Root instances, and that means that the
 BuildChildCallbacks method has to be overridden in the ChangeOrderRepository .

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(CompanyFactory.FieldNames.CompanyId,
 this.AppendContractor);
 this.ChildCallbacks.Add(“RoutingItems”,
 delegate(ChangeOrder co, object childKeyName)
 {
 this.AppendRoutingItems(co);
 });
 }

 #endregion

 The AppendContractor Callback
 The first entry made in the ChildCallbacks dictionary is for the AppendContractor method. Thanks
to the CompanyService class ’ s GetCompany method, this method ’ s code is very simple:

 private void AppendContractor(ChangeOrder co, object contractorKey)
 {
 co.Contractor = CompanyService.GetCompany(contractorKey);
 }

 The AppendRoutingItems Callback
 The last entry made in the ChildCallbacks dictionary is for the AppendRoutingItems method.
Thanks to the ProjectService class ’ s GetProjectContact method, this method ’ s code is very simple:

 private void AppendRoutingItems(ChangeOrder co)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“SELECT * FROM {0}RoutingItem tri “,
 this.EntityName));
 builder.Append(“ INNER JOIN RoutingItem ri ON”);
 builder.Append(“ tri.RoutingItemID = ri.RoutingItemID”);

(continued)

c08.indd 283c08.indd 283 3/18/08 5:18:46 PM3/18/08 5:18:46 PM

Chapter 8: Change Orders

284

 builder.Append(“ INNER JOIN Discipline d ON”);
 builder.Append(“ ri.DisciplineID = d.DisciplineID”);
 builder.Append(string.Format(“ WHERE tri.{0} = ‘{1}’;”,
 this.KeyFieldName, co.Key));
 using (IDataReader reader = this.ExecuteReader(builder.ToString()))
 {
 while (reader.Read())
 {
 co.RoutingItems.Add(TransmittalFactory.BuildRoutingItem(
 co.ProjectKey, reader));
 }
 }
 }

 This code is almost identical to the code for the AppendRoutingItems in the
 SqlCeRoutableTransmittalRepository class. In fact, it actually uses the TransmittalFactory
class to build the instances of the RoutingItem class from the IDataReader instance.

 The FindBy Method
 The FindBy method is very similar to the other FindBy methods in the other Repository
implementations. The only part that is really different is the SQL query that is being used.

 public IList < ChangeOrder > FindBy(Project project)
 {
 StringBuilder builder = this.GetBaseQueryBuilder();
 builder.Append(string.Format(“ WHERE ProjectID = ‘{0}’;”,
 project.Key));
 return this.BuildEntitiesFromSql(builder.ToString());
 }

 This method should also probably be refactored into a separate class, but I will leave that as an exercise
to be done later.

 The GetPreviousAuthorizedAmountFrom Method
 The purpose of this method is to get the total number of Change Orders for the particular Project that
occurred before the current Change Order being passed in.

 public decimal GetPreviousAuthorizedAmountFrom(ChangeOrder co)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT SUM(AmountChanged) FROM ChangeOrder “);
 builder.Append(string.Format(“WHERE ProjectID = ‘{0}’ “,
 co.ProjectKey.ToString()));
 builder.Append(string.Format(“AND ChangeOrderNumber < ‘{1}’;”,
 co.Number));
 object previousAuthorizedAmountResult =
 this.Database.ExecuteScalar(
 this.Database.GetSqlStringCommand(builder.ToString()));
 return previousAuthorizedAmountResult != null ?
 Convert.ToDecimal(previousAuthorizedAmountResult) : 0;
 }

(continued)

c08.indd 284c08.indd 284 3/18/08 5:18:46 PM3/18/08 5:18:46 PM

Chapter 8: Change Orders

285

 It builds an SQL statement to get the total amount from the ChangeOrder table, and then uses the
Microsoft Enterprise Library ’ s ExecuteScalar method to retrieve the value from the query. It then
checks to see whether the value is null, and if it is null, it returns a value of zero instead.

 The GetPreviousTimeChangedTotalFrom Method
 This method is very similar in implementation to the previous method. Its purpose is to get the total
number of days that have been added or subtracted from the Project before the current Change Order
being passed in.

 public int GetPreviousTimeChangedTotalFrom(ChangeOrder co)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT SUM(TimeChangedDays) FROM ChangeOrder “);
 builder.Append(string.Format(“WHERE ProjectID = ‘{0}’ “,
 co.ProjectKey.ToString()));
 builder.Append(string.Format(“AND ChangeOrderNumber < ‘{0}’;”,
 co.Number));
 object previousTimeChangedTotalResult =
 this.Database.ExecuteScalar(
 this.Database.GetSqlStringCommand(builder.ToString()));
 return previousTimeChangedTotalResult != null ?
 Convert.ToInt32(previousTimeChangedTotalResult) : 0;
 }

 It also builds an SQL query, only this query is to get the total number of days that have been added or
subtracted, and it also uses the Microsoft Enterprise Library ’ s ExecuteScalar method to get the result
of the query. As before, I make a check to see whether the value is null, and if the value is null, then I
return a value of zero.

 Unit of Work Implementation
 Following the same steps that I have shown before to implement the Unit of Work pattern, I only need
to override the PersistNewItem(ChangeOrder item) and PersistUpdatedItem(ChangeOrder
item) methods.

The PersistNewItem Method
 The first method override for the Change Order ’ s Unit of Work implementation is the PersistNewItem
method:

 protected override void PersistNewItem(ChangeOrder item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO ChangeOrder
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16}) “,
 ChangeOrderFactory.FieldNames.ChangeOrderId,
 ProjectFactory.FieldNames.ProjectId,
 ChangeOrderFactory.FieldNames.ChangeOrderNumber,
 ChangeOrderFactory.FieldNames.EffectiveDate,
 CompanyFactory.FieldNames.CompanyId,
 ChangeOrderFactory.FieldNames.Description,
 ChangeOrderFactory.FieldNames.PriceChangeType,

(continued)

c08.indd 285c08.indd 285 3/18/08 5:18:47 PM3/18/08 5:18:47 PM

Chapter 8: Change Orders

286

 ChangeOrderFactory.FieldNames.PriceChangeTypeDirection,
 ChangeOrderFactory.FieldNames.AmountChanged,
 ChangeOrderFactory.FieldNames.TimeChangeDirection,
 ChangeOrderFactory.FieldNames.TimeChangedDays,
 ChangeOrderFactory.FieldNames.ItemStatusId,
 ChangeOrderFactory.FieldNames.AgencyApprovedDate,
 ChangeOrderFactory.FieldNames.DateToField,
 ChangeOrderFactory.FieldNames.OwnerSignatureDate,
 ChangeOrderFactory.FieldNames.ArchitectSignatureDate,
 ChangeOrderFactory.FieldNames.ContractorSignatureDate
));
 builder.Append(string.Format(“VALUES
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16});”,
 DataHelper.GetSqlValue(item.Key),
 DataHelper.GetSqlValue(item.ProjectKey),
 DataHelper.GetSqlValue(item.Number),
 DataHelper.GetSqlValue(item.EffectiveDate),
 DataHelper.GetSqlValue(item.Contractor.Key),
 DataHelper.GetSqlValue(item.Description),
 DataHelper.GetSqlValue(item.ChangeType),
 DataHelper.GetSqlValue(item.PriceChangeDirection),
 DataHelper.GetSqlValue(item.AmountChanged),
 DataHelper.GetSqlValue(item.TimeChangeDirection),
 DataHelper.GetSqlValue(item.TimeChanged),
 DataHelper.GetSqlValue(item.Status.Id),
 DataHelper.GetSqlValue(item.AgencyApprovedDate),
 DataHelper.GetSqlValue(item.DateToField),
 DataHelper.GetSqlValue(item.OwnerSignatureDate),
 DataHelper.GetSqlValue(item.ArchitectSignatureDate),
 DataHelper.GetSqlValue(item.ContractorSignatureDate)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects
 this.InsertRoutingItems(item);
 }

 The code builds up a large insert statement composed of the values from the ChangeOrder instance and
then executes the query using the Microsoft Enterprise Library ’ s Database object. After the insert
statement has been executed, I then have to account for inserting the RoutingItem instances for the
 ChangeOrder . I do this by calling the InsertRoutingItems method, which is almost identical to the
same method in the SqlCeRoutableTransmittalRepository class:

 private void InsertRoutingItems(ChangeOrder co)
 {
 foreach (RoutingItem item in co.RoutingItems)
 {
 this.InsertRoutingItem(item, co.Key);
 }
 }

(continued)

c08.indd 286c08.indd 286 3/18/08 5:18:47 PM3/18/08 5:18:47 PM

Chapter 8: Change Orders

287

 And this code does a basic loop through all of the RoutingItem instances in the list and calls the
 InsertRoutingItem method for each one. I am not going to show the code for that method as it is
identical to the one in the SqlCeRoutableTransmittalRepository class. This definitely signals to me
that this code needs to be refactored, but for now I will just flag it to be refactored at a later time.

The PersistUpdatedItem Method
 PersistUpdatedItem first does an update to the ChangeOrder table:

protected override void PersistUpdatedItem(ChangeOrder item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“UPDATE ChangeOrder SET “);

 builder.Append(string.Format(“{0} = {1}”,
 ChangeOrderFactory.FieldNames.ChangeOrderNumber,
 DataHelper.GetSqlValue(item.Number)));

 builder.Append(string.Format(“,{0} = {1}”,
 ChangeOrderFactory.FieldNames.EffectiveDate,
 DataHelper.GetSqlValue(item.EffectiveDate)));

 builder.Append(string.Format(“,{0} = {1}”,
 ChangeOrderFactory.FieldNames.OwnerSignatureDate,
 DataHelper.GetSqlValue(item.OwnerSignatureDate)));

 /**/

 builder.Append(string.Format(“,{0} = {1}”,
 ChangeOrderFactory.FieldNames.ArchitectSignatureDate,
 DataHelper.GetSqlValue(item.ArchitectSignatureDate)));

 builder.Append(string.Format(“,{0} = {1}”,
 ChangeOrderFactory.FieldNames.ContractorSignatureDate,
 DataHelper.GetSqlValue(item.ContractorSignatureDate)));

 builder.Append(“ “);
 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects

 // First, delete the existing ones
 this.DeleteRoutingItems(item);

 // Now, add the current ones
 this.InsertRoutingItems(item);
 }

 I have omitted several lines of repetitive code building the SQL update statement in the middle of the
code in order to try to save you from the boring code.

c08.indd 287c08.indd 287 3/18/08 5:18:48 PM3/18/08 5:18:48 PM

Chapter 8: Change Orders

288

 The second part of the method then uses the DeleteRoutingItems helper method to delete all of
the RoutingItem child objects of the Change Order and then uses the also newly refactored
 InsertRoutingItems helper method to add the existing RoutingItem child objects from the Change
Order to the database.

 The Change Order Service Implementation
 Like the other Service classes shown in the domain model so far, the ChangeOrderService class is
responsible for retrieving and wrapping the methods of its associated Repository interface, in this case
the IChangeOrderRepository instance:

using System;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Model.ChangeOrders
{
 public static class ChangeOrderService
 {
 private static IChangeOrderRepository repository;
 private static IUnitOfWork unitOfWork;

 static ChangeOrderService()
 {
 ChangeOrderService.unitOfWork = new UnitOfWork();
 ChangeOrderService.repository =
 RepositoryFactory.GetRepository < IChangeOrderRepository,
 ChangeOrder > (ChangeOrderService.unitOfWork);
 }

 public static IList < ChangeOrder >
 GetChangeOrders(Project project)
 {
 return ChangeOrderService.repository.FindBy(project);
 }

 public static void SaveChangeOrder(ChangeOrder co)
 {
 ChangeOrderService.repository[co.Key] = co;
 ChangeOrderService.unitOfWork.Commit();
 }

 public static decimal GetPreviousAuthorizedAmountFrom(ChangeOrder co)
 {
 return
 ChangeOrderService.repository.GetPreviousAuthorizedAmountFrom(co);
 }

 public static int GetPreviousTimeChangedTotalFrom(ChangeOrder co)
 {
 return

c08.indd 288c08.indd 288 3/18/08 5:18:48 PM3/18/08 5:18:48 PM

Chapter 8: Change Orders

289

 ChangeOrderService.repository.GetPreviousTimeChangedTotalFrom(co);
 }
 }
}

 These are the only methods needed for now, but others could easily be added later, such as a method for
removing Change Orders.

 The Change Order View Model Class
 Following the same patterns for all ViewModel classes as before, the ChangeOrderViewModel class
adapts the Change Order Aggregate from the domain model to the UI. It follows the usual pattern of
inheriting from the ViewModel class introduced previously:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.UI;
using SmartCA.Model.ChangeOrders;
using System.Windows.Data;
using SmartCA.Model;
using SmartCA.Model.Transmittals;
using System.ComponentModel;
using SmartCA.Application;
using SmartCA.Model.Submittals;
using SmartCA.Model.Companies;

namespace SmartCA.Presentation.ViewModels
{
 public class ChangeOrderViewModel : ViewModel

 The Constructor
 Again, there are not any new concepts being introduced in the constructor code for this class, I am just
following the same patterns as laid out in the previous chapters. Here are the constructors for the
 ChangeOrderViewModel class:

 #region Constructors

 public ChangeOrderViewModel()
 : this(null)
 {
 }

 public ChangeOrderViewModel(IView view)
 : base(view)
 {
 this.currentChangeOrder = null;
 this.changeOrderList = new List < ChangeOrder > (
 ChangeOrderService.GetChangeOrders(UserSession.CurrentProject));
 this.changeOrders = new CollectionView(this.changeOrderList);
 this.contractors = CompanyService.GetAllCompanies();

(continued)

c08.indd 289c08.indd 289 3/18/08 5:18:48 PM3/18/08 5:18:48 PM

Chapter 8: Change Orders

290

 this.priceChangeTypesView = new
 CollectionView(Enum.GetNames(typeof(PriceChangeType)));
 string[] changeDirections = Enum.GetNames(typeof(ChangeDirection));
 this.priceChangeDirections = new CollectionView(changeDirections);
 this.timeChangeDirections = new CollectionView(changeDirections);
 this.itemStatuses = SubmittalService.GetItemStatuses();
 this.routingItems = new BindingList < RoutingItem > ();
 this.disciplines = SubmittalService.GetDisciplines();
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 this.deleteRoutingItemCommand =
 new DelegateCommand(this.DeleteRoutingItemCommandHandler);
 }

 #endregion

 I am making good use of the ChangeOrderService and the SubmittalService classes to retrieve the
necessary data for the dropdowns in the UI. Note how I am also exposing the enumeration data types as
 CollectionView instances here. You may wonder why I am using two different CollectionView
objects to represent the ChangeDirection enumeration. I am using them to represent two different
properties, PriceChangeDirection and TimeChangeDirection , and because of the synchronization
that WPF uses, if I do not use two separate instances, whenever one is changed, the other will change its
value to be the same as the first.

 The Properties
 All of the properties in the ChangeOrderViewModel class are read - only, except for the
 CurrentChangeOrder property:

 public ChangeOrder CurrentChangeOrder
 {
 get { return this.currentChangeOrder; }
 set
 {
 if (this.currentChangeOrder != value)
 {
 this.currentChangeOrder = value;
 this.OnPropertyChanged(
 Constants.CurrentChangeOrderPropertyName);
 this.saveCommand.IsEnabled =
 (this.currentChangeOrder != null);
 this.PopulateRoutingItems();
 }
 }
 }

 The getter for the property is pretty simple, but the property ’ s setter is a little bit more interesting. It is
following the same pattern as before, by first checking to see whether the value being set is actually a
different ChangeOrder instance. If it is, then the currentChangeOrder field is set to the setter ’ s value,
and the PropertyChanged event is raised. Also, the saveCommand field ’ s IsEnabled property is set to
true if the currentChangeOrder field ’ s value is not null. Last, the RoutingItems property value is
initialized based on the currentChangeOrder field ’ s RoutingItems property value via the
 PopulateRoutingItems private method.

(continued)

c08.indd 290c08.indd 290 3/18/08 5:18:49 PM3/18/08 5:18:49 PM

Chapter 8: Change Orders

291

 The Command Handler Methods
 The only command handler methods that I need to override in the ChangeOrderViewModel class are
the SaveCommandHandler and NewCommandHandler methods. Again, I do not have to worry about
deletes because the DeleteCommandHandler method is completely taken care of by the base class.

The NewCommandHandler method
 Here is the code for the NewCommandHandler method:

 protected void NewCommandHandler(object sender, EventArgs e)
 {
 object projectKey = this.currentChangeOrder.ProjectKey;
 this.currentChangeOrder = null;
 this.routingItems.Clear();
 this.CurrentObjectState = ObjectState.New;
 this.OnPropertyChanged(
 Constants.CurrentChangeOrderPropertyName);
 ChangeOrder newChangeOrder = new ChangeOrder(
 projectKey,
 this.currentChangeOrder.Number + 1);
 this.changeOrderList.Add(newChangeOrder);
 this.changeOrders.Refresh();
 this.changeOrders.MoveCurrentToLast();
 }

 This method starts out by obtaining the ProjectKey property value of the old Change Order
instance (the currentChangeOrder field). It then sets the currentChangeOrder field to null,
clears the RoutingItems property, and sets the state of the ViewModel to New . Next, it raises the
 PropertyChanged event so the UI can clear its screen. Then, a new ChangeOrder instance is created
and initialized with the old ProjectKey property value saved on the first line of the method, and the
current Change Order Number plus one. Finally, the new ChangeOrder instance is added to the list of
Change Orders (the changeOrdersList field), and the wrapping changeOrders CollectionView
field is then refreshed and directed to move the current Change Order to the last position.

The SaveCommandHandler Method
 This method is responsible for validating and saving the currently selected Change Order instance.

 protected void SaveCommandHandler(object sender, EventArgs e)
 {
 if (this.currentChangeOrder != null & &
 this.currentChangeOrder.GetBrokenRules().Count == 0)
 {
 foreach (RoutingItem item in this.routingItems)
 {
 this.currentChangeOrder.RoutingItems.Add(item);
 }
 ChangeOrderService.SaveChangeOrder(this.currentChangeOrder);
 }
 this.CurrentObjectState = ObjectState.Existing;
 }

c08.indd 291c08.indd 291 3/18/08 5:18:49 PM3/18/08 5:18:49 PM

Chapter 8: Change Orders

292

 It begins by making sure that the current Change Order is not null, and also calls the GetBrokenRules
method to validate the state of the Change Order. Currently, I do not have anything wired up to handle
any of the broken rules, but the hook is there for it. I probably would add another property to the
ViewModel for the broken rules so the XAML could easily bind to it.

 The next step after passing validation is to add all of the RoutingItem instances into the current Change
Order, and then finally, to save the Change Order.

 The Change Order View
 The View for Change Orders is very similar to what has been seen in the past few chapters, where the list
of Change Orders is on the left, and the currently selected Change Order is on the right. Following is
what the form looks like at run time (see Figure 8.5) .

 Figure 8.5: Change Order View.

 There certainly is a lot more that I could be doing in the UI regarding validation, but that really is not the
focus of this chapter or book. I want to keep the focus on the domain model, but at some point this
application will definitely need to wire the validation for the domain model into the UI in an elegant
way. The Microsoft Patterns and Practices team has actually built a Validation application block that I
have not really tapped into in this book, but I imagine that I will later in the life of this code base.

c08.indd 292c08.indd 292 3/18/08 5:18:49 PM3/18/08 5:18:49 PM

Chapter 8: Change Orders

293

 Summary
 In this chapter, I introduced the concept of a Change Order in the construction industry, and then I used
this concept to model the Change Order Aggregate. I added quite a bit more behavior to my classes in
this chapter, and the current Domain Model classes are certainly starting to get much richer than they
were before. I also created a nice way of distinguishing the Aggregate Roots in the domain model by
way of the IAggregateRoot interface. This concept is also heavily reinforced in the various Repository
classes through the use of Generic Constraints constraining the repositories to use the IAggregateRoot
interface for the Entity Roots that they are supporting. While I was refactoring again, I changed a
good portion of the code base to rely on the IEntity interface instead of the EntityBase class. In
fact, the EntityBase class itself implements the IEntity interface. Also involved in the refactoring
was the creation of the new Generic NumberSpecification < TCandidate > class, which made nice use
of the new INumberedProjectChild interface.

c08.indd 293c08.indd 293 3/18/08 5:18:50 PM3/18/08 5:18:50 PM

c08.indd 294c08.indd 294 3/18/08 5:18:50 PM3/18/08 5:18:50 PM

 Construction Change
Directives

 In the last two chapters, I covered Proposal Requests and Change Orders, and in this chapter I will
be showing you the last of the Change Order – related concepts, the Construction Change Directive.

 The Problem
 Sometimes a Change Order will be approved and signed off on by the Architect and the Owner,
but not by the Contractor. The Contractor may not agree with the change in work, contract price,
contract time, or both. This type of Change Order will be signed by the Owner and Architect but
not by the Contractor. When this happens, the Contractor is obligated to go ahead with the work,
with the price and time adjustments to be determined later by the Architect, utilizing standard
industry guidelines.

 The means to capture this type of change is the Construction Change Directive. At any time that
the contractor later agrees to its terms or mutual agreement is obtained by adjustment of its terms,
it is then turned into a Change Order. In the event that the contractor finds it impossible to accept
the Architect ’ s determination of changed cost and time, the Contractor ’ s only other alternative at
that point is mediation and arbitration.

 Like RFIs, Proposal Requests, and Change Orders, each Construction Change Directive should also
be serially numbered by Project.

 The Design
 In the SmartCA domain, a Change Order is one of the most important concepts for the entire
application, and it also contains several important business concepts that must be closely tracked.
In the next few sections, I will be designing the domain model, determining the Change Order
Aggregate and its boundaries, and designing the Repository for Change Orders.

c09.indd 295c09.indd 295 3/18/08 5:56:03 PM3/18/08 5:56:03 PM

Chapter 9: Construction Change Directives

296

 Designing the Domain Model
 As stated earlier, the most important parts of the Construction Change Directive are the changes in
contract time or price, as well as the proper ordering of the Construction Change Directive Number.
I again will be using the Specification pattern to define the rules for the Number property, and the
Specification that I create will also be part of the domain model. It is very important that the logic inside
of the Construction Change Directive be correct for calculating the total price and time whenever one of
those items is changed from the Construction Change Directive.

 Figure 9.1 shows a drawing showing the relationships between the classes that combine to make up a
Construction Change Directive.

Copy To

Contractor

Description
Specification

To From

Construction Change
Directive

Number
Specification

*

 Figure 9.1: Construction Change Directive Aggregate.

 In the diagram, the Construction Change Directive class is clearly the root of the Aggregate. The two
most important attributes of the Construction Change Directive are the amount of time being changed
and the amount of money being added. These are represented in the diagram by the Time Change and
Price Change relationships, respectively. The relationship to the Contractor class shows the Contractor
that has requested the Construction Change Directive.

 The next important part of the diagram is the Construction Change Directive ’ s relationship to the
Routing Items. It is important for Smart Design to know to whom each Construction Change Directive
has been routed internally, and the Discipline of that person, such as architect, engineer, or construction
administrator. This was already created and used in Chapter 6 ; I am just reusing the same concept again
in this Aggregate.

 The relationship to the Status class shows exactly the state of the Construction Change Directive, such
as completed or pending an architect review. The relationship to the Construction Change Directive
Number Specification helps model the numbering rules of the Construction Change Directive.

c09.indd 296c09.indd 296 3/18/08 5:56:03 PM3/18/08 5:56:03 PM

Chapter 9: Construction Change Directives

297

 Designing the Construction Change Directive Aggregate
 The Construction Change Directive Aggregate does not have as many classes in it as some of the other
Aggregates, but it definitely uses a lot of interfaces (see Figure 9.2)!

Employee
Class
 Person

ProjectContact
Class
 EntityBase

PriceChangeType
Enum

ChangeDirection
Enum

Transmittal
AbstractClass
 EntityBase

Fields

Methods

Properties

Final
OtherDeliveryMethod
PhaseNumber
ProjectKey
Reimbursable
TotalPages
TransmittalDate
TransmittalRemarks

Company
Class
 EntityBase

Contractor

DescriptionSpecification<TCandidate>
Generic Class
 Specification<TCandidate>

DescriptionSpecification

Delivery
Enum

DeliveryMethod

CopyTo
Class

CopyToList

ITransmittal

NumberSpecification<TCandidate>
Generic Class
 Specification<TCandidate>

NumberSpecification

ConstructionChangeDirective
Class
 Transmittal

Fields
Properties

Methods

AmountChanged
ArchitectSignatureDate

INumberedProjectChild
Interface
 IEntity

Properties
Number
ProjectKey

Attachment
Cause
ContractorSignatureDate
Description
Initiator
IssueDate
Number
Origin
OwnerSignatureDate
Reason
Remarks
TimeChanged

ConstructionChangeDirective(�1 overload)

ValidateInitialization

IAggregateRoot

IAggregateRoot

IAggregateRoot
INumberedProjectChild
IDescribable

PriceChangeDirection

TimeChangeDirection

ChangeType

To

From

GetBrokenRuleMessages
Validate

IDescribable
Interface

Properties
Description

IAggregateRoot
Interface
 IEntity

 Figure 9.2: Classes Constituting the Construction Change Directive Aggregate.

 As shown in the diagram, the ConstructionChangeDirective class inherits from the Transmittal
class and implements the IAggregateRoot , INumberedProjectChild , and IDescribable interfaces.
I have already covered what all of these interfaces are for, except for the IDescribable interface. This
interface goes hand in hand with the DescriptionSpecification < TCandidate > class, and I will
cover both of these later in the chapter.

c09.indd 297c09.indd 297 3/18/08 5:56:04 PM3/18/08 5:56:04 PM

Chapter 9: Construction Change Directives

298

 Defining the Aggregate Boundaries
 The ConstructionChangeDirective class has its own identity and is definitely the root of its own
Aggregate (see Figure 9.3).

Employee
Class
 Person

ProjectContact
Class
 EntityBase

PriceChangeType
Enum

ChangeDirection
Enum

Transmittal
AbstractClass
 EntityBase

Fields

Methods

Properties

Final
OtherDeliveryMethod
PhaseNumber
ProjectKey
Reimbursable
TotalPages
TransmittalDate
TransmittalRemarks

Company
Class
 EntityBase

Contractor

DescriptionSpecification<TCandidate>
Generic Class
 Specification<TCandidate>

DescriptionSpecification

Delivery
Enum

DeliveryMethod

CopyTo
Class

CopyToList

ITransmittal

NumberSpecification<TCandidate>
Generic Class
 Specification<TCandidate>

NumberSpecification

ConstructionChangeDirective
Class
 Transmittal

Fields
Properties

Methods

AmountChanged
ArchitectSignatureDate

INumberedProjectChild
Interface
 IEntity

Properties
Number
ProjectKey

Attachment
Cause
ContractorSignatureDate
Description
Initiator
IssueDate
Number
Origin
OwnerSignatureDate
Reason
Remarks
TimeChanged

ConstructionChangeDirective(�1 overload)

ValidateInitialization

IAggregateRoot

IAggregateRoot

IAggregateRoot
INumberedProjectChild
IDescribable

PriceChangeDirection

TimeChangeDirection

ChangeType

To

From

GetBrokenRuleMessages
Validate

IDescribable
Interface

Properties
Description

IAggregateRoot
Interface
 IEntity

Construction Change Directive
Aggregate

Company Aggregate

Employee Aggregate

Project Aggregate

 Figure 9.3: Construction Change Directive Aggregate Boundaries.

 All of the other classes in the diagram, except for Company , Employee , and ProjectContact classes,
belong to the Construction Change Directive Aggregate. The Company and Employee classes are actually
the root of their own Aggregates, and the ProjectContact class is part of the Project Aggregate.

c09.indd 298c09.indd 298 3/18/08 5:56:04 PM3/18/08 5:56:04 PM

Chapter 9: Construction Change Directives

299

 Designing the Repository
 As you should definitely know by now, since the ConstructionChangeDirective class is its own
Aggregate root, it will have its own repository.

INumberedProjectChildRepository<T>
GenericInterface
 IRpository<T>

IRepository<T>
Generic Interface

RepositoryBase<T>
Generic Abstract Class

IRepository<T>
IUnitOfWorkRepository

IConstructionChangeDirectiveRepository

SqlCeRepositoryBase<T>
Generic Abstract Class
 RepositoryBase<T>

SqlCeTransmittalRepository<T>
Generic Abstract Class
 SqlCeRepositoryBase<T>

ConstructionChangeDirectiveRepository
Class
 SqlCeTransmittalRepository<ConstructionChangeDirective>

IConstructionChangeDirectiveRepository
Interface
 INumberedProjectChildRepository<ConstructionChangeDirective>
 IRepository<ConstructionChangeDirective>

 Figure 9.4: Construction Change Directive Repository.

 Figure 9.4 should look familiar to you, as it is very similar to the Change Order Repository diagram from
the last chapter.

 The IConstructionChangeDirectiveRepository interface is the interface into instances of
Construction Change Directive Repositories. Here is the IConstructionChangeDirectiveRepository
interface:

using System;
using SmartCA.Model.NumberedProjectChildren;

namespace SmartCA.Model.ConstructionChangeDirectives
{
 public interface IConstructionChangeDirectiveRepository
 : INumberedProjectChildRepository < ConstructionChangeDirective >
 {
 }
}

 As you can see, since the ConstructionChangeDirective class implements the
 INumberedProjectChild interface, it follows that the IConstructionChangeDirectiveRepository
interface extends the INumberedProjectChildRepository interface. There are no methods in the
 IConstructionChangeDirectiveRepository interface, as you can see it is just merely extending the
 INumberedProjectChildRepository interface.

c09.indd 299c09.indd 299 3/18/08 5:56:04 PM3/18/08 5:56:04 PM

Chapter 9: Construction Change Directives

300

 Writing the Unit Tests
 Again, in this chapter, I am not going to show the unit tests in this section because they are essentially
the same as most of the unit tests written in previous chapters. They are important; in fact I rely upon
them very much as I refactor the code.

 The Solution
 The classes used to make up the Construction Change Directive Aggregate should look very familiar to
you; I am at the point in the application architecture where I am starting to reuse many of the classes.
The thing that is a little bit different from previous chapters is that now there is much more business
logic to implement inside of the classes. This is because the Construction Change Directives deal with
money, and these types of documents may literally be dealing with millions of dollars.

 The Construction Change Directive Class
Private Fields and Constructors

 The ConstructionChangeDirective class inherits from the Transmittal class and passes its values
from its constructors straight through to the Transmittal base class.

using System;
using SmartCA.Model.Transmittals;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Companies;
using SmartCA.Model.Employees;
using SmartCA.Model.Projects;
using SmartCA.Model.ChangeOrders;
using SmartCA.Model.Description;
using SmartCA.Model.NumberedProjectChildren;

namespace SmartCA.Model.ConstructionChangeDirectives
{
 public class ConstructionChangeDirective
 : Transmittal, IAggregateRoot, INumberedProjectChild, IDescribable
 {
 private int number;
 private ProjectContact to;
 private Employee from;
 private DateTime? issueDate;
 private Company contractor;
 private string description;
 private string attachment;
 private string reason;
 private string initiator;
 private int cause;
 private int origin;
 private string remarks;
 private PriceChangeType? changeType;
 private ChangeDirection priceChangeDirection;

c09.indd 300c09.indd 300 3/18/08 5:56:04 PM3/18/08 5:56:04 PM

Chapter 9: Construction Change Directives

301

 private decimal amountChanged;
 private ChangeDirection timeChangeDirection;
 private int timeChanged;
 private DateTime? ownerSignatureDate;
 private DateTime? architectSignatureDate;
 private DateTime? contractorSignatureDate;
 private NumberSpecification < ConstructionChangeDirective >
numberSpecification;
 private DescriptionSpecification < ConstructionChangeDirective >
descriptionSpecification;
 private object changeOrderKey;
 private BrokenRuleMessages brokenRuleMessages;

 public ConstructionChangeDirective(object projectKey, int number)
 : this(null, projectKey, number)
 {
 }

 public ConstructionChangeDirective(object key, object projectKey,
 int number) : base(key, projectKey)
 {
 this.number = number;
 this.to = null;
 this.from = null;
 this.issueDate = null;
 this.contractor = null;
 this.description = string.Empty;
 this.attachment = string.Empty;
 this.reason = string.Empty;
 this.initiator = string.Empty;
 this.cause = 0;
 this.origin = 0;
 this.remarks = string.Empty;
 this.changeType = null;
 this.priceChangeDirection = ChangeDirection.Unchanged;
 this.amountChanged = 0;
 this.timeChangeDirection = ChangeDirection.Unchanged;
 this.timeChanged = 0;
 this.ownerSignatureDate = null;
 this.architectSignatureDate = null;
 this.contractorSignatureDate = null;
 this.numberSpecification =
 new NumberSpecification < ConstructionChangeDirective > ();
 this.descriptionSpecification =
 new DescriptionSpecification < ConstructionChangeDirective > ();
 this.changeOrderKey = null;
 this.ValidateInitialization();
 this.brokenRuleMessages =
 new ConstructionChangeDirectiveRuleMessages();
 }

 Just like the Submittal and RequestForInformation classes, all of the data for the
 ConstructionChangeDirective class is initialized and validated in the second constructor, which is
called by the first constructor.

c09.indd 301c09.indd 301 3/18/08 5:56:05 PM3/18/08 5:56:05 PM

Chapter 9: Construction Change Directives

302

 The ValidateInitialization Method
 The last action that happens in the ConstructionChangeDirective class initialization process is
validation. A check is made via the ValidateInitialization method to ensure that, if the class is not
passed in a key value, it contains a valid Construction Change Directive number and is associated with a
 Project .

 private void ValidateInitialization()
 {
 NumberedProjectChildValidator.ValidateInitialState(this,
 “Construction Change Directive”);
 }

 The ConstructionChangeDirective Properties
 A lot of the properties of the ConstructionChangeDirective class are very similar to those covered in
previous Domain Model classes, so I am only going to cover those that are new here and also those that
contain behavior.

The DescriptionSpecification Property
 This property is designed to make sure that Construction Change Directives have a description
associated with them. The DescriptionSpecification property is represented by the
 DescriptionSpecification < T > Generic class.

public DescriptionSpecification < ConstructionChangeDirective >
DescriptionSpecification
 {
 get { return this.descriptionSpecification; }
 }

 Just as with the previously refactored NumberSpecification < TCandidate > class in last chapter,
I have another situation with Description Specification implementations repeating themselves in the last
couple of chapters, so I decided to refactor it, as well. As a result, I created the Generic Description
Specification class; actually it is a .NET Generic DescriptionSpecification < TCandidate > class.

using System;
using SmartCA.Infrastructure.Specifications;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Description;

namespace SmartCA.Model.Description
{
 public class DescriptionSpecification < TCandidate >
 : Specification < TCandidate > where TCandidate : IDescribable
 {
 public override bool IsSatisfiedBy(TCandidate candidate)
 {
 // The candidate must have a description
 return (!string.IsNullOrEmpty(candidate.Description));
 }
 }
}

c09.indd 302c09.indd 302 3/18/08 5:56:05 PM3/18/08 5:56:05 PM

Chapter 9: Construction Change Directives

303

 This code is almost the same as the other Description Specification implementations, but again, I am
using .NET Generics to make it reusable. I will compare the signature of this class to the non - Generic
class that would have been created. Here is the old way of implementing this:

public class ConstructionChangeDirectiveDescriptionSpecification :
Specification < ConstructionChangeDirective >

 Here is the new way:

public class DescriptionSpecification < TCandidate > : Specification < TCandidate > where
 TCandidate : IDescribable

 Again, just like the NumberSpecification < TCandidate > class, the trick here is using the constraints
on the TCandidate Generic parameter. By declaring that the TCandidate Generic parameter has to
implement the IDescribable interface, I now have strongly typed access to its properties (via the
 TCandidate candidate argument) in the IsSatisfied method. All I want is access to the
 Description property so that I can validate it, and the IDescribable interface gives me exactly that:

using System;

namespace SmartCA.Model.Description
{
 public interface IDescribable
 {
 string Description { get; set; }
 }
}

 The signature for the ConstructionChangeDirective class shows that it now implements this
interface:

public class ConstructionChangeDirective
 : Transmittal , IAggregateRoot , INumberedChild , IDescribable

 I also went back and refactored the DescriptionSpecification properties on the ProposalRequest
and RequestForInformation classes to use the new DescriptionSpecification < TCandidate >
class.

 The HasBeenTransformedToChangeOrder Property
 This property signifies whether the ConstructionChangeDirective has been converted to a
 ChangeOrder instance. If you remember from the beginning of the chapter, one of the interesting
characteristics of a Construction Change Directive is that once the Contractor agrees with the terms of
the Construction Change Directive, it can then be turned into a Change Order. This property represents
whether or not that transformation has happened.

 public bool HasBeenTransformedToChangeOrder
 {
 get { return (this.changeOrderKey != null); }
 }

c09.indd 303c09.indd 303 3/18/08 5:56:05 PM3/18/08 5:56:05 PM

Chapter 9: Construction Change Directives

304

 The way I am keeping track of this is by using the changeOrderKey field; this field will get populated
once the ConstructionChangeDirective has been transformed into a ChangeOrder , and it will
contain the value of the key for the ChangeOrder .

 The Validate Method
 Taking advantage of the mini - validation framework that was built in the last chapter, here is the
 Validate method override for the ConstructionChangeDirective class:

 protected override void Validate()
 {
 if (!this.numberSpecification.IsSatisfiedBy(this))
 {
 this.AddBrokenRule(
 NumberedProjectChildrenRuleMessageKeys.InvalidNumber);
 }
 if (!(this.descriptionSpecification.IsSatisfiedBy(this)))
 {
 this.AddBrokenRule(
 DescriptionRuleMessageKeys.InvalidDescription);
 }
 if (this.contractor == null)
 {
 this.AddBrokenRule(

ConstructionChangeDirectiveRuleMessages.MessageKeys.InvalidContractor);
 }
 }

 You may notice in the code block above that I am now putting the rule constants classes with their
respective class families, that is, the description messages are now centralized in the
 DescriptionRuleMessageKeys class:

using System;

namespace SmartCA.Model.Description
{
 internal static class DescriptionRuleMessageKeys
 {
 public const string InvalidDescription =
 “Invalid Description property value”;
 }
}

 Here is the ConstructionChangeDirectiveRuleMessages class:

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.NumberedProjectChildren;
using SmartCA.Model.Description;

namespace SmartCA.Model.ConstructionChangeDirectives
{

c09.indd 304c09.indd 304 3/18/08 5:56:06 PM3/18/08 5:56:06 PM

Chapter 9: Construction Change Directives

305

 public class ConstructionChangeDirectiveRuleMessages
 : BrokenRuleMessages
 {
 internal static class MessageKeys
 {
 public const string InvalidContractor = “Must Have Contractor “ +
 “Assigned”;
 }

 protected override void PopulateMessages()
 {
 // Add the rule messages
 this.Messages.Add(DescriptionRuleMessageKeys.InvalidDescription,
 “The Construction Change Directive must have a description”);

 this.Messages.Add(MessageKeys.InvalidContractor,
 “The Construction Change Directive must have a Company assigned “ +
 “to the Contractor property.”);
 }
 }
}

 Just as in the last chapter, this class inherits from the BrokenRuleMessages class, and because of
this I am able to return an instance of it from the ConstructionChangeDirective class ’ s
 GetBrokenRuleMessages method override.

 The TransformToChangeOrder Method
 As mentioned already, this method essentially promoted the ConstructionChangeDirective up to a
 ChangeOrder instance:

 public ChangeOrder TransformToChangeOrder()
 {
 ChangeOrder co = null;

 // See if it has already been transformed into a
 // Change Order...it can only be changed once!
 if (!this.HasBeenTransformedToChangeOrder)
 {
 Project project = ProjectService.GetProject(this.ProjectKey);
 co = NumberedProjectChildFactory.CreateNumberedProjectChild
 < ChangeOrder > (project);
 co.AmountChanged = this.amountChanged;
 co.ArchitectSignatureDate = this.architectSignatureDate;
 co.ChangeType = this.changeType;
 co.Contractor = this.contractor;
 co.ContractorSignatureDate = this.contractorSignatureDate;
 co.Description = this.description;
 co.OwnerSignatureDate = this.ownerSignatureDate;
 co.PriceChangeDirection = this.priceChangeDirection;
 co.TimeChanged = this.timeChanged;
 co.TimeChangeDirection = this.timeChangeDirection;
 }

(continued)

c09.indd 305c09.indd 305 3/18/08 5:56:06 PM3/18/08 5:56:06 PM

Chapter 9: Construction Change Directives

306

 else
 {
 // It was already changed, so get the Change Order that it was
 // changed into
 co = ChangeOrderService.GetChangeOrder(this.changeOrderKey);
 }

 // Get the key of the Change Order
 this.changeOrderKey = co.Key;

 // Return the instance
 return co;
 }

 This method starts out by first testing whether the ConstructionChangeDirective has already been
transformed. If it has not, then a new instance is created, and if it has, then it uses the changeOrderKey
field to pass into the ChangeOrderService ’ s GetChangeOrder method to get the existing
 ChangeOrder instance.

 The interesting part about the method is where it has to create a new instance of the ChangeOrder .
Specifically, it uses a new Factory class to get a correctly initialized ChangeOrder instance with the
correct Number value applied to it. This class is the NumberedProjectChildFactory class.

 The NumberedProjectChildFactory Class
 The sole responsibility of this class is to create instances of classes that implement the
 INumberedProjectChild interface that are properly numbered:

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.RepositoryFramework;
using System.Collections.Generic;
using System.Linq;
using SmartCA.Model.Projects;

namespace SmartCA.Model.NumberedProjectChildren
{
 public static class NumberedProjectChildFactory
 {
 public static T CreateNumberedProjectChild < T > (Project project)
 where T : EntityBase, IAggregateRoot, INumberedProjectChild
 {
 // Initialize the NumberedProjectChild return value
 T newNumberedProjectChild = default(T);

 // Get the correct repository using the Repository Factory
 INumberedProjectChildRepository < T > repository =
 RepositoryFactory.GetRepository
 < INumberedProjectChildRepository < T > , T > ();

 // Get all of the items in the Aggregate from the FindBy method

(continued)

c09.indd 306c09.indd 306 3/18/08 5:56:06 PM3/18/08 5:56:06 PM

Chapter 9: Construction Change Directives

307

 IList < T > numberedProjectChildren = repository.FindBy(project);

 // Use LINQ to get the last numbered item in the list
 // and increment it by 1
 int newNumber = numberedProjectChildren.Last().Number + 1;

 // Create the instance, passing in the projectKey value as well
 // as the new number to the constructor of the INumberedProjectChild
 // instance, and then casting it to the correct type (T)
 newNumberedProjectChild = Activator.CreateInstance(typeof(T),
 new object[] { project.Key, newNumber }) as T;

 // Return the newly initialized object
 return newNumberedProjectChild;
 }
 }
}

 Notice that the CreateNumberedProjectChild method is a Generic method and that it is using
constraints on the Generic parameter T to ensure that the parameter is an EntityBase type that
implements the IAggregateRoot and INumberedProjectChild interfaces. It has to implement
 IAggregateRoot in order to have a repository associated with it, and it must implement the
 INumberedProjectChild interface in order to be able to call the FindBy(Project project)
method on the repository.

 The method starts out by declaring and initializing the newNumberedProjectChild
variable to its default value. It then uses the RepositoryFactory to get the correct
 INumberedProjectChildRepository instance. Once the repository is retrieved, then it uses it to get
the list of all items in the repository by Project. I next use a LINQ extension method (Last) on the
 List < T > class to find the last item in the list, then get the Number property of the item and add one to its
value to create the new number for the soon - to - be - created INumberedProjectChild instance. I then
use Reflection to create the INumberedProjectChild instance, and pass the new number value as well
as the Key value of the Project instance to the INumberedProjectChild instance ’ s constructor in the
 CreateInstance method. Finally, the newly created and initialized INumberedProjectChild instance,
represented by the newNumberedProjectChild variable, is returned.

 The Construction Change Directive
Repository Implementation

 After going over the IConstructionChangeDirectiveRepository interface in the Design section, it is
now time to show in code how the ConstructionChangeDirective class actually gets persisted to and
from the data store by the Construction Change Directive Repository. In this section, I will be writing the
code for the Construction Change Directive Repository.

 The BuildChildCallbacks Method
 Now that I have finished going over the IConstructionChangeDirectiveRepository interface,
it is time to build the ConstructionChangeDirective class. Again, most of the work is done in
the SqlCeRepositoryBase < T > class. If you have been following along, you know that from the
application ’ s Template Method pattern implementation that I have been using in the Repositories

c09.indd 307c09.indd 307 3/18/08 5:56:07 PM3/18/08 5:56:07 PM

Chapter 9: Construction Change Directives

308

for getting Entity Root instances, the BuildChildCallbacks method must be overridden in the
 ConstructionChangeDirectiveRepository .

 #region BuildChildCallbacks

 protected override void BuildChildCallbacks()
 {
 this.ChildCallbacks.Add(
 ProposalRequestFactory.FieldNames.ProjectContactId,
 this.AppendTo);
 this.ChildCallbacks.Add(
 ProposalRequestFactory.FieldNames.EmployeeId,
 this.AppendFrom);
 this.ChildCallbacks.Add(CompanyFactory.FieldNames.CompanyId,
 this.AppendContractor);
 base.BuildChildCallbacks();
 }

 #endregion

 There is nothing really new in this method; it is just following the same pattern as laid out in
earlier chapters.

 The AppendTo Callback
 private void AppendTo(ConstructionChangeDirective ccd,
 object toProjectContactKey)
 {
 ccd.To = ProjectService.GetProjectContact(
 ccd.ProjectKey, toProjectContactKey);
 }

 Again, this method is very similar to the other AppendTo methods from some of the other Repositories.

 The AppendFrom Callback
 private void AppendFrom(ConstructionChangeDirective ccd,
 object fromEmployeeKey)
 {
 ccd.From =
 EmployeeService.GetEmployee(fromEmployeeKey);
 }

 Same thing here with the AppendFrom method—it is nice that all of this stuff is already built for me!

The AppendContractor Callback
 The last entry made in the ChildCallbacks dictionary is for the AppendContractor method. Thanks
to the CompanyService class ’ s GetCompany method, this method ’ s code is also very simple:

 private void AppendContractor(ConstructionChangeDirective ccd,
 object contractorKey)
 {
 ccd.Contractor = CompanyService.GetCompany(contractorKey);
 }

c09.indd 308c09.indd 308 3/18/08 5:56:07 PM3/18/08 5:56:07 PM

Chapter 9: Construction Change Directives

309

 The FindBy Method
 I talked about refactoring this method in the last chapter. The same code is repeated for it in different
repositories, so here is the newly refactored method.

 public IList < ConstructionChangeDirective > FindBy(Project project)
 {
 return
 NumberedProjectChildRepositoryHelper.FindBy
 < ConstructionChangeDirective > (this, project);
 }

 As you can see, all of the functionality of the method has been factored out into the
 NumberedProjectChildRepositoryHelper class. This class is a static class with one Generic
method, FindBy :

using System;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using System.Text;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.NumberedProjectChildren;

namespace SmartCA.Infrastructure.Repositories.NumberedProjectChildren
{
 public static class NumberedProjectChildRepositoryHelper
 {
 public static IList < T > FindBy < T > (SqlCeRepositoryBase < T > repository,
 Project project) where T : IAggregateRoot, INumberedProjectChild
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(repository.BaseQuery);
 builder.Append(string.Format(“ WHERE ProjectID = ‘{0}’;”,
 project.Key));
 return repository.BuildEntitiesFromSql(builder);
 }
 }
}

 This code looks pretty similar to the CreateNumberedProjectChild method of the
 NumberedProjectChildFactory class. They are both Generic methods and make heavy use of
constraints, and both are constraining the Generic parameter to implement the IAggregateRoot
and INumberedProjectChild interfaces.

 This method actually takes an instance of the SqlCeRepositoryBase < T > class, as well as a Project
instance. The body of the method should look pretty familiar; it is just factoring out the code that would
have been in the ConstructionChangeDirectiveRepository implementation. This method was
made possible by the SqlCeRepositoryBase < T > instance, an argument of the method, and this pattern
is known as inversion of control.

c09.indd 309c09.indd 309 3/18/08 5:56:07 PM3/18/08 5:56:07 PM

Chapter 9: Construction Change Directives

310

 Unit of Work Implementation
 Following the same steps that I have shown before to implement the Unit of Work pattern, I now need
to override the PersistNewItem(ConstructionChangeDirective item) and
PersistUpdatedItem(ConstructionChangeDirective item) methods.

The PersistNewItem Method
 The first method override for the ConstructionChangeDirective ’ s Unit of Work implementation is
the PersistNewItem method.

 protected override void PersistNewItem(ConstructionChangeDirective item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(string.Format(“INSERT INTO ConstructionChangeDirective
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},
{18},{19},{20},{21},{22},{23},{24},{25},{26},{27},{28},{29}) “,

ConstructionChangeDirectiveFactory.FieldNames.ConstructionChangeDirectiveId,
 ProjectFactory.FieldNames.ProjectId,
ConstructionChangeDirectiveFactory.FieldNames.ConstructionChangeDirectiveNumber,
 TransmittalFactory.FieldNames.TransmittalDate,
 ProjectFactory.FieldNames.ProjectContactId,
 EmployeeFactory.FieldNames.EmployeeId,
 TransmittalFactory.FieldNames.TotalPages,
 TransmittalFactory.FieldNames.DeliveryMethod,
 TransmittalFactory.FieldNames.OtherDeliveryMethod,
 TransmittalFactory.FieldNames.PhaseNumber,
 TransmittalFactory.FieldNames.Reimbursable,
 TransmittalFactory.FieldNames.Final,
 ConstructionChangeDirectiveFactory.FieldNames.IssueDate,
 CompanyFactory.FieldNames.CompanyId,
 ConstructionChangeDirectiveFactory.FieldNames.Description,
 ConstructionChangeDirectiveFactory.FieldNames.Attachment,
 ConstructionChangeDirectiveFactory.FieldNames.Reason,
 ConstructionChangeDirectiveFactory.FieldNames.Initiator,
 ConstructionChangeDirectiveFactory.FieldNames.Cause,
 ConstructionChangeDirectiveFactory.FieldNames.Origin,
 ConstructionChangeDirectiveFactory.FieldNames.Remarks,
 TransmittalFactory.FieldNames.TransmittalRemarks,
 ConstructionChangeDirectiveFactory.FieldNames.PriceChangeType,
ConstructionChangeDirectiveFactory.FieldNames.PriceChangeTypeDirection,
 ConstructionChangeDirectiveFactory.FieldNames.AmountChanged,
 ConstructionChangeDirectiveFactory.FieldNames.TimeChangeDirection,
 ConstructionChangeDirectiveFactory.FieldNames.TimeChangedDays,
 ConstructionChangeDirectiveFactory.FieldNames.OwnerSignatureDate,
ConstructionChangeDirectiveFactory.FieldNames.ArchitectSignatureDate,
ConstructionChangeDirectiveFactory.FieldNames.ContractorSignatureDate
));
 builder.Append(string.Format(“VALUES
({0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},{17},
{18},{19},{20},{21},{22},{23},{24},{25},{26},{27},{28},{29});”,
 DataHelper.GetSqlValue(item.Key),
 DataHelper.GetSqlValue(item.ProjectKey),
 DataHelper.GetSqlValue(item.Number),

c09.indd 310c09.indd 310 3/18/08 5:56:08 PM3/18/08 5:56:08 PM

Chapter 9: Construction Change Directives

311

 DataHelper.GetSqlValue(item.TransmittalDate),
 DataHelper.GetSqlValue(item.To.Key),
 DataHelper.GetSqlValue(item.From.Key),
 DataHelper.GetSqlValue(item.TotalPages),
 DataHelper.GetSqlValue(item.DeliveryMethod),
 DataHelper.GetSqlValue(item.OtherDeliveryMethod),
 DataHelper.GetSqlValue(item.PhaseNumber),
 DataHelper.GetSqlValue(item.Reimbursable),
 DataHelper.GetSqlValue(item.Final),
 DataHelper.GetSqlValue(item.IssueDate),
 DataHelper.GetSqlValue(item.Contractor.Key),
 DataHelper.GetSqlValue(item.Description),
 DataHelper.GetSqlValue(item.Attachment),
 DataHelper.GetSqlValue(item.Reason),
 DataHelper.GetSqlValue(item.Initiator),
 DataHelper.GetSqlValue(item.Cause),
 DataHelper.GetSqlValue(item.Origin),
 DataHelper.GetSqlValue(item.Remarks),
 DataHelper.GetSqlValue(item.TransmittalRemarks),
 DataHelper.GetSqlValue(item.ChangeType),
 DataHelper.GetSqlValue(item.PriceChangeDirection),
 DataHelper.GetSqlValue(item.AmountChanged),
 DataHelper.GetSqlValue(item.TimeChangeDirection),
 DataHelper.GetSqlValue(item.TimeChanged),
 DataHelper.GetSqlValue(item.OwnerSignatureDate),
 DataHelper.GetSqlValue(item.ArchitectSignatureDate),
 DataHelper.GetSqlValue(item.ContractorSignatureDate)));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects
 this.InsertCopyToList(item);
 }

 The code builds up a large insert statement composed of the values from the
 ConstructionChangeDirective instance and then executes the query using the Microsoft Enterprise
Library ’ s Database object. After the main insert statement has been executed, I then need to insert the
 CopyTo instances for the ConstructionChangeDirective .

 PersistUpdatedItem
 The PersistUpdatedItem method first does an update to the ConstructionChangeDirective table:

 protected override void PersistUpdatedItem(ConstructionChangeDirective item)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“UPDATE ConstructionChangeDirective SET “);

 builder.Append(string.Format(“{0} = {1}”,

ConstructionChangeDirectiveFactory.FieldNames.ConstructionChangeDirectiveNumber,
 DataHelper.GetSqlValue(item.Number)));

(continued)

c09.indd 311c09.indd 311 3/18/08 5:56:08 PM3/18/08 5:56:08 PM

Chapter 9: Construction Change Directives

312

 builder.Append(string.Format(“,{0} = {1}”,
 TransmittalFactory.FieldNames.TransmittalDate,
 DataHelper.GetSqlValue(item.TransmittalDate)));

 builder.Append(string.Format(“,{0} = {1}”,
 ProjectFactory.FieldNames.ProjectContactId,
 DataHelper.GetSqlValue(item.To.Key)));

 builder.Append(string.Format(“,{0} = {1}”,
 EmployeeFactory.FieldNames.EmployeeId,
 DataHelper.GetSqlValue(item.From.Key)));

 builder.Append(string.Format(“,{0} = {1}”,
 TransmittalFactory.FieldNames.TotalPages,
 DataHelper.GetSqlValue(item.TotalPages)));

 builder.Append(string.Format(“,{0} = {1}”,
 TransmittalFactory.FieldNames.DeliveryMethod,
 DataHelper.GetSqlValue(item.DeliveryMethod)));

 builder.Append(string.Format(“,{0} = {1}”,
 TransmittalFactory.FieldNames.OtherDeliveryMethod,
 DataHelper.GetSqlValue(item.OtherDeliveryMethod)));

 /***/

 builder.Append(string.Format(“,{0} = {1}”,
 ConstructionChangeDirectiveFactory.FieldNames.PriceChangeType,
 DataHelper.GetSqlValue(item.ChangeType)));

 builder.Append(string.Format(“,{0} = {1}”,

ConstructionChangeDirectiveFactory.FieldNames.PriceChangeTypeDirection,
 DataHelper.GetSqlValue(item.PriceChangeDirection)));

 builder.Append(string.Format(“,{0} = {1}”,
 ConstructionChangeDirectiveFactory.FieldNames.AmountChanged,
 DataHelper.GetSqlValue(item.AmountChanged)));

 builder.Append(string.Format(“,{0} = {1}”,
 ConstructionChangeDirectiveFactory.FieldNames.TimeChangeDirection,
 DataHelper.GetSqlValue(item.TimeChangeDirection)));

 builder.Append(string.Format(“,{0} = {1}”,
 ConstructionChangeDirectiveFactory.FieldNames.TimeChangedDays,
 DataHelper.GetSqlValue(item.TimeChanged)));

 builder.Append(string.Format(“,{0} = {1}”,
 ConstructionChangeDirectiveFactory.FieldNames.OwnerSignatureDate,
 DataHelper.GetSqlValue(item.OwnerSignatureDate)));

 builder.Append(string.Format(“,{0} = {1}”,

(continued)

c09.indd 312c09.indd 312 3/18/08 5:56:08 PM3/18/08 5:56:08 PM

Chapter 9: Construction Change Directives

313

ConstructionChangeDirectiveFactory.FieldNames.ArchitectSignatureDate,
 DataHelper.GetSqlValue(item.ArchitectSignatureDate)));

 builder.Append(string.Format(“,{0} = {1}”,

ConstructionChangeDirectiveFactory.FieldNames.ContractorSignatureDate,
 DataHelper.GetSqlValue(item.ContractorSignatureDate)));

 builder.Append(“ “);
 builder.Append(this.BuildBaseWhereClause(item.Key));

 this.Database.ExecuteNonQuery(
 this.Database.GetSqlStringCommand(builder.ToString()));

 // Now do the child objects

 // First, delete the existing ones
 this.DeleteCopyToList(item);

 // Now, add the current ones
 this.InsertCopyToList(item);
 }

 I have omitted several lines of repetitive code building the SQL update statement in the middle of the
code in order to try to save you from the boring code.

 The second part of the method then uses the DeleteCopyToList helper method to delete all of the
 CopyTo child objects of the Construction Change Directive, and then uses the InsertCopyToList
helper method to add the existing CopyTo child objects from the Construction Change Directive to
the database.

 The Construction Change Directive
Service Implementation

 Like the other Service classes shown in the domain model so far, the
 ConstructionChangeDirectiveService class is responsible for retrieving and wrapping the methods
of its associated Repository interface, in this case the IConstructionChangeDirectiveRepository
instance.

using System;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.RepositoryFramework;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using System.Linq;

namespace SmartCA.Model.ConstructionChangeDirectives
{
 public class ConstructionChangeDirectiveService

(continued)

c09.indd 313c09.indd 313 3/18/08 5:56:09 PM3/18/08 5:56:09 PM

Chapter 9: Construction Change Directives

314

 {
 private static IConstructionChangeDirectiveRepository repository;
 private static IUnitOfWork unitOfWork;

 static ConstructionChangeDirectiveService()
 {
 ConstructionChangeDirectiveService.unitOfWork = new UnitOfWork();
 ConstructionChangeDirectiveService.repository =
 RepositoryFactory.GetRepository
 < IConstructionChangeDirectiveRepository,
 ConstructionChangeDirective > (
 ConstructionChangeDirectiveService.unitOfWork);
 }

 public static IList < ConstructionChangeDirective >
 GetConstructionChangeDirectives(Project project)
 {
 return
 ConstructionChangeDirectiveService.repository.FindBy(
 project);
 }

 public static void SaveConstructionChangeDirective(
 ConstructionChangeDirective ccd)
 {
 ConstructionChangeDirectiveService.repository[ccd.Key] = ccd;
 ConstructionChangeDirectiveService.unitOfWork.Commit();
 }
 }
}

 These are the only methods needed for now, but others could easily be added later, such as a method for
removing Construction Change Directives.

 The Construction Change Directive ViewModel Class
 Following the same patterns for all ViewModel classes as before, the
 ConstructionChangeDirectiveViewModel class adapts the Construction Change Directive
Aggregate from the domain model to the UI. Just like the ProposalRequestViewModel class, it
inherits from the TransmittalViewModel < T > class introduced previously:

using System;
using SmartCA.Model.ConstructionChangeDirectives;
using System.Collections.Generic;
using SmartCA.Model.Projects;
using SmartCA.Model.Employees;
using SmartCA.Model.Companies;
using SmartCA.Application;
using SmartCA.Infrastructure.UI;
using SmartCA.Infrastructure.DomainBase;

(continued)

c09.indd 314c09.indd 314 3/18/08 5:56:09 PM3/18/08 5:56:09 PM

Chapter 9: Construction Change Directives

315

using SmartCA.Model.NumberedProjectChildren;

namespace SmartCA.Presentation.ViewModels
{
 public class ConstructionChangeDirectiveViewModel :
 TransmittalViewModel < ConstructionChangeDirective >

 The Constructor
 Here are the constructors for the ConstructionChangeDirectiveViewModel class:

 #region Constructors

 public ConstructionChangeDirectiveViewModel()
 : this(null)
 {
 }

 public ConstructionChangeDirectiveViewModel(IView view)
 : base(view)
 {
 this.toList = UserSession.CurrentProject.Contacts;
 this.fromList = EmployeeService.GetEmployees();
 this.contractors = CompanyService.GetAllCompanies();
 }

 #endregion

 On the surface, this looks to be just like all of the other View Model implementations so far, but I have
actually done some major refactoring to all of the ViewModel classes that I will show you shortly.

 The Properties
 All of the properties in the ConstructionChangeDirectiveViewModel class are read - only:

 #region Properties

 public IList < ProjectContact > ToList
 {
 get { return this.toList; }
 }

 public IList < Employee > FromList
 {
 get { return this.fromList; }
 }

 public IList < Company > Contractors
 {
 get { return this.contractors; }
 }

 #endregion

c09.indd 315c09.indd 315 3/18/08 5:56:10 PM3/18/08 5:56:10 PM

Chapter 9: Construction Change Directives

316

 One thing you may have picked up on already is that there is no
 CurrentConstructionChangeDirective property in this class. That is due to the intense
refactoring of the View Model base classes that I just did!

 The ViewModel Class Refactoring
 I have refactored a lot of the functionality out of the ViewModel class and into a new class called the
 EditableViewModel < T > class. Here is what the new ViewModel class looks like:

using System;

namespace SmartCA.Infrastructure.UI
{
 public abstract class ViewModel
 {
 private IView view;
 private DelegateCommand cancelCommand;

 protected ViewModel()
 : this(null)
 {
 }

 protected ViewModel(IView view)
 {
 this.view = view;
 this.cancelCommand = new DelegateCommand(this.CancelCommandHandler);
 }

 public DelegateCommand CancelCommand
 {
 get { return this.cancelCommand; }
 }

 protected virtual void CancelCommandHandler(object sender, EventArgs e)
 {
 this.CloseView();
 }

 protected void CloseView()
 {
 if (this.view != null)
 {
 this.view.Close();
 }
 }
 }
}

 All I have really done here is pared this class down to what it used to be like back in Chapter 3 , although
it no longer implements the INotifyPropertyChanged interface. This is because the intent of this class
is to serve only enough functionality for read - only user interfaces, such as dialog boxes. The
 SelectProjectView is a perfect example of the read - only user interface that I am talking about.

c09.indd 316c09.indd 316 3/18/08 5:56:10 PM3/18/08 5:56:10 PM

Chapter 9: Construction Change Directives

317

 The EditableViewModel < T > Class
 The next step was to put all of the functionality for editing objects into the EditableViewModel < T >
class. It extends the ViewModel class, and adds a lot more functionality to it:

using System;
using SmartCA.Infrastructure.DomainBase;
using System.Collections.ObjectModel;
using System.Collections.Generic;
using System.Windows.Data;
using System.ComponentModel;

namespace SmartCA.Infrastructure.UI
{
 public abstract class EditableViewModel < T >
 : ViewModel, INotifyPropertyChanged where T : EntityBase

 The first thing to note is that it is now a Generic class with a constraint on the type passed in. I had so much
success with the Generic TransmittalViewModel < T > class that I decided to embrace that concept here!

 The next thing to note about the EditableViewModel < T > class is that it is extending the ViewModel
class and implementing the INotifyPropertyChanged interface. It is also responsible for maintaining
the state of the current Entity that is being edited. This is done via the ObjectState enumeration:

 #region ObjectState Enum

 public enum ObjectState
 {
 New,
 Existing,
 Deleted
 }

 #endregion

 The Constructors and Private Fields
 Here are the private fields and constructors for the class:

 #region Private Fields

 private ObjectState currentObjectState;
 private IList < BrokenRule > brokenRules;
 private T currentEntity;
 private List < T > entitiesList;
 private CollectionView entitiesView;
 private DelegateCommand saveCommand;
 private DelegateCommand newCommand;

 #endregion

 #region Constructors

 protected EditableViewModel()

(continued)

c09.indd 317c09.indd 317 3/18/08 5:56:10 PM3/18/08 5:56:10 PM

Chapter 9: Construction Change Directives

318

 : this(null)
 {
 }

 protected EditableViewModel(IView view)
 : base(view)
 {
 this.currentObjectState = ObjectState.Existing;
 this.brokenRules = new List < BrokenRule > ();
 this.currentEntity = default(T);
 this.entitiesList = this.GetEntitiesList();
 this.entitiesView = new CollectionView(this.entitiesList);
 this.saveCommand = new DelegateCommand(this.SaveCommandHandler);
 this.newCommand = new DelegateCommand(this.NewCommandHandler);
 }

 #endregion

 Notice is that I am fully embracing the concept of treating Broken Rules as a first - class citizen in this
class. The derived ViewModel classes no longer have to worry about them as this class will take care of
all of that infrastructure - type code. The next important concept that should jump out at you is that I have
made the current object being edited and the list of available objects to edit generic enough to fit into
this class. This really opens up a lot of possibilities for code reduction as you will see later in the derived
classes. Also, since I know that every object I an editing is going to have a Save command and a New
command, I have centralized them into this class as well.

 The interesting thing to note about the constructor is how it initializes the entitiesList private field. It
is calling the GetEntitiesList method, which is actually an abstract method:

protected abstract List < T > GetEntitiesList();

 This is great; I can now let the derived ViewModel class know how to get their list of Entities. I love the
Template Method pattern; it just gives me so much flexibility, especially when combined with Generics!

The Properties
 I will only show the read - write properties here. Suffice it to say that all private fields not shown here are
exposed as read - only properties.

The CurrentObjectState Property

 This property represents the state of the object currently being edited:

 public ObjectState CurrentObjectState
 {
 get { return this.currentObjectState; }
 set
 {
 if (this.currentObjectState != value)
 {
 this.currentObjectState = value;
 this.OnPropertyChanged(

(continued)

c09.indd 318c09.indd 318 3/18/08 5:56:10 PM3/18/08 5:56:10 PM

Chapter 9: Construction Change Directives

319

 EditableViewModel < T > .currentObjectStatePropertyName);
 }
 }
 }

 The interesting part of this property is its setter. The setter is actually raising the PropertyChanged
event if the state of the current object has changed. This is important for the WPF UI, as WPF is smart
about knowing how to handle this event automatically.

The CurrentEntity Property

 This property used to be in the derived classes, and you probably knew it before from such names as
 CurrentCompany , CurrentTransmittal , and so on. Now it has been made appropriately generic to
eliminate that code in the derived classes:

 public T CurrentEntity
 {
 get { return this.currentEntity; }
 set
 {
 if (this.currentEntity != value)
 {
 this.currentEntity = value;
 this.SetCurrentEntity(value);
 this.saveCommand.IsEnabled = (this.currentEntity != null);
 this.OnPropertyChanged(
 EditableViewModel < T > .currentEntityPropertyName);
 }
 }
 }

 The property setter again makes use of another abstract method, the SetCurrentEntity method:

protected abstract void SetCurrentEntity(T entity);

 This method is made abstract in order to give the derived class some freedom on what must happen
when the CurrentEntity being edited changes. It may need to do things such as create new mutable
objects based on the values of some of the Value objects in the CurrentEntity .

 The last thing the property setter does is to raise the PropertyChanged event to let the UI know that it
has a new object to display and edit now.

 The ValidateCurrentObject Method
 This method makes use of the previous refactoring on the EntityBase class to keep track of
Broken Rules:

 #region ValidateCurrentObject

 protected bool ValidateCurrentObject()
 {
 this.brokenRules.Clear();

(continued)

c09.indd 319c09.indd 319 3/18/08 5:56:11 PM3/18/08 5:56:11 PM

Chapter 9: Construction Change Directives

320

 ReadOnlyCollection < BrokenRule > currentObjectBrokenRules =
 this.currentEntity.GetBrokenRules();
 foreach (BrokenRule rule in currentObjectBrokenRules)
 {
 this.brokenRules.Add(rule);
 }
 return (this.brokenRules.Count == 0);
 }

 #endregion

 The first thing it does is to clear the brokenRules private field. It then asks the CurrentEntity for all
of its Broken Rules (via the functionality in the EntityBase class) and then adds the Broken Rules
returned by the CurrentEntity to the brokenRules private field. Now, the UI can bind to the
 BrokenRules property and do whatever it wants with that property when the property changes. The
last thing the method does is to return a Boolean value indicating whether there were any Broken Rules.

 The Command Handler Methods
 In order to separate New and Save algorithms from the derived classes, the SaveCommandHandler and
 NewCommandHandler methods have been placed into this class.

The NewCommandHandler method
 Here is the code for the NewCommandHandler method:

 protected virtual void NewCommandHandler(object sender, EventArgs e)
 {
 this.CurrentObjectState = ObjectState.New;
 this.brokenRules.Clear();
 this.entitiesList.Add(this.BuildNewEntity());
 this.currentEntity = null;
 this.entitiesView.Refresh();
 this.entitiesView.MoveCurrentToLast();
 }

 As you can see, this method does a lot of generic housekeeping duties, such as changing the state of the
object being edited, clearing the Broken Rules, and resetting the CurrentEntity . It also uses another
abstract class to build the new Entity that is being added:

protected abstract T BuildNewEntity();

 This lets the derived class do whatever it needs to do to build the Entity, as long as the Entity conforms
to the constraints placed on the generic T parameter.

 The last thing the method does is to refresh the CollectionView and make sure that the new Entity is
the last item in the CollectionView .

The SaveCommandHandler Method
 This method is responsible for validating and saving the CurrentEntity instance.

(continued)

c09.indd 320c09.indd 320 3/18/08 5:56:11 PM3/18/08 5:56:11 PM

Chapter 9: Construction Change Directives

321

 protected void SaveCommandHandler(object sender, EventArgs e)
 {
 if (this.ValidateCurrentObject())
 {
 this.SaveCurrentEntity(sender, e);
 this.CurrentObjectState = ObjectState.Existing;
 }
 }

 It begins by validating the CurrentEntity via the ValidateCurrentObject method. If that validation
passes, it then calls another abstract method, SaveCurrentEntity , in order to save the Entity.

protected abstract void SaveCurrentEntity(object sender, EventArgs e);

 Again, I am delegating down to the derived class here to figure out what it needs to do to save the Entity.

 The last thing the method does is to change the state of CurrentEntity to that of Existing.

 The Newly Refactored TransmittalViewModel Class
 The signature of this class has changed a little bit; here is what it looks like now:

using System;
using SmartCA.Infrastructure.UI;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Model.Transmittals;
using SmartCA.Model.Submittals;
using System.Collections.Generic;
using SmartCA.Model;
using System.ComponentModel;
using System.Windows.Data;
using System.Collections.ObjectModel;

namespace SmartCA.Presentation.ViewModels
{
 public abstract class TransmittalViewModel < T > : EditableViewModel < T >
 where T : EntityBase, ITransmittal

 Instead of inheriting from the ViewModel class, it now inherits from the EditableViewModel < T > class.

The Constructor and Private Fields
 The number of private fields and the amount of code in the constructor have been significantly reduced:

 #region Private Fields

 private IList < SpecificationSection > specificationSections;
 private IList < ItemStatus > itemStatuses;
 private BindingList < MutableCopyTo > mutableCopyToList;
 private CollectionView deliveryMethods;
 private IList < Discipline > disciplines;

(continued)

c09.indd 321c09.indd 321 3/18/08 5:56:11 PM3/18/08 5:56:11 PM

Chapter 9: Construction Change Directives

322

 private DelegateCommand deleteCopyToCommand;

 #endregion

 #region Constructors

 public TransmittalViewModel()
 : this(null)
 {
 }

 public TransmittalViewModel(IView view)
 : base(view)
 {
 this.specificationSections
 = SubmittalService.GetSpecificationSections();
 this.itemStatuses = SubmittalService.GetItemStatuses();
 this.mutableCopyToList = new BindingList < MutableCopyTo > ();
 this.deliveryMethods = new CollectionView(
 Enum.GetNames(typeof(Delivery)));
 this.disciplines = SubmittalService.GetDisciplines();
 this.deleteCopyToCommand =
 new DelegateCommand(this.DeleteCopyToCommandHandler);
 }

 #endregion

 As you can see, it is not doing anything really special. In fact, a lot of the code that would have been in
this constructor is now handled by the constructor in the base class, the EditableViewModel < T > class.

The Properties
 There is really nothing interesting to look at for the properties, they are all just read - only representations
of their respective private fields.

The NewCommandHandler Method
 This method has really been reduced:

 protected override void NewCommandHandler(object sender, EventArgs e)
 {
 this.mutableCopyToList.Clear();
 base.NewCommandHandler(sender, e);
 }

 It simply clears the mutableCopyToList private field and then calls the base method for
 NewCommandHandler .

 The SaveCurrentEntity Method Override
 This method takes care of the Transmittal - specific action of clearing and resetting the CopyTo list:

(continued)

c09.indd 322c09.indd 322 3/18/08 5:56:12 PM3/18/08 5:56:12 PM

Chapter 9: Construction Change Directives

323

 protected override void SaveCurrentEntity(object sender, EventArgs e)
 {
 this.CurrentEntity.CopyToList.Clear();
 foreach (MutableCopyTo copyTo in this.mutableCopyToList)
 {
 this.CurrentEntity.CopyToList.Add(copyTo.ToCopyTo());
 }
 }

 It does not need to do anything else, as the derived class will take care of actually saving the
 Transmittal .

 The SetCurrentEntity Method Override
 This method simply raises the PropertyChanged event for the Status property as well as calling down
to the PopulateTransmittalChildren method.

 protected override void SetCurrentEntity(T entity)
 {
 this.OnPropertyChanged(“Status”);
 this.PopulateTransmittalChildren();
 }

 The ConstructionChangeDirectiveViewModel Class Method Overrides
 Ok, it is time to get back to the ConstructionChangeDirectiveViewModel class! The last thing to look
at in this class is the methods that it needs to override from the base classes.

The BuildNewEntity Method Override
 This method makes use of the previously shown NumberedProjectChildFactory class to build a new
 ConstructionChangeDirective instance:

 protected override ConstructionChangeDirective BuildNewEntity()
 {
 return NumberedProjectChildFactory.CreateNumberedProjectChild
 < ConstructionChangeDirective > (UserSession.CurrentProject);
 }

 All it needs to do is to pass in the Project instance and specify that it wants a type of
 ConstructionChangeDirective returned.

The SaveCurrentEntity Method Override
 This method just needs to call the base method first, and then it simply calls its associated Service class
to save the ConstructionChangeDirective :

 protected override void SaveCurrentEntity(object sender, EventArgs e)
 {

 base.SaveCurrentEntity(sender, e);
 ConstructionChangeDirectiveService.SaveConstructionChangeDirective(
 this.CurrentEntity);
 }

c09.indd 323c09.indd 323 3/18/08 5:56:12 PM3/18/08 5:56:12 PM

Chapter 9: Construction Change Directives

324

 Notice how it is passing the CurrentEntity property value, and that value is coming from the base
class, but is typed as a ConstructionChangeDirective Man, I love Generics!

The GetEntitiesList Method Override
 The signature on this method is also typed properly, because of Generics again:

 protected override List < ConstructionChangeDirective > GetEntitiesList()
 {
 return new List < ConstructionChangeDirective > (

ConstructionChangeDirectiveService.GetConstructionChangeDirectives(
 UserSession.CurrentProject));
 }

 It simply delegates the ConstructionChangeDirectiveService class to get the list of
 ConstructionChangeDirective instances for the current Project.

 The Construction Change Directive View
 The View for Construction Change Directives is very similar to that seen in the past few chapters, where
the list of Construction Change Directives is on the left, and the currently selected Construction Change
Directive is on the right. Figure 9.5 shows what the form looks like at run time.

 Figure 9.5: Construction Change Directive View.

c09.indd 324c09.indd 324 3/18/08 5:56:12 PM3/18/08 5:56:12 PM

Chapter 9: Construction Change Directives

325

 One of the last things left to do in the UI is to hook up the BrokenRules property from the
 EditableViewModel < T > class to the UI. That could actually get pretty interesting, especially using WPF
Triggers. Again, I am focusing on the domain model here, so I am not going to go into that; I am just
going to suggest that the framework is there to do whatever you want to do with the BrokenRule
instances in the UI.

 Summary
 In this chapter, I introduced the concept of a Construction Change Directive in the construction industry,
and then I used that concept to model the Construction Change Directive Aggregate. As you may have
noticed, I did a ton of refactoring in this chapter. Most of the refactoring was focused on the various
 ViewModel classes. A lot of the refactoring was made possible by using interfaces and Generics together.
This proved to be quite a powerful combination in making the code base more maintainable, more
robust, and also in making the domain model that much richer.

c09.indd 325c09.indd 325 3/18/08 5:56:16 PM3/18/08 5:56:16 PM

c09.indd 326c09.indd 326 3/18/08 5:56:16 PM3/18/08 5:56:16 PM

 Synchronizing With
the Server

 In Chapter 1 , Introducing the Project: The SmartCA Application, I stated that one of the
requirements for the SmartCA application was that it must be offline capable. Now, when I say
offline capable, the best example that comes to mind is Microsoft Outlook. In Microsoft Outlook
versions 2003 and above, you can work connected to or disconnected from your email server and
still have a good user experience. During this chapter, I would like you to keep in mind how
Microsoft Outlook works in order to understand some of the design decisions presented later in
the chapter.

 The Problem
 Thanks to using a local data store on the client, the SmartCA is definitely offline capable. Now,
the challenge is to get it online and connected to the server. I am going to be calling this process of
connecting to the server and transferring application data back and forth the Synchronization
process.

 What the SmartCA application needs is an intelligent, service - based way of synchronizing its
data with the server. The user should not be bothered with any silly errors because they are not
connected to the network or the Internet, they should be able to do their work, and the application
should gracefully handle the transactions and pushing the data back and forth.

 The Design
 I also mentioned in Chapter 1 that I would be using Microsoft Synchronization Services for
ADO.NET for this synchronization, but I have since changed my mind. After analyzing the problem
domain further, I really feel that what the SmartCA application needs is a way to keep some type of
running log of all of the transactions that the user performs on the client domain model, and

c10.indd 327c10.indd 327 3/18/08 5:56:40 PM3/18/08 5:56:40 PM

Chapter 10: Synchronizing With the Server

328

then to send that in some message form to the server and have the server try to execute all of the messages
on its own domain model.

 Although Microsoft Synchronization Services for ADO.NET is a great piece of work, I did not feel it met
the requirements that I had. I really do not want to get backed into a low - level database replication
corner, and it seemed like that was really what Microsoft Synchronization Services for ADO.NET was
doing, although it is doing it in an n - tier way.

 Redesigning the Unit of Work
 The more I thought about it, the more I liked the idea of encapsulating all of the client - side transactions
into messages. I really want to make the synchronization a business - level process rather than a data - level
process. As it turns out, I have already implemented a pattern in the SmartCA application that will lend
itself very well to this type of architecture, and that is the Unit of Work pattern.

 So after coming to this conclusion, I have decided to refactor my Unit of Work implementation a little bit
in order to handle creating and storing transaction messages as it sends them to the various repositories
for processing.

 What is also needed is some type of process (or background thread) running that can take all of the
messages created by the Unit of Work instances and send them to the server, as well as taking messages
from the server and handing them to the SmartCA domain model.

 The diagram in Figure 10.1 shows the modification to the Unit of Work implementation that allows me
to use it for persisting transaction messages on the client:

UnitOfWork
Class

Fields
Properties

Methods

Commit

UnitOfWork

IUnitOfWork

RegisterAdded
RegisterChanged
RegisterRemoved

IUnitOfWork
Interface

Properties

Methods

Commit
RegisterAdded
RegisterChanged
RegisterRemoved

Key

Key

ClientTransactionRepository

ClientTransactionRepository

IClientTransactionRepository
Interface

Methods

Add
FindPending
GetLastSynchronization
SetLastSynchronization

 Figure 10.1: Unit of Work modifications.

c10.indd 328c10.indd 328 3/18/08 5:56:41 PM3/18/08 5:56:41 PM

Chapter 10: Synchronizing With the Server

329

 What this diagram shows is that a Key property has been added to the IUnitOfWork interface, and that
value represents a unique identifier for a Unit of Work. Also, the diagram shows a relationship to an
 IClientTransactionRepository , which implies that a Unit of Work message can be persisted. I will
talk more about the Client Transaction Repository implementation later in this chapter.

 The Refactored IUnitOfWork Interface
using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Infrastructure.Transactions;

namespace SmartCA.Infrastructure
{
 public interface IUnitOfWork
 {
 void RegisterAdded(EntityBase entity, IUnitOfWorkRepository repository);
 void RegisterChanged(EntityBase entity, IUnitOfWorkRepository repository);
 void RegisterRemoved(EntityBase entity, IUnitOfWorkRepository repository);
 void Commit();

 object Key { get; }
 IClientTransactionRepository ClientTransactionRepository { get; }

 }
}

 The new IClientTransactionRepository Interface
 Since I want to be flexible in how these messages are persisted, I have created an interface for the
repository, called the IClientTransactionRepository . This Repository interface contains all of the
methods necessary to save and retrieve client transactions.

using System;
using SmartCA.Infrastructure.DomainBase;
using System.Collections.Generic;

namespace SmartCA.Infrastructure.Transactions
{
 public interface IClientTransactionRepository
 {
 DateTime? GetLastSynchronization();
 void SetLastSynchronization(DateTime? lastSynchronization);
 void Add(ClientTransaction transaction);
 IList < ClientTransaction > FindPending();
 }
}

c10.indd 329c10.indd 329 3/18/08 5:56:41 PM3/18/08 5:56:41 PM

Chapter 10: Synchronizing With the Server

330

 The Transaction Class Implementations
 You may have noticed the reference to the ClientTransaction class in the
IClientTransactionRepository interface in the above code sample. For the purposes of synchroni-
zation, there are two types of transactions, Client Transactions and Server Transactions (see Figure 10.2).

Type

ClientTransaction
Class
 Transaction

Fields
Properties

Entity

Methods

ServerTransaction
Class
 Transaction

Fields
Properties

Contract

Methods

Transaction
Abstract Class
 EntityBase

Fields
Methods

TransactionType
Enum

Insert
Update
Delete

 Figure 10.2: The Transaction classes.

Synchronization
Server Proxy

SynchronizerSends Server Reference Data To Gets PendingTransactions From

Server Reference Data
Repository

Client Transaction
Service

Synchronization
Server

Client Transaction
Repository

Sends Client Transactions To /
Gets Reference Data From /

Gets Server Transactions From

 Figure 10.3: Synchronization strategy.

 Both of these types of Transactions inherit from the Transaction abstract class. Notice how the
 Transaction class only has to implement the IEntity interface and not inherit from the EntityBase
class. This works out well because although a Transaction is an Entity, it does not need all of the
functionality that the EntityBase class has, and therefore I can keep it lightweight.

 Designing the Synchronization
 Figure 10.3 is a drawing showing the different pieces involved in the SmartCA synchronization strategy.

 The diagram shows the pieces involved in getting transactions that happen on the client up to the server,
as well as getting reference data and transactions from the server down to the client. There is a lot going
on in this diagram, and many new classes will need to be added to support the new synchronization
functionality.

c10.indd 330c10.indd 330 3/18/08 5:56:42 PM3/18/08 5:56:42 PM

Chapter 10: Synchronizing With the Server

331

 Writing the Unit Tests
 In this section, I am going to show the tests for the IClientTransactionRepository interface, mainly
because it is this interface that is going to be called the most on the client whenever an IUnitOfWork
instance is going to commit a transaction.

 Very similarly to how I tested the other Repository interfaces, I have written a suite of unit tests that will
test an instance of the IClientTransactionRepository interface that is returned from the
 ClientTransactionRepositoryFactory (which I have not shown yet, but I will later in this chapter).

 The IClientTransactionRepositoryAddTest Method
 This method tests the process of adding a new ClientTransaction to the
 IClientTransactionRepository instance.

 /// < summary >
 ///A test for adding a Transaction
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void IClientTransactionRepositoryAddTest()
 {
 IClientTransactionRepository target =
 ClientTransactionRepositoryFactory.GetTransactionRepository();
 TransactionType type = TransactionType.Insert;
 Company entity = new Company();
 entity.Name = “Test 123”;
 object unitOfWorkKey = Guid.NewGuid();
 target.Add(new ClientTransaction(unitOfWorkKey, type, entity));
 }

 The method starts out by first getting an instance of the IClientTransactionRepository interface,
and it then builds up a ClientTransaction instance filled with a new Company (which is an IEntity)
instance, and then calls the Add method of the IClientTransactionRepository interface.

 The FindPendingTransactionsTest Method
 The purpose of this method is to test how the system finds all of the pending transactions on the client:

 /// < summary >
 /// A test for finding all of the pending transactions
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void FindPendingTransactionsTest()
 {
 // Make sure there is at least one pending transaction
 this.IClientTransactionRepositoryAddTest();

 // Get the pending transactions
 IClientTransactionRepository target =
 ClientTransactionRepositoryFactory.GetTransactionRepository();
 IList < ClientTransaction > transactions = target.FindPending();
 Assert.IsTrue(transactions.Count > 0);
 }

c10.indd 331c10.indd 331 3/18/08 5:56:42 PM3/18/08 5:56:42 PM

Chapter 10: Synchronizing With the Server

332

 This test starts out by first calling the IClientTransactionRepositoryAddTest method in order to
make sure that there is at least one Transaction that needs to be synchronized on the client. Next, it
makes the usual call to the factory to get the instance of the IClientTransactionRepository , and
then it calls the FindPending method to get the list of all pending transactions on the client. Finally, it
asserts that there is more than one pending transaction on the client.

 The SetLastSynchronizationTest Method
 This method is really simple; it tests how the system sets the last time that synchronization has occurred
on the client:

 /// < summary >
 ///A test for SetLastSynchronization
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void SetLastSynchronizationTest()
 {
 IClientTransactionRepository target =
 ClientTransactionRepositoryFactory.GetTransactionRepository();
 target.SetLastSynchronization(DateTime.Now);
 }

 The first line is the familiar call of getting the instance of the IClientTransactionRepository . The
next line simply calls the SetLastSynchronization method and passes in the current DateTime as
the argument.

 The GetLastSynchronizationTest Method
 This test method exercises and tests the GetLastSynchronization method of the
 IClientTransactionRepository interface:

 /// < summary >
 ///A test for GetLastSynchronization
 /// < /summary >
 [DeploymentItem(“SmartCA.sdf”), TestMethod()]
 public void GetLastSynchronizationTest()
 {
 IClientTransactionRepository target =
 ClientTransactionRepositoryFactory.GetTransactionRepository();
 target.SetLastSynchronization(DateTime.Now);
 DateTime? lastSynchronization = target.GetLastSynchronization();
 Assert.IsTrue(lastSynchronization.HasValue);
 Assert.IsTrue(DateTime.Now > lastSynchronization.Value);
 }

 It starts out with the familiar, by getting an instance of the IClientTransactionRepository instance.
It then calls the SetLastSynchronization method and passes in the current DateTime value to the
method. Next, it calls the GetLastSynchronization method to get the DateTime value of the last time
that the synchronization occurred, and then it makes sure that the synchronization DateTime value is in
the past.

c10.indd 332c10.indd 332 3/18/08 5:56:42 PM3/18/08 5:56:42 PM

Chapter 10: Synchronizing With the Server

333

 The Solution
 There really are two main parts to the synchronization solution. The first part is all of the changes
required to the Unit of Work implementation in order to support the saving of client transactions as
messages. The second part is everything that is involved in getting the client transactions up to the
server, and getting the server transactions and reference data from the server and into the client
application.

 I am splitting up the work in this fashion because the first part happens synchronously while a Unit of
Work is committing the changes to Entities, and the second part does not need to happen right away; it
can, and should, be an asynchronous operation. I say that it should be an asynchronous operation
because I do not want the synchronization to freeze the application while it is running; again, think
Microsoft Outlook here. This is why I chose to use a local database such as SQL Server CE in the first
place. It allows me to work happily in my client domain and not have to worry about the server, since
I can concern myself with the server during the synchronization process. Since the synchronization will
be happening without blocking the main thread, the user experience is not impacted nearly as much as it
would be if this synchronization were synchronous. The users can keep doing work with the application
and not have their screen freeze up. This is exactly how Microsoft Outlook 2003 and above behaves
when it synchronizes with a Microsoft Exchange mail server.

 Unit of Work Refactoring
 For the synchronization, I need to know what has changed on the client, without having to resort to
doing a lot of low - level database queries and comparisons. As I was thinking about how to do this,
I realized that I already have code that knows all about what changes are being persisted on the client,
and that is my Unit of Work implementation.

 The Commit Method
 The code that knows about changes being persisted on the client is the Commit method. In that method,
I already iterate through everything that has been changed, added, and deleted in the current Unit of
Work transaction.

 public void Commit()
 {
 using (TransactionScope scope = new TransactionScope())
 {
 foreach (EntityBase entity in this.deletedEntities.Keys)
 {
 this.deletedEntities[entity].PersistDeletedItem(entity);
 }

 foreach (EntityBase entity in this.addedEntities.Keys)
 {
 this.addedEntities[entity].PersistDeletedItem(entity);
 }

 foreach (EntityBase entity in this.changedEntities.Keys)
 {
 this.changedEntities[entity].PersistDeletedItem(entity);

(continued)

c10.indd 333c10.indd 333 3/18/08 5:56:42 PM3/18/08 5:56:42 PM

Chapter 10: Synchronizing With the Server

334

 }

 scope.Complete();
 }

 this.deletedEntities.Clear();
 this.addedEntities.Clear();
 this.changedEntities.Clear();
 }
I can simply add more code to this method to save these transactions as messages
that need to be sent to the server for processing:
 public void Commit()
 {
 using (TransactionScope scope = new TransactionScope())
 {
 foreach (EntityBase entity in this.deletedEntities.Keys)
 {
 this.deletedEntities[entity].PersistDeletedItem(entity);

 this.clientTransactionRepository.Add(
 new ClientTransaction(this.key,
 TransactionType.Delete, entity));

 }

 foreach (EntityBase entity in this.addedEntities.Keys)
 {
 this.addedEntities[entity].PersistNewItem(entity);

 this.clientTransactionRepository.Add(
 new ClientTransaction(this.key,
 TransactionType.Insert, entity));

 }

 foreach (EntityBase entity in this.changedEntities.Keys)
 {
 this.changedEntities[entity].PersistUpdatedItem(entity);

 this.clientTransactionRepository.Add(
 new ClientTransaction(this.key,
 TransactionType.Update, entity));

 }

 scope.Complete();
 }

 this.deletedEntities.Clear();
 this.addedEntities.Clear();
 this.changedEntities.Clear();

 this.key = Guid.NewGuid();
 }

 In the new code, you should notice a new Repository reference, the clientTransactionRepository
class - level variable, and a new class - level variable, the key variable.

(continued)

c10.indd 334c10.indd 334 3/18/08 5:56:43 PM3/18/08 5:56:43 PM

Chapter 10: Synchronizing With the Server

335

 The UnitOfWork Key
 The key variable is the primary identifier for the transaction, and it lets me know what operations
in the transaction are tied together. The key variable is a System.Guid data type. Notice how when the
transaction is committed and all of the dictionaries are emptied, I assign the key variable a new value.
This signals that the UnitOfWork is cleared and ready to start up a new transaction.

 New Properties and Changes to the Constructor
 Here are the private variables in the UnitOfWork class:

 private Guid key;
 private IClientTransactionRepository clientTransactionRepository;

 private Dictionary < EntityBase, IUnitOfWorkRepository > addedEntities;
 private Dictionary < EntityBase, IUnitOfWorkRepository > changedEntities;
 private Dictionary < EntityBase, IUnitOfWorkRepository > deletedEntities;

 Here are the new properties exposing the new private fields as read - only:

 public object Key
 {
 get { return this.key; }
 }

 public IClientTransactionRepository ClientTransactionRepository
 {
 get { return this.clientTransactionRepository; }
 }

 If you remember from the design earlier in the chapter, these properties were already added to the
 IUnitOfWork interface, and they are just being implemented here.

 The Transaction Class Implementations
 In this section, I will take a look at the implementations for the Transaction , ClientTransaction , and
 ServerTransaction classes.

The Transaction Class
 Both the ClientTransaction and ServerTransaction classes inherit from the Transaction abstract
class, which itself only holds two properties, Type and Key . The Type property represents the three
different types of transaction operations, Insert, Update, and Delete, and the Key property represents the
unique identifier for the Transaction.

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Infrastructure.Transactions
{
 public abstract class Transaction : IEntity
 {
 private object key;
 private TransactionType type;

(continued)

c10.indd 335c10.indd 335 3/18/08 5:56:43 PM3/18/08 5:56:43 PM

Chapter 10: Synchronizing With the Server

336

 protected Transaction(object key, TransactionType type)
 {
 this.key = key;
 if (this.key == null)
 {
 this.key = Guid.NewGuid();
 }
 this.type = type;
 }

 public TransactionType Type
 {
 get { return this.type; }
 }

 #region IEntity Members

 public object Key
 {
 get { return this.key; }
 }

 #endregion

 #region Equality Tests

 /// < summary >
 /// Determines whether the specified transaction is equal to the
 /// current instance.
 /// < /summary >
 /// < param name=”entity” > An < see cref=”System.Object”/ > that
 /// will be compared to the current instance. < /param >
 /// < returns > True if the passed in entity is equal to the
 /// current instance. < /returns >
 public override bool Equals(object transaction)
 {
 return transaction != null
 & & transaction is Transaction
 & & this == (Transaction)transaction;
 }

 /// < summary >
 /// Operator overload for determining equality.
 /// < /summary >
 /// < param name=”base1” > The first instance of an
 /// < see cref=”Transaction”/ > . < /param >
 /// < param name=”base2” > The second instance of an
 /// < see cref=”Transaction”/ > . < /param >
 /// < returns > True if equal. < /returns >
 public static bool operator ==(Transaction base1,
 Transaction base2)
 {
 // check for both null (cast to object or recursive loop)

(continued)

c10.indd 336c10.indd 336 3/18/08 5:56:43 PM3/18/08 5:56:43 PM

Chapter 10: Synchronizing With the Server

337

 if ((object)base1 == null & & (object)base2 == null)
 {
 return true;
 }

 // check for either of them == to null
 if ((object)base1 == null || (object)base2 == null)
 {
 return false;
 }

 if (base1.Key != base2.Key)
 {
 return false;
 }

 return true;
 }

 /// < summary >
 /// Operator overload for determining inequality.
 /// < /summary >
 /// < param name=”base1” > The first instance of an
 /// < see cref=”Transaction”/ > . < /param >
 /// < param name=”base2” > The second instance of an
 /// < see cref=”Transaction”/ > . < /param >
 /// < returns > True if not equal. < /returns >
 public static bool operator !=(Transaction base1,
 Transaction base2)
 {
 return (!(base1 == base2));
 }

 /// < summary >
 /// Serves as a hash function for this type.
 /// < /summary >
 /// < returns > A hash code for the current Key
 /// property. < /returns >
 public override int GetHashCode()
 {
 return this.key.GetHashCode();
 }

 #endregion
 }
}

 As mentioned in the design section, the Transaction class implements the IEntity interface, and,
therefore, it has to expose a Key property. The rest of the class is equality logic tests and probably could
be refactored out into some type of Generic class at a later time.

c10.indd 337c10.indd 337 3/18/08 5:56:44 PM3/18/08 5:56:44 PM

Chapter 10: Synchronizing With the Server

338

The ClientTransaction Class
 As you might have expected by the name, the ClientTransaction class inherits from the
 Transaction class. It contains an instance of the IEntity that the current Transaction is acting upon.

using System;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Infrastructure.Transactions
{
 public class ClientTransaction : Transaction
 {
 private IEntity entity;

 public ClientTransaction(object key, TransactionType type,
 IEntity entity)
 : base(key, type)
 {
 this.entity = entity;
 }

 public IEntity Entity
 {
 get { return this.entity; }
 }
 }
}

 The ServerTransaction Class
 The ServerTransaction class is almost the same as the ClientTransaction class except that it holds
an instance of a ContractBase class instead of an IEntity instance:

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.DataContracts;

namespace SmartCA.Infrastructure.Transactions
{
 public class ServerTransaction : Transaction
 {
 private ContractBase contract;

 public ServerTransaction(object key, TransactionType type,
 ContractBase contract)
 : base(key, type)
 {
 this.contract = contract;
 }

 public ContractBase Contract

c10.indd 338c10.indd 338 3/18/08 5:56:44 PM3/18/08 5:56:44 PM

Chapter 10: Synchronizing With the Server

339

 {
 get { return this.contract; }
 }
 }
}

 Data Contracts
 The ContractBase class is the Data Contract equivalent of the EntityBase class:

using System;

namespace SmartCA.DataContracts
{
 [Serializable]
 public abstract class ContractBase
 {
 private object key;

 /// < summary >
 /// An < see cref=”System.Object”/ > that represents the
 /// primary identifier value for the class.
 /// < /summary >
 public object Key
 {
 get { return this.key; }
 set { this.key = value; }
 }
 }
}

 So, the question you probably are asking now is what in the world is a Data Contract? It is basically a
Data Transfer Object (DTO) used to get data back and forth from the client to the server. All of the Data
Contract classes are nothing but data, that is, they contain just a bunch of property setters and getters.
Their main purpose in life is to be serialized and sent across the wire and then deserialized on the
receiving end of the wire. I will go into more detail on these classes in the section of this chapter that
deals with the server.

 The only Data Contract classes that inherit from the ContractBase class are those that represent the
Entity Root classes in the domain model. An example would be a CompanyContract class, whose main
purpose is to represent the data of the Company Domain Model class in a way that is easily serializable.

 The Client Transaction Repository Implementation
 Since I am going to be storing the client transactions as messages that will be sent later, I need a way to
save them, and what better way than to use the existing Repository pattern already being used
everywhere else in the domain model.

c10.indd 339c10.indd 339 3/18/08 5:56:44 PM3/18/08 5:56:44 PM

Chapter 10: Synchronizing With the Server

340

The ClientTransactionRepositoryFactory Class
 In order to program against this interface, just like I have with the other Repository interfaces in this
application, I need a Factory to give the correct instance of the interface. This is a little bit different from
the Repository Framework that I developed earlier for the other Entity Repositories, so I have created a
new Factory for this implementation, and I am calling it the ClientTransactionRepositoryFactory
class. Here is what it looks like:

using System;
using SmartCA.Infrastructure.Transactions;
using SmartCA.Infrastructure.RepositoryFramework.Configuration;
using System.Configuration;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public static class ClientTransactionRepositoryFactory
 {
 private static IClientTransactionRepository transactionRepository;

 public static IClientTransactionRepository GetTransactionRepository()
 {
 // See if the ITransactionRepository instance was already created
 if (ClientTransactionRepositoryFactory.transactionRepository == null)
 {
 // It was not created, so build it now
 RepositorySettings settings =
 (RepositorySettings)ConfigurationManager.GetSection(

RepositoryMappingConstants.RepositoryMappingsConfigurationSectionName);

 // Get the type to be created
 Type repositoryType =
 Type.GetType(

settings.RepositoryMappings[“IClientTransactionRepository”].RepositoryFullTypeName);

 // Create the repository, and cast it to the
 // ITransactionRepository interface
 ClientTransactionRepositoryFactory.transactionRepository =
 Activator.CreateInstance(repositoryType)
 as IClientTransactionRepository;

 }

 return ClientTransactionRepositoryFactory.transactionRepository;
 }
 }
}

 I was not able to use the existing RepositoryFactory class because it has the IRepository constraint,
and the IClientTransactionRepository interface does not extend that interface, nor does it make
sense for it to extend it.

c10.indd 340c10.indd 340 3/18/08 5:56:45 PM3/18/08 5:56:45 PM

Chapter 10: Synchronizing With the Server

341

 The ClientTransactionRepository Class
 The ClientTransactionRepository class is an abstract class that is intended to abstract away the
implementation of the Add method of the IClientTransactionRepository interface.

using System;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.Transactions;
using SmartCA.DataContracts.Helpers;
using System.Collections.Generic;

namespace SmartCA.Infrastructure.Repositories
{
 public abstract class ClientTransactionRepository :
 IClientTransactionRepository
 {
 #region IClientTransactionRepository Members

 public abstract DateTime? GetLastSynchronization();
 public abstract void SetLastSynchronization(DateTime? lastSynchronization);

 public void Add(ClientTransaction transaction)
 {
 // Convert the entity to one of the data contract types
 object contract = Converter.ToContract(transaction.Entity);

 // Serialize the data contract into an array of bytes
 byte[] serializedContractData = Serializer.Serialize(contract);

 // Persist the transaction (delegate to the derived class)
 this.PersistNewTransaction(transaction.Type,
 serializedContractData, transaction.Key);
 }

 public abstract IList < ClientTransaction > FindPending();

 #endregion

 protected abstract void PersistNewTransaction(TransactionType type,
 byte[] serializedContractData, object transactionKey);
 }
}

 As you can see, it implements the IClientTransactionRepository interface methods by exposing all
of them as abstract methods or properties, except for the Add method. In the Add method, it takes care of
converting the ClientTransaction ’ s IEntity instance into a Data Contract, and then serializes the
Data Contract to an array of bytes so that it can be persisted. By taking advantage of the Template
Method pattern, it leaves the persistence of the data up to the derived class, via the
 PersistNewTransaction abstract method that it calls in its Add method.

 The SqlCeClientTransactionRepository Class
 As you might expect, this class inherits from the ClientTransactionRepository class. Its purpose is
to persist ClientTransaction objects to and from the local SQL CE database.

c10.indd 341c10.indd 341 3/18/08 5:56:45 PM3/18/08 5:56:45 PM

Chapter 10: Synchronizing With the Server

342

Constructor
 The constructor is similar to the SqlCeRepositoryBase < T > constructor, as it grabs an instance of the
Enterprise Library ’ s Database class for use in some of its methods:

using System.Data.Common;
using System.Data;
using System.Collections.Generic;
using SmartCA.Infrastructure.EntityFactoryFramework;
using System.Text;

namespace SmartCA.Infrastructure.Repositories
{
 public class SqlCeClientTransactionRepository : ClientTransactionRepository
 {
 private Database database;

 public SqlCeClientTransactionRepository()
 {
 this.database = DatabaseFactory.CreateDatabase();
 }

 The PersistNewTransaction Method
 This is the override of the abstract method on the base class, ClientTransactionRepository :

 protected override void PersistNewTransaction(TransactionType type,
 byte[] serializedContractData, object transactionKey)
 {
 // See if the parent transaction already exists

 // Perform a query to see if it exists
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT 1 FROM ClientTransaction “);
 builder.Append(string.Format(“WHERE ClientTransactionID=’{0}’;”,
 transactionKey));
 object result = this.database.ExecuteScalar(
 this.database.GetSqlStringCommand(builder.ToString()));

 // Test the result of the query to see if it exists
 if (result == null)
 {
 // It does not exist, so create a new parent transaction
 builder = new StringBuilder(100);
 builder.Append(“INSERT INTO ClientTransaction “);
 builder.Append(“(ClientTransactionID) “);
 builder.Append(string.Format(“VALUES (‘{0}’);”, transactionKey));
 this.database.ExecuteNonQuery(
 this.database.GetSqlStringCommand(builder.ToString()));
 }

 // Insert the details of the transaction,
 // including the serialized object’s byte array

c10.indd 342c10.indd 342 3/18/08 5:56:45 PM3/18/08 5:56:45 PM

Chapter 10: Synchronizing With the Server

343

 builder = new StringBuilder(100);
 builder.Append(“INSERT INTO ClientTransactionDetail “);
 builder.Append(“(ClientTransactionID,TransactionType,ObjectData) “);
 builder.Append(string.Format(“VALUES (‘{0}’,{1},@data);”,
 transactionKey, (int)type));
 using (DbCommand command =
 this.database.GetSqlStringCommand(builder.ToString()))
 {
 this.database.AddInParameter(command, “@data”,
 DbType.Binary, serializedContractData);
 this.database.ExecuteNonQuery(command);
 }
 }

 This code first has to detect whether a parent transaction has already been started, based upon the value
of the transactionKey (which is the new Key property I added to the IUnitOfWork interface). It does
this by executing a query and seeing whether the query returned null. If the parent transaction does not
exist, then the code creates it by executing a SQL insert statement. The last step is to insert the details
of the transaction, which contains the main piece of data for the transaction, the serialized Data
Contract ’ s byte array.

The FindPending Method
 The job of this method is to find all pending transactions in the repository:

 public override IList < ClientTransaction > FindPending()
 {
 List < ClientTransaction > transactions = new List < ClientTransaction > ();
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“SELECT ctd.ClientTransactionID,”);
 builder.Append(“ctd.TransactionType,ctd.ObjectData “);
 builder.Append(“FROM ClientTransaction ct “);
 builder.Append(“INNER JOIN ClientTransactionDetail ctd “);
 builder.Append(“ON ct.ClientTransactionID = ctd.ClientTransactionID “);
 builder.Append(“WHERE ct.ReconciliationResult = 1;”);
 using (DbCommand command =
this.database.GetSqlStringCommand(builder.ToString()))
 {
 using (IDataReader reader = this.database.ExecuteReader(command))
 {
 IEntityFactory < ClientTransaction > entityFactory =
 EntityFactoryBuilder.BuildFactory < ClientTransaction > ();
 while (reader.Read())
 {
 transactions.Add(entityFactory.BuildEntity(reader));
 }
 }
 }
 return transactions;
 }

c10.indd 343c10.indd 343 3/18/08 5:56:46 PM3/18/08 5:56:46 PM

Chapter 10: Synchronizing With the Server

344

 This method builds a query to pull all of the pending transaction data from the data store and then uses
the ClientTransactionFactory to transform the results into ClientTransaction instances:

using System;
using SmartCA.Infrastructure.EntityFactoryFramework;
using SmartCA.Infrastructure.Transactions;
using System.Data;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.DataContracts;
using SmartCA.DataContracts.Helpers;

namespace SmartCA.Infrastructure.Repositories
{
 public class ClientTransactionFactory : IEntityFactory < ClientTransaction >
 {

 internal static class FieldNames
 {
 public const string ClientTransactionId = “ClientTransactionID”;
 public const string ReconciliationResult = “ReconciliationResult”;
 public const string ReconciliationErrorMessage =
 “ReconciliationErrorMessage”;
 public const string TransactionType = “TransactionType”;
 public const string ObjectData = “ObjectData”;
 }
 #region IEntityFactory < ClientTransaction > Members

 public ClientTransaction BuildEntity(IDataReader reader)
 {
 byte[] objectData =
 DataHelper.GetByteArrayValue(reader[FieldNames.ObjectData]);
 ContractBase contract =
 Serializer.Deserialize(objectData) as ContractBase;
 EntityBase entity = Converter.ToEntity(contract);
 return new ClientTransaction(reader[FieldNames.ClientTransactionId],

(TransactionType)DataHelper.GetInteger(reader[FieldNames.TransactionType]),
 entity);
 }

 #endregion
 }
}

 Most of the code in this method is the standard implementation of the Entity Factory Framework that I
have been using in all of the chapters. There is an interesting aspect in the implementation, particularly
where the byte array is retrieved from the IDataReader instance and deserialized into its proper

c10.indd 344c10.indd 344 3/18/08 5:56:46 PM3/18/08 5:56:46 PM

Chapter 10: Synchronizing With the Server

345

 ContractBase instance via the Serializer class. As you might expect, the Serializer class contains
two methods, Serialize and Deserialize . The job of the Serialize method is to take a
 ContractBase instance and turn it into an array of bytes using binary formatting:

 public static byte[] Serialize(object graph)
 {
 byte[] serializedData = null;
 using (MemoryStream stream = new MemoryStream())
 {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream, graph);
 serializedData = stream.ToArray();
 }
 return serializedData;
 }

 This method takes an object instance and uses the BinaryFormatter class to serialize the object graph
into an array of bytes.

 The Deserialize method does just the opposite. It takes an array of bytes and deserializes it into an
object.

 public static object Deserialize(byte[] serializedData)
 {
 object graph = null;
 if (serializedData != null)
 {
 using (MemoryStream stream = new MemoryStream())
 {
 for (int i = 0; i < serializedData.Length; i++)
 {
 stream.WriteByte(serializedData[i]);
 }
 stream.Position = 0;
 BinaryFormatter formatter = new BinaryFormatter();
 graph = formatter.Deserialize(stream);
 }
 }
 return graph;
 }

 It is nice to encapsulate this functionality because it guarantees that each time I serialize or deserialize an
object I know that it will be done the same way in the same format.

 The next interesting part of the BuildEntity method in the ClientTransactionFactory class is
where it takes the array of bytes returned from the Serializer class and then uses a Converter helper
class to convert the ContractBase instance into an IEntity instance. This magic is done in the
 Converter class using reflection.

c10.indd 345c10.indd 345 3/18/08 5:56:46 PM3/18/08 5:56:46 PM

Chapter 10: Synchronizing With the Server

346

 Here is the code for the Converter class ’ s ToEntity method:

 public static IEntity ToEntity(ContractBase contract)
 {
 // Do reflection to call the right method here
 string methodName = string.Format(“To{0}”,
 contract.GetType().Name.Replace(“Contract”, “”));
 MethodInfo method = typeof(Converter).GetMethod(methodName);
 return method.Invoke(null, new object[] { contract }) as IEntity;
 }

 I know this code may look a little funky, but it gets rid of a giant switch statement of method names to
do this conversion. For every class in the domain model, there is an equivalent Data Contract class, and,
for each set of classes, there is a To[Entity Name] method and a To[Entity Name]Contract method.
For example, the Company Domain Model class has a ToCompanyContract method (from a Company
Entity) and a ToCompany method (from a Company Data Contract).

 To further illustrate the concept, here is the ToCompanyContract method:

 public static CompanyContract ToCompanyContract(Company company)
 {
 CompanyContract contract = new CompanyContract();
 contract.Key = company.Key;
 contract.Abbreviation = company.Abbreviation;
 foreach (Address address in company.Addresses)
 {
 contract.Addresses.Add(Converter.ToAddressContract(address));
 }
 contract.FaxNumber = company.FaxNumber;
 contract.HeadquartersAddress =
 Converter.ToAddressContract(company.HeadquartersAddress);
 contract.Name = company.Name;
 contract.PhoneNumber = company.PhoneNumber;
 contract.Remarks = company.Remarks;
 contract.Url = company.Url;
 return contract;
 }

 Here is the ToCompany method:

 public static Company ToCompany(CompanyContract contract)
 {
 Company company = new Company(contract.Key);
 company.Abbreviation = contract.Abbreviation;
 foreach (AddressContract address in contract.Addresses)
 {
 company.Addresses.Add(Converter.ToAddress(address));
 }
 company.FaxNumber = contract.FaxNumber;
 company.HeadquartersAddress =
 Converter.ToAddress(contract.HeadquartersAddress);
 company.Name = contract.Name;

c10.indd 346c10.indd 346 3/18/08 5:56:47 PM3/18/08 5:56:47 PM

Chapter 10: Synchronizing With the Server

347

 company.PhoneNumber = contract.PhoneNumber;
 company.Remarks = contract.Remarks;
 company.Url = contract.Url;
 return company;
 }

 As you can see, these two methods are pretty straightforward and are just the inverse of each other.

 The ToEntity method assumes that the naming is consistent in the Converter class, and uses reflection
to call the right method to convert a ContractBase instance to an IEntity instance. I know that this is
a lot of plumbing, but that ’ s why it lives in the Infrastructure namespace; the domain model is still free
from this clutter!

 The GetLastSynchronization Method
 This method is used to retrieve the last DateTime value a Synchronization with the server occurred:

 public override DateTime? GetLastSynchronization()
 {
 string query = “SELECT LastSynchronization FROM Synchronization”;
 using (DbCommand command =
 this.database.GetSqlStringCommand(query))
 {
 return DataHelper.GetNullableDateTime(
 this.database.ExecuteScalar(command));
 }
 }

 This code is pretty simple; it performs a query on the Synchronization table (which is always a one -
 row table) in order get the Nullable DateTime value.

The SetLastSynchronization Method
 This method is just the opposite of the GetLastSynchronization method; it updates the date that the
last synchronization with the server took place:

 public override void SetLastSynchronization(DateTime? lastSynchronization)
 {
 if (lastSynchronization.HasValue)
 {
 string query = “SELECT COUNT(*) FROM Synchronization”;
 bool synchronizationRecordExists = false;
 using (DbCommand command =
 this.database.GetSqlStringCommand(query))
 {
 synchronizationRecordExists =
 ((int)this.database.ExecuteScalar(command) > 0);
 }

 StringBuilder builder = new StringBuilder(50);

 if (synchronizationRecordExists)

(continued)

c10.indd 347c10.indd 347 3/18/08 5:56:47 PM3/18/08 5:56:47 PM

Chapter 10: Synchronizing With the Server

348

 {
 builder.Append(“UPDATE Synchronization “);
 builder.Append(
 string.Format(“SET LastSynchronization = ‘{0}’”,
 lastSynchronization.Value));
 }
 else
 {
 builder.Append(“INSERT INTO Synchronization “);
 builder.Append(“(LastSynchronization) “);
 builder.Append(string.Format(“VALUES (‘{0}’)”,
 lastSynchronization));
 }
 using (DbCommand command =
 this.database.GetSqlStringCommand(builder.ToString()))
 {
 this.database.ExecuteNonQuery(command);
 }
 }
 }

 The ClientTransactionService Class
 This class is similar to a lot of the other service classes in that it is acting as a fa ç ade to a Repository
interface instance, in this case the IClientTransactionRepository interface:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.RepositoryFramework;

namespace SmartCA.Infrastructure.Transactions
{
 public static class ClientTransactionService
 {
 private static IClientTransactionRepository repository =
 ClientTransactionRepositoryFactory.GetTransactionRepository();

 public static IList < ClientTransaction > GetPendingTransactions()
 {
 return ClientTransactionService.repository.FindPending();
 }

 public static DateTime? GetLastSynchronization()
 {
 return ClientTransactionService.repository.GetLastSynchronization();
 }

 public static void SetLastSynchronization(DateTime? lastSynchronization)
 {

ClientTransactionService.repository.SetLastSynchronization(lastSynchronization);
 }
 }
}

(continued)

c10.indd 348c10.indd 348 3/18/08 5:56:48 PM3/18/08 5:56:48 PM

Chapter 10: Synchronizing With the Server

349

 As you can see, it is delegating to the IClientTransactionRepository methods and then exposing
them via its static methods. I do not necessarily have to have this class, but it does make it easy to call
static methods.

 Synchronizing with the Synchronizer Class
 Now that I have covered persisting transactions on the client, it is time to cover how to send the
transactions to the server, and also how to get the transactions and reference data from the server.

 If you remember from the diagram at the beginning of the chapter, the Synchronizer class was the class
that was controlling everything in the synchronization process. The Synchronizer class is a static
 Service class whose job is to orchestrate the process of getting the transaction messages processed back
and forth from the server.

 Constructor
 This static class does have a static constructor, and it is used to initialize the last time that the client
synchronized with the server.

using System;
using SmartCA.Infrastructure.Transactions;
using System.Collections.Generic;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.DataContracts.Helpers;
using SmartCA.Infrastructure.RepositoryFramework;
using System.Reflection;
using SmartCA.Infrastructure.ReferenceData;

namespace SmartCA.Infrastructure.Synchronization
{
 public static class Synchronizer
 {
 private static DateTime? lastSynchronized;

 static Synchronizer()
 {
 Synchronizer.GetLastSynchronized();
 }

 The last synchronized value is used later in the class when communicating with the server.

The GetLastSynchronized Method
 This method uses the ClientTransactionService to get the last time the client has synchronized with
the server:

 private static void GetLastSynchronized()
 {
 Synchronizer.lastSynchronized =
 ClientTransactionService.GetLastSynchronization();
 }

c10.indd 349c10.indd 349 3/18/08 5:56:48 PM3/18/08 5:56:48 PM

Chapter 10: Synchronizing With the Server

350

 This code is really just a pass - through to the Service method, but it is still useful for it to be wrapped in
this method, as it makes the code more readable. This method is only called from the constructor.

The SetLastSynchronized Method
 This method is the inverse of the GetLastSynchronization method:

 private static void SetLastSynchronized()
 {
 // Persist the last synchronized datetime
 Synchronizer.lastSynchronized = DateTime.Now;
 ClientTransactionService.SetLastSynchronization(
 Synchronizer.lastSynchronized);
 }

 This method is always called at the end of the synchronization process. Besides the obvious job of setting
the last synchronized value, this method also persists the value via the ClientTransactionService .
Where it is persisted is up to the IClientTransactionRepository instance that the
 ClientTransactionService refers to at run time.

The ProcessReferenceData Method
 The ProcessReferenceData method takes in a composite DataContract that contains all of the
collections of reference data items from the server, and then proceeds to send this data to the
 ReferenceDataRepository for persistence on the client:

 private static void ProcessReferenceData(
 ReferenceDataContract referenceData)
 {
 if (referenceData != null)
 {
 IReferenceDataRepository repository =
 ReferenceDataRepositoryFactory.GetReferenceDataRepository();

 if (referenceData.Disciplines != null)
 {
 repository.Add(referenceData.Disciplines);
 }
 if (referenceData.ItemStatuses != null)
 {
 repository.Add(referenceData.ItemStatuses);
 }
 if (referenceData.Sectors != null)
 {
 repository.Add(referenceData.Sectors);
 }
 if (referenceData.Segments != null)
 {
 repository.Add(referenceData.Segments);
 }
 if (referenceData.SpecSections != null)

c10.indd 350c10.indd 350 3/18/08 5:56:48 PM3/18/08 5:56:48 PM

Chapter 10: Synchronizing With the Server

351

 {
 repository.Add(referenceData.SpecSections);
 }
 }
 }

 This code first gets a reference to the IReferenceDataRepository interface instance via the
 ReferenceDataRepositoryFactory and then calls the appropriate Add method overloads to persist
each type of reference DataContract type.

The IReferenceDataRepository Interface
 The IReferenceDataRepository interface is a very simple interface with one method, the Add
method, but with an overload of the Add method consisting of an IList type for each type of reference
 DataContract :

using System;
using System.Collections.Generic;
using SmartCA.DataContracts;

namespace SmartCA.Infrastructure.ReferenceData
{
 public interface IReferenceDataRepository
 {
 void Add(IList < DisciplineContract > disciplines);
 void Add(IList < ItemStatusContract > itemStatuses);
 void Add(IList < MarketSectorContract > sectors);
 void Add(IList < MarketSegmentContract > segments);
 void Add(IList < SpecificationSectionContract > specSections);
 }
}

 The ReferenceDataRepositoryFactory Class
 Following the same pattern that I have used all along when programming to an interface, I created
an instance of the IReferenceDataRepository interface via a Factory. In this case, the Factory, the
 ReferenceDataRepositoryFactory , is just like the ClientTransactionRepositoryFactory . Again,
I was not able to reuse the Repository Factory Framework I used for all of the other Repository interfaces
in the domain model. I probably should refactor the ClientTransactionRepositoryFactory and the
 ReferenceDataRepositoryFactory into one class, but I have not done that yet.

using System;
using SmartCA.Infrastructure.RepositoryFramework.Configuration;
using System.Configuration;
using SmartCA.Infrastructure.ReferenceData;

namespace SmartCA.Infrastructure.RepositoryFramework
{
 public static class ReferenceDataRepositoryFactory
 {
 private static IReferenceDataRepository referenceDataRepository;

 public static IReferenceDataRepository GetReferenceDataRepository()

(continued)

c10.indd 351c10.indd 351 3/18/08 5:56:49 PM3/18/08 5:56:49 PM

Chapter 10: Synchronizing With the Server

352

 {
 // See if the IReferenceDataRepository instance was already created
 if (ReferenceDataRepositoryFactory.referenceDataRepository == null)
 {
 // It was not created, so build it now
 RepositorySettings settings =
 (RepositorySettings)ConfigurationManager.GetSection(

RepositoryMappingConstants.RepositoryMappingsConfigurationSectionName);

 // Get the type to be created
 Type repositoryType =
 Type.GetType(

settings.RepositoryMappings[“IReferenceDataRepository”].RepositoryFullTypeName);

 // Create the repository, and cast it to the
 // IReferenceDataRepository interface
 ReferenceDataRepositoryFactory.referenceDataRepository =
 Activator.CreateInstance(repositoryType) as
IReferenceDataRepository;

 }

 return ReferenceDataRepositoryFactory.referenceDataRepository;
 }
 }
}

 As you can see, the only real difference between the two repositories is that the interface type instance is
returned. The nice thing is that I have created unit tests for these factories, so I can refactor them as much
as I like and just re - run my tests until they pass.

The IReferenceDataRepository Implementation – The
SqlCeReferenceDataRepository Class

 This class is very similar to the SqlCeClientTransactionRepository implementation. As you can
probably guess from its name, its job is to persist reference data to the local SQL CE database. As you
can see from the IReferenceDataRepository interface, it does not perform any searching operations;
it is strictly adding and updating reference data on the client.

 Its private field and constructor are pretty much identical to the SqlCeClientTransactionRepository
constructor as well:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.ReferenceData;
using Microsoft.Practices.EnterpriseLibrary.Data;
using SmartCA.DataContracts;
using System.Text;

namespace SmartCA.Infrastructure.Repositories

(continued)

c10.indd 352c10.indd 352 3/18/08 5:56:49 PM3/18/08 5:56:49 PM

Chapter 10: Synchronizing With the Server

353

{
 public class SqlCeReferenceDataRepository : IReferenceDataRepository
 {
 private Database database;

 public SqlCeReferenceDataRepository()
 {
 this.database = DatabaseFactory.CreateDatabase();
 }

 All of the interface methods that it implements delegate out to private helper methods, as shown here:

 #region IReferenceDataRepository Members

 public void Add(IList < DisciplineContract > disciplines)
 {
 foreach (DisciplineContract discipline in disciplines)
 {
 this.AddDiscipline(discipline);
 }
 }

 public void Add(IList < ItemStatusContract > itemStatuses)
 {
 foreach (ItemStatusContract itemStatus in itemStatuses)
 {
 this.AddItemStatus(itemStatus);
 }
 }

 public void Add(IList < MarketSectorContract > sectors)
 {
 foreach (MarketSectorContract sector in sectors)
 {
 this.AddMarketSector(sector);
 }
 }

 public void Add(IList < MarketSegmentContract > segments)
 {
 foreach (MarketSegmentContract segment in segments)
 {
 this.AddMarketSegment(segment);
 }
 }

 public void Add(IList < SpecificationSectionContract > specSections)
 {
 foreach (SpecificationSectionContract specSection in specSections)
 {
 this.AddSpecificationSection(specSection);
 }
 }

 #endregion

c10.indd 353c10.indd 353 3/18/08 5:56:49 PM3/18/08 5:56:49 PM

Chapter 10: Synchronizing With the Server

354

 The private helper methods just execute basic insert SQL statements on the local database. I am not
going to show all of them here, but this is what the first one looks like:

 private void AddDiscipline(DisciplineContract discipline)
 {
 StringBuilder builder = new StringBuilder(100);
 builder.Append(“INSERT INTO Discipline “);
 builder.Append(“(DisciplineID,DisciplineName,Description) “);
 builder.Append(string.Format(“VALUES ({0},’{1}’,’{2}’);”,
 discipline.Key, discipline.Name, discipline.Description));
 this.database.ExecuteNonQuery(
 this.database.GetSqlStringCommand(builder.ToString()));
 }

 As you can see, this method takes in the DataContract for a Discipline and uses it to build an insert
SQL statement, and then executes the SQL statement.

The ProcessServerTransactions Method
 Now that I have covered Synchronizer class ’ s ProcessReferenceData method, it is time to move on
to the last method in the Synchronizer class, which is the ProcessServerTransactions method:

 private static void ProcessServerTransactions(
 IList < ServerTransaction > serverTransactions)
 {
 IEntity entity = null;
 Type serviceType = null;
 string saveMethodName = string.Empty;
 MethodInfo method = null;

 foreach (ServerTransaction transaction in serverTransactions)
 {
 // Convert the DataContract into an EntityBase
 // and use the right service class to save it

 // 1. Get the EntityBase from the DataContract
 entity = Converter.ToEntity(transaction.Contract);

 // 2. Get the right service class type for the entity
 serviceType = Type.GetType(string.Format(“{0}Service”,
 entity.GetType().Name));

 // 3. Use reflection to get the correct Save method
 saveMethodName = string.Format(“Save{0}”, entity.GetType().Name);
 method = serviceType.GetMethod(“Save”);

 // 4. Call the Save method
 method.Invoke(null, new object[] { entity });
 }
 }

 This method takes a collection of server transactions, iterates through them, converts each server
transaction that is represented by the DataContract back into an Entity, and then uses the Entity ’ s

c10.indd 354c10.indd 354 3/18/08 5:56:49 PM3/18/08 5:56:49 PM

Chapter 10: Synchronizing With the Server

355

associated Repository to persist it. Remember, the ServerTransaction class was covered in the
beginning of the chapter, but this is the first time that I am using it. It really is about the same as the
 ClientTransaction class, except that it holds a reference to a DataContract instance instead of an
 IEntity instance.

 Iterating through the server transactions and persisting them sounds pretty simple, but the way this
method has to do it is a little bit tricky. The first thing the method has to do is to convert the
 DataContract instance of the ServerTransaction into an IEntity instance. This is done via the
 ToEntity method of the Converter class, which we looked at earlier in the chapter. The next step is to
figure out the type name of the Entity, that is, Company, and then use that type name to figure out the
associated Service for that Entity ’ s Repository. For the Company example, it knows to get the
 System.Type of the type name of CompanyService . Then, once it has the System.Type reference, it
reflects on the type to get an instance of the Save[Entity Name] method; in the case of the
 CompanyService , it would be SaveCompany . When it has the reference to the reflected method, it
invokes the method, which in turn saves the Company instance to its proper Repository.

 The Main Method – the Synchronize Method
 You may have noticed that all of the methods I have shown so far in the Synchronizer class are all
private methods. I wanted to show them to you so you could understand how the class works. The main
entry point to the class, however, is one public static method, and that is the Synchronize method. This
method is a Controller method, that is, it coordinates calls to other methods in the class that enable it to
perform the overall synchronization with the server.

 public static void Synchronize()
 {
 // Send pending transactions to the server
 SynchronizationServerProxy.SendTransactions(
 ClientTransactionService.GetPendingTransactions());

 // Get reference data from the server
 ReferenceDataContract referenceData =
 SynchronizationServerProxy.GetReferenceData(lastSynchronized);

 // Process the reference data
 Synchronizer.ProcessReferenceData(referenceData);

 // Get transactions from the server
 IList < ServerTransaction > serverTransactions =
 SynchronizationServerProxy.GetTransactions(lastSynchronized);

 // Process the server transactions
 Synchronizer.ProcessServerTransactions(serverTransactions);

 // If the synchronization was successful,
 // then record the timestamp
 Synchronizer.SetLastSynchronized();
 }

 As you can see, it coordinates all of the calls to the private methods that I have just shown, but it calls
them in the proper order required for Synchronization. There are two calls in this controller method that
are not calls to private methods, and those are the calls to the server to get the reference data and the

c10.indd 355c10.indd 355 3/18/08 5:56:50 PM3/18/08 5:56:50 PM

Chapter 10: Synchronizing With the Server

356

server transactions. These calls are done with a class called SynchronizationServerProxy . This class
is mocked up for now, but this is the class that will actually make the calls to the server. It is the
application ’ s proxy to the server. Here is what the class looks like now:

using System;
using System.Collections.Generic;
using SmartCA.Infrastructure.Transactions;

namespace SmartCA.Infrastructure.Synchronization
{
 public static class SynchronizationServerProxy
 {
 public static void SendTransactions(
 IList < ClientTransaction > transactions)
 {
 }

 public static IList < ServerTransaction > GetTransactions(
 DateTime? lastSynchronized)
 {
 return new List < ServerTransaction > ();
 }

 public static ReferenceDataContract GetReferenceData(
 DateTime? lastSynchronized)
 {
 return null;
 }
 }
}

 I probably will refactor this class into an interface and create a Factory to give me different instances of
the interface. This will allow me to use a mocked up SynchronizationServerProxy class that does
pretty much what this one is doing, which will make my unit tests fast. When it comes time for actual
integration with the server, I will create the real implementation of the interface and have the application
configured to use that one for the actual synchronizations with the server.

 Summary
 In this chapter, I tackled the concept of how to synchronize the client ’ s offline data with the server. I
came to the conclusion that it was better to make my synchronization process more business - driven than
data - driven, and therefore I chose not to use database replication or to use the new ADO.NET
Synchronization Services. Instead, I went with a message - based approach and ended up refactoring my
Unit of Work implementation to store transaction messages on the client. I then came up with a strategy
and implementation for synchronizing those messages stored on the client with the messages on the
server. Overall, the solution feels fairly elegant to me, and how it works makes sense. What I did not do
is figure out how to reconcile synchronization conflicts, but that can be done in a later iteration of the
application. The important point is that the synchronization process has been brought back and tied into
the domain model, so any logic that needs to be performed to reconcile synchronization conflicts can be
easily refactored into the domain model, which is where it belongs.

c10.indd 356c10.indd 356 3/18/08 5:56:50 PM3/18/08 5:56:50 PM

 The Client Membership
System

 In the last chapter, I talked about synchronizing data with the server and how important it was to
be able to work offline. In this chapter, I am going to discuss how to implement membership
features, such as authentication, in an offline scenario.

 The Problem
 Now that the application has a nice, service - based way of working offline and synchronizing all of
its data with the server, there needs to be a way to enable authentication and authorization while
offline as well.

 Users should be able to authenticate (i.e., log in to the application) and be able to perform work
based on their assigned role(s) in the system. This is easy to do in an online ASP.NET application
using the ASP.NET Membership System, but it is a lot trickier in a smart client application. One
way of implementing these features is to call web services on the server that will authenticate the
user and provide authorization information. The web services could actually wrap methods on
the ASP.NET Membership System. The problem with that approach in the SmartCA application is
that it requires that the user has a network or Internet connection, and if you remember from
Chapter 1 , the users sometimes are out in the middle of nowhere with no access to any type of
network connection.

 The Design
 Since I already have a nice data synchronization strategy in place, why not use that to help solve
the problem of performing membership tasks offline? After thinking about it for a while, I thought,
why not put the membership data that is normally on the server down on the client? This would
allow the users to authenticate themselves locally and do things like change their passwords

c11.indd 357c11.indd 357 3/18/08 5:55:17 PM3/18/08 5:55:17 PM

Chapter 11: The Client Membership System

358

locally. If any changes were then made on the server, or if the user changed any of his or her membership
data on the client, the changes could be synchronized using the existing framework from the last chapter.

 Password Security
 One of the key factors about trying something like that is how to secure stored passwords on the client.
The ASP.NET Membership Service specifies three formats for storing a password — in clear text,
encrypted, or hashed, as defined in the PasswordFormat enumeration.

 Password Format Setting Description
 Password
Retrieval

 PasswordFormat.Clear The password is stored in clear text. Yes

 PasswordFormat.Hashed A one - way hash of the password is stored. No

 PasswordFormat.Encrypted The password is stored in encrypted format. Yes

 It should be obvious, but for security reasons, the option of storing passwords in clear text is definitely
out. That would essentially allow any user who could figure out how to open and read the SQL CE
database file to see all of the other users ’ passwords!

 Encryption is definitely a better option than clear text. In order to perform password comparisons when
passwords are stored in the encrypted format, the stored password must be decrypted first. To me, this
still presents a problem, because that means someone could possibly figure out the algorithm to decrypt
the passwords.

 The best option is hashing. To compare passwords when they are stored in the hashed format, a hash
using the same key is calculated on the supplied password and then compared against the stored
hash. This is one - way encryption, that is, the password can never be decrypted. This means that once
the password is created, it can never be decrypted back into plain text again. Nobody can ever retrieve
their password with this option. If a user forgets his or her password, a new one must be created.

 Designing the Client Membership System
 I have decided for this application that I will implement a Membership System very similar to the ASP
.NET Membership System, but with a “ Client Membership ” type of API. What this means is that I want
users to be able to authenticate locally when using the application offline. The users will not only be able
to authenticate themselves, but it will also be able to change and reset their passwords and password
questions and answers.

 All other functions, such as creating and managing users will be handled by the server. The client will
communicate its Membership changes via the Synchronization Framework from the last chapter. In
addition to sending the server membership data, the client will also receive updates to its membership
data from the server as well.

 In order to make it easier to synchronize data, I have decided to make the Client Membership System
behave as close as possible to the ASP.NET Membership System. What I mean by that is that I am going

c11.indd 358c11.indd 358 3/18/08 5:55:18 PM3/18/08 5:55:18 PM

Chapter 11: The Client Membership System

359

with a provider - based model for accessing the Client Membership data. I know, you might be thinking,
why not a repository like the ones I have been using all along? Well, the reason why is because the user
data that I am holding on the client does not really fit that pattern. I am not really going to need to access
it like an in - memory collection. All I really need to be able to do is retrieve and update the current User
from the Client Membership System.

 One of the main differences between my Membership implementation on the client and Microsoft ’ s ASP
.NET Membership implementation is that I am keeping my membership - related logic in the domain
model, whereas with the ASP.NET Membership there is logic scattered across several classes and even in
stored procedures in the out of the box SqlMembershipProvider implementation that comes with the
ASP.NET Provider Toolkit.

 The diagram in Figure 11.1 shows how the Client Membership system interacts with the user data.

Client Membership
UserRole

Client Membership
Service

Client Membership
Provider Factory

Client Membership
Provider

Unit of Work

*

<<uses>>

<<uses>>

<<creates provider instance with>>
<<registers user changes with>>

 Figure 11.1: Client Membership System conceptual model.

 In the diagram, you can see how this looks relatively similar to what I have been doing all along, except,
instead of a repository behind the Service class, now there is a Provider behind it. The Provider is still
kept abstract via an interface, and I still use a Factory to create an instance of the interface, thus allowing
me to keep a dependency to only the interface of the Provider in my domain model.

 An important item to note in the diagram is that the Client Membership provider is using a Unit of Work
to register any changes to User instances, such as changed passwords, account lockouts, and so on. Since
the Unit of Work implementation is tied into the synchronization strategy from the last chapter, this
means that all of the User instance change transactions will be propagated to the server when the
Synchronizer runs. Also, any relevant Membership transactions and refer to data from the server side
will also be brought down to the client with the Synchronizer. I will go into more detail into how that
works later in the chapter.

 The Solution
 The solution for the Client Membership System is mainly divided into two areas, the domain model and
the Provider Framework.

c11.indd 359c11.indd 359 3/18/08 5:55:18 PM3/18/08 5:55:18 PM

Chapter 11: The Client Membership System

360

 The Client Membership System Domain Model Classes
 Instead of just having one User class, I decided to try to split out some of the security - related data and
behavior from the User class into a separate ClientMembershipUser class. Consumers of the Client
Membership System should only ever have to work with the User class; the ClientMembershipUser
class shields them from having to know all of the security - related details, such as keeping track of bad
login attempts, locking users out, and so on. When I show the interface for the Client Membership
Provider later in the chapter, you will see how this encapsulation is enforced by the interface.

 The diagram in Figure 11.2 shows how the Client Membership System classes interrelate to each other.

Role
Class

Fields

Methods

Properties

Name

User
Class

Fields
Properties

Methods

CreationDate
Email
IsLockedOut
Key
LastActivityDate
LastLockoutDate
LastLoginDate
LastPasswordChangedDate
PasswordQuestion
UserKey
UserName

ChangePassword
ChangePasswordQuestionAndAnswer
CheckPasswordReset
CheckPasswordRetrieval
GetPassword (�1 overload)
ResetPassword (�1 overload)
ToString
ValidateInitialization
ValidatePassword

IEntity

ClientMembershipUser
Class
 User

Fields
Properties

Methods

FailedPasswordAnswerAttemptCount
FailedPasswordAnswerAttemptWindowStart
FailedPasswordAttemptCount
FailedPasswordAttemptWindowStart
PasswordSalt

PasswordAnswerAttemptFailed
PasswordAnswerAttemptSucceeded
PasswordAttemptFailed
PasswordAttemptSucceeded

PasswordFormat
Enum

Clear
Hashed

PasswordFormat

Roles

 Figure 11.2: Client Membership System domain model classes.

 The User Class
 Since the User class is the main class that developers will be using to interact with the Client
Membership System, I will cover it first.

Class Signature and Private Fields
 Note that the User class implements the IEntity interface, which will prove to be very important later
on when I need this class to participate in the Synchronization Framework:

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;
using SmartCA.Infrastructure;
using SmartCA.Infrastructure.DomainBase;

namespace SmartCA.Model.Membership

c11.indd 360c11.indd 360 3/18/08 5:55:19 PM3/18/08 5:55:19 PM

Chapter 11: The Client Membership System

361

{
 public class User : IEntity
 {
 #region Private Fields

 private Guid userKey;
 private DateTime creationDate;
 private string email;
 private bool isLockedOut;
 private DateTime lastActivityDate;
 private DateTime lastLockoutDate;
 private DateTime lastLoginDate;
 private DateTime lastPasswordChangedDate;
 private string passwordQuestion;
 private string userName;
 private List < Role > roles;

 #endregion

 As you can see, this class is not holding any security - sensitive information, such as the User ’ s password
or password answer. This data fields in this class are very similar to the ASP.NET MembershipUser
class, but as you will see, there is much more logic in this class.

The Constructor
 The constructor for this class essentially makes it mandatory for all of the data to be passed into the class
in order to use it. This is similar to Value class functionality, but the User class is definitely an Entity.

 #region Constructors

 public User(Guid userKey, string name, string email,
 string passwordQuestion, bool isLockedOut,
 DateTime creationDate, DateTime lastLoginDate,
 DateTime lastActivityDate, DateTime lastPasswordChangedDate,
 DateTime lastLockoutDate)
 {
 this.userKey = userKey;
 if (name != null)
 {
 name = name.Trim();
 }
 if (email != null)
 {
 email = email.Trim();
 }
 if (passwordQuestion != null)
 {
 passwordQuestion = passwordQuestion.Trim();
 }
 this.userName = name;
 this.email = email;
 this.passwordQuestion = passwordQuestion;
 this.isLockedOut = isLockedOut;

(continued)

c11.indd 361c11.indd 361 3/18/08 5:55:19 PM3/18/08 5:55:19 PM

Chapter 11: The Client Membership System

362

 this.creationDate = creationDate.ToUniversalTime();
 this.lastLoginDate = lastLoginDate.ToUniversalTime();
 this.lastActivityDate = lastActivityDate.ToUniversalTime();
 this.lastPasswordChangedDate
 = lastPasswordChangedDate.ToUniversalTime();
 this.lastLockoutDate = lastLockoutDate.ToUniversalTime();
 this.roles = new List < Role > ();
 this.ValidateInitialization();
 }

 #endregion

 The constructor starts out by cleaning up the name , email , and passwordQuestion arguments before
assigning them to their respective class fields. The next interesting bit of logic is the conversion of all of
the DateTime argument values to Universal Time. Doing this allows the Client Membership system to
standardize on one time zone for users who may be working around the country or the world.

 The last task for the constructor is to validate the data passed in, and this is done via the
 ValidateInitialization method:

 protected virtual void ValidateInitialization()
 {
 SecurityHelper.CheckParameter(this.userName, true, true, true,
 ClientMembershipService.Application.MaxUsernameSize, “username”);
 SecurityHelper.CheckParameter(this.email, true, true, true,
 0, “email”);
 SecurityHelper.CheckParameter(this.passwordQuestion, true, true, true,
 ClientMembershipService.Application.MaxPasswordQuestionSize,
 “passwordQuestion”);
 }

 This method validates the username , email , and passwordQuestion fields that were passed in from
the constructor. To do this validation, the SecurityHelper class ’ s CheckParameter method is used:

 public static void CheckParameter(string param, bool checkForNull,
 bool checkIfEmpty, bool checkForCommas, int maxSize, string paramName)
 {
 if (param == null)
 {
 if (checkForNull)
 {
 throw new ArgumentNullException(paramName);
 }
 }
 else
 {
 param = param.Trim();
 if (checkIfEmpty & & (param.Length < 1))
 {
 throw new ArgumentException(“Parameter cannot be empty”,
 paramName);
 }
 if ((maxSize > 0) & & (param.Length > maxSize))

(continued)

c11.indd 362c11.indd 362 3/18/08 5:55:19 PM3/18/08 5:55:19 PM

Chapter 11: The Client Membership System

363

 {
 throw new ArgumentException(“Parameter too long”,
 paramName);
 }
 if (checkForCommas & & param.Contains(“,”))
 {
 throw new ArgumentException(“Parameter cannot contain commas”,
 paramName);
 }
 }
 }

 This method is very flexible; it lets the caller specify, via its Boolean arguments, what types of checks
should be made. The first check that is made, without giving the caller a choice, is whether the
parameter is null. If it is null, then an ArgumentNullException is thrown.

 The next check is for an empty parameter. If the call specified that it wanted this checked, then it is
checked. If it turns out that the parameter is empty, then an ArgumentException is thrown. The checks
for parameter length and commas perform the exact same pattern; that is, the method is only checking if
instructed to do so, and then throwing exceptions if the check does not pass.

 You can see in the ValidateInitialization method that everything is being checked for the
 username , email , and passwordQuestion fields.

The Properties
 There really is not that much interesting about the properties of this class from a code and logic point of
view; however, there is some nice encapsulation done with the private fields. Almost all of the properties
are read - only, except for the LastActivityDate , Email , and LastLoginDate properties. For all of the
 DateTime properties, all of their getters return the DateTime value in the LocalTime format:

 public DateTime CreationDate
 {
 get { return this.creationDate.ToLocalTime(); }
 }

 Some of the properties do have setters, but they are protected setters, meaning they needed to be opened
up for changing to any classes that derive from the User class. This will make more sense when I show
you the ClientMembershipUser class a little later. Here is an example of one of the properties with a
protected setter:

 public bool IsLockedOut
 {
 get { return this.isLockedOut; }
 protected set { this.isLockedOut = value; }
 }

 This is useful because it means that I could put some logic in a derived class that may need to change
depending on whether the User is in a locked out state.

The Methods
 Unlike some of the other classes in the SmartCA domain model, this class has a lot of behavior in it.

c11.indd 363c11.indd 363 3/18/08 5:55:20 PM3/18/08 5:55:20 PM

Chapter 11: The Client Membership System

364

The ChangePassword Method

 This is the first of several methods that will be delegating any heavy lifting to the
 ClientMembershipService class, which I will look at later in the chapter.

 public void ChangePassword(string oldPassword, string newPassword)
 {
 SecurityHelper.CheckPasswordParameter(oldPassword, 0, “oldPassword”);
 SecurityHelper.CheckPasswordParameter(newPassword, 0, “newPassword”);
 User.ValidatePassword(newPassword);
 ClientMembershipService.ChangePassword(this.UserName,
 oldPassword, newPassword);
 }

 This method starts out by first validating its arguments, and then calls the static ValidateUser method.

 public static void ValidatePassword(string password)
 {
 SecurityHelper.CheckParameter(password, true, false, false,
 0, “password”);

 Application application = ClientMembershipService.Application;

 if (password.Length < application.MinRequiredPasswordLength)
 {
 throw new ArgumentException(“Password too short”,
 “password”);
 }

 int count = 0;

 for (int i = 0; i < password.Length; i++)
 {
 if (!char.IsLetterOrDigit(password, i))
 {
 count++;
 }
 }

 if (count < application.MinRequiredNonAlphanumericCharacters)
 {
 throw new ArgumentException
 (“Password needs more non alphanumeric chars”,
 “password”);
 }

 if (application.PasswordStrengthRegularExpression.Length > 0)
 {
 if (!Regex.IsMatch(password,
 application.PasswordStrengthRegularExpression))
 {
 throw new ArgumentException
 (“Password does not match regular expression”,
 “password”);
 }

c11.indd 364c11.indd 364 3/18/08 5:55:20 PM3/18/08 5:55:20 PM

Chapter 11: The Client Membership System

365

 }

 if (password.Length > application.MaxPasswordSize)
 {
 throw new ArgumentException(“Password too long”,
 “password”);
 }
 }

 I made this method static so I would be able to centralize this logic in the domain, in order for it to be
reused from a Client Membership Provider. This method does a very exhaustive job of validating the
password.

 It ends up conducting five different tests on the password parameter:

 1. It first checks to see whether the parameter is null via the CheckParameter method shown
previously.

 2. The next check is to make sure that the password meets the minimum length requirements of
the Client Membership System. If it does not, then you guessed it, an ArgumentException is
thrown.

 3. The next check is a little bit more complicated. It iterates through all of the characters of the
password and makes sure that it has the minimum number of non - alphanumeric characters in it.

 4. The last test is to see whether the password meets the regular expression criteria of the Client
Membership System. If that test passes, then the last test is to make sure that the password is not
too long.

 Now, let ’ s go back to the ChangePassword method that I was originally showing. After performing all
of the necessary checks, the last thing the ChangePassword method needs to do is to change the User ’ s
password! This is done by using the ChangePassword method of the ClientMembershipService class,
and passing in the User ’ s UserName property value, their old password, and their new password.

The ChangePasswordQuestionAndAnswer Method

 This method is for changing the User ’ s password question and password answer. It requires the
password to be passed in, in order for the provider to authenticate the user before changing the
User ’ s password question and answer values.

public void ChangePasswordQuestionAndAnswer(string password,
 string newPasswordQuestion, string newPasswordAnswer)
 {
 SecurityHelper.CheckPasswordParameter(password, 0, “password”);
 SecurityHelper.CheckParameter(newPasswordQuestion, false, true,
 false, 0, “newPasswordQuestion”);
 SecurityHelper.CheckParameter(newPasswordAnswer, false, true,
 false, 0, “newPasswordAnswer”);
 ClientMembershipService.ChangePasswordQuestionAndAnswer(this.UserName,
 password, newPasswordQuestion, newPasswordAnswer);
 this.passwordQuestion = newPasswordQuestion;
 }

c11.indd 365c11.indd 365 3/18/08 5:55:21 PM3/18/08 5:55:21 PM

Chapter 11: The Client Membership System

366

 It starts out by validating all of the arguments with the SecurityHelper class. It then goes on to
delegate to the ClientMembershipService class the changing of the User ’ s password question and
answer. The last thing it does is to update the passwordQuestion field of the User class to the value of
the newPasswordQuestion argument passed in.

The ResetPassword Method

 The ResetPassword method has two overloads; the first one takes no parameters:

 public string ResetPassword()
 {
 User.CheckPasswordReset(null);
 return ClientMembershipService.ResetPassword(this.UserName);
 }

 This method first calls the CheckPasswordReset static method to verify that the Client Membership
System is configured to allow password resets:

 public static void CheckPasswordReset(string passwordAnswer)
 {
 Application application = ClientMembershipService.Application;

 if (!application.EnablePasswordReset)
 {
 throw new NotSupportedException
 (“Not configured to support password resets”);
 }

 if (string.IsNullOrEmpty(passwordAnswer))
 {
 if (application.RequiresQuestionAndAnswer)
 {
 throw new NotSupportedException
 (“Must reset password with a password answer”);
 }
 }
 }

 This method first checks to see whether the Client Membership System allows password resets.
If no password answer was passed in, it checks to see whether the Client Membership System requires a
password answer to be supplied before it resets the password. If any of those tests does not pass, it
throws a NotSupportedException exception.

 The ResetPassword method finishes by calling the ResetPassword method of the
 ClientMembershipService class.

 The second overload of the ResetPassword method takes in a passwordAnswer argument, and
passes the argument, along with the UserName property value to the ResetPassword method of the
 ClientMembershipService class.

c11.indd 366c11.indd 366 3/18/08 5:55:21 PM3/18/08 5:55:21 PM

Chapter 11: The Client Membership System

367

 public string ResetPassword(string passwordAnswer)
 {
 User.CheckPasswordReset(passwordAnswer);
 return ClientMembershipService.ResetPassword(
 this.UserName, passwordAnswer);
 }

 The ClientMembershipUser Class
 The ClientMembershipUser class contains the logic and data for auditing and managing User
authentication.

 Class Signature and Private Fields
 As previously mentioned, the ClientMembershipUser class derives from the User class, and its
behavior affects some of the data in the User class:

using System;
using SmartCA.Model.Membership;

namespace SmartCA.Model.Membership
{
 public class ClientMembershipUser : User
 {
 #region Private Fields

 private string passwordSalt;
 private PasswordFormat passwordFormat;
 private int failedPasswordAttemptCount;
 private DateTime failedPasswordAttemptWindowStart;
 private int failedPasswordAnswerAttemptCount;
 private DateTime failedPasswordAnswerAttemptWindowStart;

 #endregion

 This class holds password and password answer authentication auditing information. This class also has
a lot of behavior in it that helps it manage its auditing information.

The Constructor
 The Constructor for the ClientMembershipUser class is very similar to that of the User class; all of the
data for its fields must be passed in:

 #region Constructor

 public ClientMembershipUser(User user, string passwordSalt,
 PasswordFormat passwordFormat, int failedPasswordAttemptCount,
 DateTime failedPasswordAttemptWindowStart,
 int failedPasswordAnswerAttemptCount,
 DateTime failedPasswordAnswerAttemptWindowStart)
 : base(user.UserKey,
 user.UserName, user.Email, user.PasswordQuestion,
 user.IsLockedOut, user.CreationDate, user.LastLoginDate,

(continued)

c11.indd 367c11.indd 367 3/18/08 5:55:21 PM3/18/08 5:55:21 PM

Chapter 11: The Client Membership System

368

 user.LastActivityDate, user.LastPasswordChangedDate,
 user.LastLockoutDate)
 {
 if (passwordSalt != null)
 {
 passwordSalt = passwordSalt.Trim();
 }
 this.passwordSalt = passwordSalt;
 this.passwordFormat = passwordFormat;
 this.failedPasswordAttemptCount = failedPasswordAttemptCount;
 this.failedPasswordAttemptWindowStart
 = failedPasswordAttemptWindowStart;
 this.failedPasswordAnswerAttemptCount
 = failedPasswordAnswerAttemptCount;
 this.failedPasswordAnswerAttemptWindowStart
 = failedPasswordAnswerAttemptWindowStart;
 }

 #endregion

 Almost all of the arguments being passed in are Integer and DateTime data types, except for the
 passwordSalt argument, which is a string. Just like before, the string argument is trimmed before being
assigned.

The Properties
 I am not going to show any of the code for the properties here, since there is nothing special code - wise
about them. All of the properties are read - only representations of the field data for the class.

The Methods
 The only way the internal data in the class can be changed is through its methods. The methods contain
all of the logic for successful logins, bad logins, successful password answer authentications, and failed
password answer authentications.

The PasswordAttemptFailed Method

 This method changes the state of the class appropriately whenever a failed password verification
attempt occurs:

 public void PasswordAnswerAttemptFailed()
 {
 DateTime currentDateTime = DateTime.Now.ToUniversalTime();

 if (currentDateTime >
 this.failedPasswordAnswerAttemptWindowStart.AddMinutes(
 ClientMembershipService.Application.PasswordAttemptWindow))
 {
 this.failedPasswordAnswerAttemptWindowStart = currentDateTime;
 this.failedPasswordAnswerAttemptCount = 1;
 }

(continued)

c11.indd 368c11.indd 368 3/18/08 5:55:22 PM3/18/08 5:55:22 PM

Chapter 11: The Client Membership System

369

 else
 {
 this.failedPasswordAnswerAttemptCount++;
 }

 if (this.failedPasswordAnswerAttemptCount >
 ClientMembershipService.Application.MaxInvalidPasswordAttempts)
 {
 this.IsLockedOut = true;
 this.LastLockoutDate = currentDateTime;
 }

 this.LastActivityDate = currentDateTime;
 }

 The logic in this method first captures the current timestamp in Universal Time (UTC) format. Next, a
check is made to see if the timestamp is greater than the failed password attempt window plus the
number of minutes configured for the window in the Client Membership System. The time window
represents the DateTime from the last failed password. When this occurs, the failed password attempt
time window starts ticking. If the current timestamp is greater than that time window plus the minutes
from configuration, then the method knows that it is time to start the time window over again. This
concept is probably best illustrated with an example. Take the case where a User has a bad login two
days ago. Today he has another bad login. In this case, a new time window starts, and the failed
password attempt count is set to 1 because it has been too long since the last bad login. This behavior is
intended to prevent people from guessing passwords through some type of dictionary attack.

 If it turns out that the bad password attempt did occur within the time window, then the failed password
attempt counter is incremented by one. After that logic has completed, the next step is to see whether
the User should be locked out. If the number of bad password attempts is greater than that allowed
in the Client Membership System configuration, then the User is locked out of the account.

 Notice how the method is setting the IsLockedOut , LastLockedOut , and LastActivityDate base
class property values. This is made possible because they are marked with the protected keyword, which
means that only classes that derive from the User class can set those values. Here is the IsLockedOut
property of the User class again:

 public bool IsLockedOut
 {
 get { return this.isLockedOut; }
 protected set { this.isLockedOut = value; }
 }

 This is a nice little trick because the property is encapsulated from outside users of the class, but I am
still able to change its values from the derived class.

The PasswordAttemptSucceeded Method

 As you can probably infer by the name, this method is almost exactly the opposite of the previous method.

c11.indd 369c11.indd 369 3/18/08 5:55:22 PM3/18/08 5:55:22 PM

Chapter 11: The Client Membership System

370

 public void PasswordAttemptSucceeded()
 {
 DateTime currentDateTime = DateTime.Now.ToUniversalTime();
 this.failedPasswordAttemptWindowStart = DateTime.MinValue;
 this.failedPasswordAttemptCount = 0;
 this.IsLockedOut = false;
 this.LastLockoutDate = DateTime.MinValue;
 this.LastActivityDate = currentDateTime;
 }

 This method starts out the same as the one before it, also by capturing the current timestamp. Since it
represents a successful login, it resets the failed password attempt window to the lowest DateTime
possible, and it resets the failed password attempt count to zero. Just to make sure, it sets the
 IsLockedOut property value of the User class to false, as well as setting the LastLockoutDate
property value to the lowest DateTime value possible. Finally, it sets the LastActivityDate property
for auditing purposes.

 The PasswordAnswerAttemptFailed Method

 This method is almost exactly the same as the PasswordAttemptFailed method, only instead of
tracking bad password attempts, it is tracking bad password answer attempts.

 public void PasswordAnswerAttemptFailed()
 {

 DateTime currentDateTime = DateTime.Now.ToUniversalTime();

 if (currentDateTime >
 this.failedPasswordAnswerAttemptWindowStart.AddMinutes(
 ClientMembershipService.Application.PasswordAttemptWindow))
 {
 this.failedPasswordAnswerAttemptWindowStart = currentDateTime;
 this.failedPasswordAnswerAttemptCount = 1;
 }
 else
 {
 this.failedPasswordAnswerAttemptCount++;
 }

 if (this.failedPasswordAnswerAttemptCount >
 ClientMembershipService.Application.MaxInvalidPasswordAttempts)
 {

 this.IsLockedOut = true;
 this.LastLockoutDate = currentDateTime;

 }

 this.LastActivityDate = currentDateTime;

 }

 There really is not much different here from the PasswordAttemptFailed method—the logic is
identical. The only difference is that I am tracking failed password answer attempts, but I still use the
same logic as before for the time window and locking the User ’ s account out if necessary.

c11.indd 370c11.indd 370 3/18/08 5:55:22 PM3/18/08 5:55:22 PM

Chapter 11: The Client Membership System

371

The PasswordAnswerAttemptSucceeded Method

 Again, the name of this method should give you a hint that it is very similar to the
 PasswordAttemptSucceeded method.

 public void PasswordAnswerAttemptSucceeded()
 {

 DateTime currentDateTime = DateTime.Now.ToUniversalTime();

 this.failedPasswordAnswerAttemptWindowStart = DateTime.MinValue;
 this.failedPasswordAnswerAttemptCount = 0;
 this.IsLockedOut = false;
 this.LastLockoutDate = DateTime.MinValue;
 this.LastActivityDate = currentDateTime;

 }

 The only thing different about this method is that it resets the values for the failed password answer
attempt fields instead of the failed password attempt fields.

 The Application Class
 I have already shown parts of the Application class being used in the methods of the User and
 ClientMembershipUser classes. The Application class is a Value class that is only meant to store
the configuration values of the Client Membership System. Here is the signature and data fields for the
 Application class:

using System;

namespace SmartCA.Model.Membership
{
 public class Application
 {
 #region Private Fields

 private string name;
 private bool enablePasswordReset;
 private bool enablePasswordRetrieval;
 private int maxInvalidPasswordAttempts;
 private int minRequiredNonAlphanumericCharacters;
 private int minRequiredPasswordLength;
 private int passwordAttemptWindow;
 private PasswordFormat passwordFormat;
 private string passwordStrengthRegularExpression;
 private bool requiresQuestionAndAnswer;
 private bool requiresUniqueEmail;
 private bool isDecryptionKeyAutogenerated;
 private bool isHashAlgorithmFromMembershipConfig;
 private string hashAlgorithmType;
 private int maxPasswordSize;
 private int maxPasswordAnswerSize;
 private int maxUsernameSize;
 private int maxPasswordQuestionSize;

 #endregion

c11.indd 371c11.indd 371 3/18/08 5:55:23 PM3/18/08 5:55:23 PM

Chapter 11: The Client Membership System

372

 I am not going to show the constructor and properties of the Application class here. Since it is a
standard Value class, all of its properties are read - only and the constructor requires all of the field data
to be passed in as arguments.

 Its job is to represent the configuration from the Client Membership System, thus allowing me to not
have to hard - code any values in the domain model or Providers.

 The Client Membership System Provider Framework
and Implementation

 The Client Membership System Provider is very much like that of a repository, only it does not
necessarily represent an in - memory collection of Aggregate Root Entities. In this case, the Client
Membership provider ’ s job is to provide the necessary data and persistence behavior for storing and
retrieving Client Membership System data.

The IClientMembershipProvider Interface
 Following the same pattern as with repositories, I am keeping the interface for the Client Membership
System Provider in the domain model, along with its associated Service class. This way I can use it from
my Domain Model classes but only be tied to the interface and not to the implementation.

 The IClientMembershipProvider interface provides all of the functionality that my domain model
needs in a nice, clean, well - encapsulated interface:

namespace SmartCA.Model.Membership
{
 public interface IClientMembershipProvider
 {
 #region Methods

 User GetUser(object userKey);
 User GetUser(string username);
 string GetPassword(string username);
 string GetPassword(string username, string answer);
 bool ChangePassword(string username, string oldPassword,
 string newPassword);
 bool ChangePasswordQuestionAndAnswer(string username, string password,
 string newPasswordQuestion, string newPasswordAnswer);
 string ResetPassword(string username);
 string ResetPassword(string username, string answer);
 void UpdateUser(User user);
 bool ValidateUser(string username, string password);

 #endregion

 #region Properties

 Application Application { get; }

 #endregion
 }
}

c11.indd 372c11.indd 372 3/18/08 5:55:23 PM3/18/08 5:55:23 PM

Chapter 11: The Client Membership System

373

 There are few things to notice on this interface; the first is that it has a property on it as well as methods.
That property is the Application property, which represents an instance of the Application class that
I just demonstrated.

 The next important item to note is that it offers methods to change the User ’ s password and password
answer values, as well as for password retrieval. Since I have decided to use hashed passwords for the
Client Membership System, these password retrieval methods probably should not be there, but I left
them there in case, later, someone wanted to change to an encryption algorithm that would support
retrieving passwords.

 The last important piece of functionality this interface offers is the ability to get a User instance from a
data store and also update that instance and have the changes persisted to a data store.

The ProviderFactory Class
 Just like the RepositoryFactory class from the Repository Framework, the ProviderFactory class is
used to create instances of the IClientMembershipProvider interface implementation class:

using System;
using System.Configuration;
using SmartCA.Infrastructure.RepositoryFramework.Configuration;

namespace SmartCA.Infrastructure.Membership
{
 public static class ProviderFactory
 {
 private static object provider;

 public static T GetProvider < T > () where T : class
 {
 // See if the provider instance was already created
 if (ProviderFactory.provider == null)
 {
 // It was not created, so build it now
 RepositorySettings settings =
 (RepositorySettings)ConfigurationManager.GetSection(
RepositoryMappingConstants.RepositoryMappingsConfigurationSectionName);

 // Get the type to be created
 string interfaceTypeName = typeof(T).Name;
 Type repositoryType =
 Type.GetType(
settings.RepositoryMappings[interfaceTypeName].RepositoryFullTypeName);

 // Create the provider
 ProviderFactory.provider =
 Activator.CreateInstance(repositoryType);
 }

 return ProviderFactory.provider as T;
 }
 }
}

c11.indd 373c11.indd 373 3/18/08 5:55:23 PM3/18/08 5:55:23 PM

Chapter 11: The Client Membership System

374

 This code is very similar to the RepositoryFactory code from Chapter 2 , but it is a little bit more
scaled down. In order to make things easier, it actually uses the same configuration code as the
 RepositoryFactory class.

 Again, just like with the Repository interfaces and the RepositoryFactory , by using the combination
of interface and Factory, it allows me to implement the Separated Interface Pattern (Fowler). In other
words, I can keep the interface separate from the implementation and yet still create instances of the
interface and use those instances without even knowing what they are.

The ClientMembershipProvider Class
 This is probably the most complicated class in the Client Membership System, or at least it was the
hardest one for me to create. I wanted to make sure that I did not hide any domain logic in this class;
I really wanted the domain logic to stay in the domain model where it is supposed to be.

 This class kind of resembles the MembershipProvider class of the ASP.NET Membership system, but
the main difference is that it implements the IClientMembershipProvider interface.

Class Signature and Private Fields

 The first thing to notice about this class is that it is abstract and implements two different interfaces:

using System;
using System.Globalization;
using System.Security.Cryptography;
using System.Text;
using SmartCA.Infrastructure.DomainBase;
using SmartCA.Infrastructure.RepositoryFramework;
using SmartCA.Model.Membership;

namespace SmartCA.Infrastructure.Membership.Providers
{
 public abstract class ClientMembershipProvider
 : IClientMembershipProvider, IUnitOfWorkRepository
 {
 #region Constants

 private static class Constants
 {
 public const int SaltSizeInBytes = 0x10;
 public const string NoEncryptedPasswordsWithAutoGenKeys =
 “Cannot use encrypted passwords with autogenerated keys”;
 public const string CannotDecodeHashedPassword =
 “Provider cannot decode hashed password”;
 public const string NoPasswordRetrieval =
 “Password retrieval is not supported”;
 public const int PasswordSize = 14;
 }

 #endregion

 #region Private Fields

c11.indd 374c11.indd 374 3/18/08 5:55:24 PM3/18/08 5:55:24 PM

Chapter 11: The Client Membership System

375

 private IUnitOfWork unitOfWork;

 #endregion

 The first interface that this class implements is the IClientMembershipProvider interface. This should
not be a surprise, and makes total sense from what I have shown so far. The second one, the
 IUnitOfWorkRepository interface, is a little bit more intriguing. By implementing this interface, this
allows me to let the Client Membership System take part in the Synchronization Framework introduced
in the last chapter. This is very important, because this allows the Client Membership System to stay
synchronized with the membership data on the server.

 The next important thing about this class is that it is an abstract class. By being abstract, it can absorb
and encapsulate any type of Client Membership Provider logic and make it easier to write the Client
Membership Provider implementations. As you will later see, this class uses the Template Method
pattern all over the place to make implementing a Client Membership provider as simple as storing and
retrieving data from a data store.

The Constructor

 The constructor for the class does not do much, except instantiate a UnitOfWork class and delegate for
the Provider to initialize itself:

 #region Constructors

 protected ClientMembershipProvider()
 {
 this.unitOfWork = new UnitOfWork();
 this.Initialize();
 }

 #endregion

 Note that it is protected, and that the Initialize method that it is calling is also abstract. This is the
first occurrence of the Template Method pattern in the class.

 Here is the Initialize method signature:

protected abstract void Initialize();

 The method is protected, which helps encapsulate the provider implementation by not allowing other
callers to initialize it except the ClientMembershipProvider class.

 The Methods

 Probably the easiest way to look at the methods in the ClientMembershipProvider class is to look at
them from the perspective of the IClientMembershipProvider interface. The first two methods of the
 IClientMembershipProvider interface are implemented as pass - through methods to the derived
Provider:

 public abstract User GetUser(object userKey);
 public abstract User GetUser(string username);

c11.indd 375c11.indd 375 3/18/08 5:55:24 PM3/18/08 5:55:24 PM

Chapter 11: The Client Membership System

376

 They are both marked as abstract, so it is up to the derived Provider to retrieve the User instances from
the data store properly.

 The next two methods of the interface implementation are the GetPassword overloaded methods. I will
only show the code for one of the overloads here:

 public virtual string GetPassword(string username, string answer)
 {
 ClientMembershipUser user = this.GetClientMembershipUser(username);
 return this.GetPassword(user, answer);
 }

 Notice how this method is marked virtual. I made it virtual in case someone else writing a Client
Membership Provider wanted to override the logic in this method. You will see this pattern repeated on
all of the methods implemented for the IClientMembershipProvider interface in this class.

 This method first gets a ClientMembershipUser instance from the username argument. This is
something you will see a lot in this class, because the ClientMembershipUser class has all of the
security - related data and behavior that the Provider needs. This happens with the
 GetlClientMembershipUser method:

 private ClientMembershipUser GetClientMembershipUser(string username)
 {
 return this.GetUser(this.GetUser(username));
 }

 This method is calling two methods in a nested fashion. Here is the outer method:

protected abstract ClientMembershipUser GetUser(User user);

 This method is implemented in the derived Client Membership provider and is protected, which is good
encapsulation. The purpose of the method is to take a User instance and decorate it with the necessary
data to be a ClientMembershipUser instance. The inner GetUser method looks like this:

public abstract User GetUser(string username);

 This method should look familiar, as I showed it earlier in this section. Finally, the GetPassword method
finishes by calling the class ’ s protected virtual GetPassword method:

 protected virtual string GetPassword(ClientMembershipUser user,
 string passwordAnswer)
 {
 // Make sure password retrievals are allowed
 User.CheckPasswordRetrieval();

 // Validate the user’s password answer
 this.ValidateUserWithPasswordAnswer(user, passwordAnswer, true);

 // Get the user’s password from persistence
 return this.GetPasswordFromPersistence(user);
 }

c11.indd 376c11.indd 376 3/18/08 5:55:24 PM3/18/08 5:55:24 PM

Chapter 11: The Client Membership System

377

 This method first checks to see whether password retrievals are even allowed in the Client Membership
System. Next, it authenticates the user with the User ’ s supplied password answer via the
 ValidateUserWithPasswordAnswer method:

 private void ValidateUserWithPasswordAnswer(ClientMembershipUser user,
 string passwordAnswer, bool throwIfFails)
 {
 if (passwordAnswer != null)
 {
 passwordAnswer = passwordAnswer.Trim();
 }

 SecurityHelper.CheckParameter(passwordAnswer,
 this.Application.RequiresQuestionAndAnswer,
 this.Application.RequiresQuestionAndAnswer,
 false, this.Application.MaxPasswordAnswerSize,
 “passwordAnswer”);

 string passwordAnswerFromPersistence =
 this.GetPasswordAnswerFromPersistence(user);

 try
 {
 if (!this.CheckPasswordAnswer(passwordAnswer,
 passwordAnswerFromPersistence,
 user.PasswordFormat, user.PasswordSalt))
 {
 user.PasswordAnswerAttemptFailed();
 if (throwIfFails)
 {
 throw new SecurityException
 (“The password answer supplied was not correct”);
 }
 }
 else
 {
 user.PasswordAnswerAttemptSucceeded();
 }
 }
 finally
 {
 this.PersistUser(user);
 }
 }

 This method first starts out by validating all of the arguments passed in. The next step it needs to
perform is to get the User ’ s password answer from the data store so that it can compare it to the
password answer that the User supplied. It gets the User ’ s password answer from the data store via the
 GetPasswordAnswerFromPersistence method, which is another protected, abstract method:

protected abstract string GetPasswordAnswerFromPersistence(
 ClientMembershipUser user);

c11.indd 377c11.indd 377 3/18/08 5:55:25 PM3/18/08 5:55:25 PM

Chapter 11: The Client Membership System

378

 Once the password answer is obtained, the next step is to check to see if the password answer supplied
equals the password answer from the data store. This is where the CheckPasswordAnswer method
comes in:

 private bool CheckPasswordAnswer(string passwordAnswer,
 string passwordAnswerFromPersistence,
 PasswordFormat passwordFormat, string salt)
 {
 return this.CheckPassword(
 passwordAnswer.ToLower(CultureInfo.InvariantCulture),
 passwordAnswerFromPersistence, passwordFormat, salt);
 }

 This method does a pass - through to the CheckPassword method. I did this, instead of just having one
method, to make the code more readable. Here is the CheckPassword method:

 private bool CheckPassword(string password, string passwordFromPersistence,
 PasswordFormat passwordFormat, string salt)
 {
 string encodedPassword = this.EncodePassword(password,
 passwordFormat, salt);
 return passwordFromPersistence.Equals(encodedPassword);
 }

 The important thing to take away from this code is that the password answer from the data store is
already hashed. I have to hash the password answer that is being passed in, so I can compare apples to
apples. The way I hash the value is to call the EncodePassword method:

 private string EncodePassword(string password,
 PasswordFormat passwordFormat, string salt)
 {
 if (passwordFormat == PasswordFormat.Clear)
 {
 return password;
 }
 byte[] bytes = Encoding.Unicode.GetBytes(password);
 byte[] source = Convert.FromBase64String(salt);
 byte[] destination = new byte[source.Length + bytes.Length];
 byte[] passwordBytes = null;
 Buffer.BlockCopy(source, 0, destination, 0, source.Length);
 Buffer.BlockCopy(bytes, 0, destination, source.Length, bytes.Length);
 if (passwordFormat == PasswordFormat.Hashed)
 {
 HashAlgorithm algorithm = HashAlgorithm.Create(
 this.Application.HashAlgorithmType);
 if ((algorithm == null) & &
 this.Application.IsHashAlgorithmFromMembershipConfig)
 {
 this.ThrowHashAlgorithmException();
 }
 passwordBytes = algorithm.ComputeHash(destination);
 }
 return Convert.ToBase64String(passwordBytes);
 }

c11.indd 378c11.indd 378 3/18/08 5:55:25 PM3/18/08 5:55:25 PM

Chapter 11: The Client Membership System

379

 This code essentially takes a password string and a password salt, and then encodes the password using
the salt in the manner specified in the passwordFormat argument. In the case of the current
configuration of the Client Membership System, it will be using a PasswordFormat enumeration value
of Hashed .

 The next IClientMembershipProvider interface method implementation is the ChangePassword
method:

 public virtual bool ChangePassword(string username, string oldPassword,
 string newPassword)
 {
 ClientMembershipUser user = this.GetClientMembershipUser(username);
 this.ChangePassword(user, oldPassword, newPassword);
 return true;
 }

 This method is also marked virtual for flexibility reasons and starts out just like the GetPassword
method by calling the GetClientMembershipUser method to get a ClientMembershipUser instance.
It then passes that instance on to the protected ChangePassword method:

 protected virtual void ChangePassword(ClientMembershipUser user,
 string oldPassword, string newPassword)
 {
 SecurityHelper.CheckParameter(oldPassword, true, true, false,
 this.Application.MaxPasswordSize, “oldPassword”);
 SecurityHelper.CheckParameter(newPassword, true, true, false,
 this.Application.MaxPasswordSize, “newPassword”);

 // Validate the user before making any changes
 this.ValidateUserWithPassword(user, oldPassword, true);

 // Make sure the new password is ok
 User.ValidatePassword(newPassword);

 // encode the new password
 string encodedPassword = this.EncodePassword(newPassword,
 user.PasswordFormat, user.PasswordSalt);

 if (encodedPassword.Length > this.Application.MaxPasswordSize)
 {
 throw new ArgumentException(“Membership password too long”,
 “newPassword”);
 }

 // Save the new password
 this.PersistChangedPassword(user, encodedPassword);
 }

 I marked this method as protected in order to encapsulate it and made it virtual, so the derived provider
would have some flexibility in using it. This code starts out with very familiar methods for validating the

c11.indd 379c11.indd 379 3/18/08 5:55:26 PM3/18/08 5:55:26 PM

Chapter 11: The Client Membership System

380

password values passed in. It then authenticates the user with the oldPassword argument value that
was passed in via the ValidateUserWithPassword method:

 private void ValidateUserWithPassword(ClientMembershipUser user,
 string password, bool throwIfFails)
 {
 if (password != null)
 {
 password = password.Trim();
 }

 SecurityHelper.CheckParameter(password,
 true, true, true,
 this.Application.MaxPasswordAnswerSize,
 “password”);

 string passwordFromPersistence =
 this.GetPasswordFromPersistence(user);

 try
 {
 if (!this.CheckPassword(password,
 passwordFromPersistence,
 user.PasswordFormat, user.PasswordSalt))
 {
 user.PasswordAttemptFailed();
 if (throwIfFails)
 {
 throw new SecurityException
 (“The password supplied was not correct”);
 }
 }
 else
 {
 user.PasswordAttemptSucceeded();
 }
 }
 finally
 {
 this.PersistUser(user);
 }
 }

 Very similar to the ValidateUserWithPasswordAnswer method previously shown, this method ’ s job is
to authenticate a user based on their user password value. Its logic is almost identical to the
 ValidateUserWithPasswordAnswer method, except that it validates the user using their password
instead of their password answer.

 Okay, going back to the ChangePassword method, the next step after authenticating the user is to
encode the new password via the previously shown EncodePassword method. Once the new password
is encoded, it is then checked to make sure it is not too long.

c11.indd 380c11.indd 380 3/18/08 5:55:26 PM3/18/08 5:55:26 PM

Chapter 11: The Client Membership System

381

 if (password.Length > this.Application.MaxPasswordSize)
 {
 throw new ArgumentException(“Membership password too long”,
 “newPassword”);
 }

 this.PersistChangedPassword(user, password);

 Once the check of the newly encoded password is done, then the User ’ s new password is saved to the
data store via the PersistChangedPassword method:

protected abstract void PersistChangedPassword(ClientMembershipUser user,
 string newPassword);

 The PersistChangedPassword method is another protected abstract method that the derived Client
Membership Provider must override. Its job is to save the User ’ s data, including their new password, to
the data store.

 The next IClientMembershipProvider interface method implementation is the
 ChangePasswordQuestionAndAnswer method:

 public virtual bool ChangePasswordQuestionAndAnswer(string username,
 string password, string newPasswordQuestion,
 string newPasswordAnswer)
 {
 ClientMembershipUser user = this.GetClientMembershipUser(username);
 this.ChangePasswordQuestionAndAnswer(user, password,
 newPasswordQuestion, newPasswordAnswer);
 return true;
 }

 This method first obtains a ClientMembershipUser instance, and then passes that instance to the
protected virtual ChangePasswordQuestionAndAnswer method:

 protected virtual void ChangePasswordQuestionAndAnswer(
 ClientMembershipUser user, string password,
 string newPasswordQuestion, string newPasswordAnswer)
 {
 SecurityHelper.CheckParameter(newPasswordQuestion,
 this.Application.RequiresQuestionAndAnswer,
 this.Application.RequiresQuestionAndAnswer, false,
 this.Application.MaxPasswordQuestionSize, “newPasswordQuestion”);

 if (newPasswordAnswer != null)
 {
 newPasswordAnswer = newPasswordAnswer.Trim();
 }

 SecurityHelper.CheckParameter(newPasswordAnswer,
 this.Application.RequiresQuestionAndAnswer,
 this.Application.RequiresQuestionAndAnswer, false,

(continued)

c11.indd 381c11.indd 381 3/18/08 5:55:26 PM3/18/08 5:55:26 PM

Chapter 11: The Client Membership System

382

 this.Application.MaxPasswordAnswerSize, “newPasswordAnswer”);

 // Validate the user before making any changes
 this.ValidateUserWithPassword(user, password, true);

 string encodedPasswordAnswer;

 if (!string.IsNullOrEmpty(newPasswordAnswer))
 {
 encodedPasswordAnswer = this.EncodePassword(
 newPasswordAnswer.ToLower(CultureInfo.InvariantCulture),
 user.PasswordFormat, user.PasswordSalt);
 }
 else
 {
 encodedPasswordAnswer = newPasswordAnswer;
 }

 SecurityHelper.CheckParameter(encodedPasswordAnswer,
 this.Application.RequiresQuestionAndAnswer,
 this.Application.RequiresQuestionAndAnswer, false,
 this.Application.MaxPasswordAnswerSize, “newPasswordAnswer”);

 this.PersistChangedPasswordQuestionAndAnswer(user, password,
 newPasswordAnswer);
 }

 This method starts out by validating all of the parameters passed into it, as well as authenticating the
User based on the password argument passed in. Once all of those tests pass, it encodes the new
password answer string using the familiar EncodePassword method. Once the password answer has
been encoded, it must be validated again in order to make sure that it does not exceed the maximum
password size limits of the Client Membership System. Once the encoded password answer has passed
all of these tests, the password question and answer are then persisted to the data store via the
 PersistChangedPasswordQuestionAndAnswer method:

protected abstract void PersistChangedPasswordQuestionAndAnswer(
 ClientMembershipUser user, string password,
 string newPasswordAnswer);

 Since this method is abstract, it is implemented in the derived Client Membership Provider.

 The next method in the IClientMembershipProvider interface is the ResetPassword method, which
has one overload. I will just show the code for the ResetPassword method that requires a password
answer to be passed in:

 public virtual string ResetPassword(string username, string answer)
 {
 ClientMembershipUser user = this.GetClientMembershipUser(username);
 return this.ResetPassword(user, answer);
 }

(continued)

c11.indd 382c11.indd 382 3/18/08 5:55:27 PM3/18/08 5:55:27 PM

Chapter 11: The Client Membership System

383

 This method gets the ClientMembershipUser instance and then passes it to the protected virtual
 ResetPassword method:

 protected virtual string ResetPassword(ClientMembershipUser user,
 string passwordAnswer)
 {
 // Are password resets allowed?
 User.CheckPasswordReset(passwordAnswer);

 // Validate the user’s password answer
 this.ValidateUserWithPasswordAnswer(user, passwordAnswer, true);

 int maxPasswordSize =
 (this.Application.MinRequiredPasswordLength <
 Constants.PasswordSize)
 ? Constants.PasswordSize :
 this.Application.MinRequiredPasswordLength;

 // Create the new password
 string newPassword = System.Web.Security.Membership.GeneratePassword(
 maxPasswordSize,
 this.Application.MinRequiredNonAlphanumericCharacters);

 // Encode the password
 string newEncodedPassword = this.EncodePassword(newPassword,
 user.PasswordFormat, user.PasswordSalt);

 // Save the user’s new password
 this.PersistResetPassword(user, newEncodedPassword);

 // return the new password (not the encoded one!)
 return newPassword;
 }

 This method first checks to see whether password resets have been configured to be allowed in the
Client Membership System. If that test passes, then the User is authenticated with his or her password
answer. If that test passes, then the Membership class of the .NET Framework ’ s System.Web.Security
namespace is used to generate a new password via its GeneratePassword method. After getting the
newly generated password, it is encoded via the EncodePassword method and then saved to the data
store. Finally the new password value is returned in clear text to the caller.

 The next IClientMembershipProvider interface method implementation is the UpdateUser method:

 public virtual void UpdateUser(User user)
 {
 ClientMembershipUser clientMembershipUser = this.GetUser(user);
 this.unitOfWork.RegisterChanged(clientMembershipUser, this);
 this.unitOfWork.Commit();
 }

c11.indd 383c11.indd 383 3/18/08 5:55:27 PM3/18/08 5:55:27 PM

Chapter 11: The Client Membership System

384

 This method is interesting to me because instead of just delegating to the protected abstract method
 PersistUser , it instead calls the RegisterChanged method of the IUnitOfWork instance. Then it calls
the Commit method on the IUnitOfWork instance. This is very significant because this is how the
Provider is hooking in to the Synchronization Framework from the last chapter. When the IUnitOfWork
instance ’ s Commit method is called, it calls back into the IUnitOfWorkRepository interface passed in
with the RegisterChanged method. This is better known as a double dispatch.

 If you recall from earlier in the chapter, the ClientMembershipProvider class implements the
 IUnitOfWorkRepository interface, whose methods are called in the IUnitOfWork ’ s Commit
implementation. Here is the IUnitOfWorkRepository interface implementation:

 #region IUnitOfWorkRepository Members

 public void PersistNewItem(IEntity item)
 {
 throw new NotImplementedException();
 }

 public void PersistUpdatedItem(IEntity item)
 {
 ClientMembershipUser user = (ClientMembershipUser)item;
 this.PersistUser(user);
 }

 public void PersistDeletedItem(IEntity item)
 {
 throw new NotImplementedException();
 }

 #endregion

 As you can see, the only method implemented on the interface is the PersistUpdatedItem method.
This is because all I am doing in the ClientMembershipProvider with the User instances is updating
them, I am not adding new users or deleting users—those types of activities are all done on the server.

 The PersistUpdatedItem method is very simple; it casts the IEntity instance passed into it to a
 ClientMembershipUser instance, and then passes that to the protected abstract PersistUser method
previously shown.

The SqlCeClientMembershipProvider Class
 The SqlCeClientMembershipProvider class inherits from the ClientMembershipProvider abstract
class. Its main purpose is to persist User data to and from the local SQL CE database.

c11.indd 384c11.indd 384 3/18/08 5:55:27 PM3/18/08 5:55:27 PM

Chapter 11: The Client Membership System

385

Class Signature and Private Fields

 The signature is similar to the SqlCeRepositoryBase < T > signature, as it contains a private field for the
Enterprise Library ’ s Database class for use in some of its methods:

using System.Data;
using System.Data.Common;
using System.Text;
using Microsoft.Practices.EnterpriseLibrary.Data;
using SmartCA.Infrastructure.EntityFactoryFramework;
using SmartCA.Infrastructure.Helpers;
using SmartCA.Model.Membership;

namespace SmartCA.Infrastructure.Membership.Providers
{
 public class SqlCeClientMembershipProvider : ClientMembershipProvider
 {
 private Database database;
 private Application application;

 The Initialize Method Override

 This is the method override that the constructor of the ClientMembershipProvider base class calls:

 protected override void Initialize()
 {
 this.database = DatabaseFactory.CreateDatabase();
 string sql = “SELECT * FROM Application;”;
 using (DbCommand command = this.database.GetSqlStringCommand(sql))
 {
 using (IDataReader reader = this.database.ExecuteReader(command))
 {
 if (reader.Read())
 {
 this.application =
 ApplicationFactory.BuildApplication(reader);
 }
 }
 }
 }

 The main tasks that this method performs are to initialize the database field value and to populate the
application field value with the Client Membership System configuration information from the database.

The GetUser Method Overrides

 There are three method overrides for GetUser . Here are the first two:

 public override User GetUser(object userKey)
 {
 return this.GetUserFromSql(string.Format
 (“SELECT * FROM [User] WHERE UserId = ‘{0}’”, userKey));
 }

(continued)

c11.indd 385c11.indd 385 3/18/08 5:55:28 PM3/18/08 5:55:28 PM

Chapter 11: The Client Membership System

386

 public override User GetUser(string username)
 {
 return this.GetUserFromSql(string.Format
 (“SELECT * FROM [User] WHERE UserName = ‘{0}’”, username));
 }

 As you can see, they both only differ by their SQL statements and both of them use the GetUserFromSql
helper method:

 private User GetUserFromSql(string sql)
 {
 User user = null;
 using (DbCommand command = this.database.GetSqlStringCommand(sql))
 {
 using (IDataReader reader = this.database.ExecuteReader(command))
 {
 IEntityFactory < User > entityFactory =
 EntityFactoryBuilder.BuildFactory < User > ();
 if (reader.Read())
 {
 user = entityFactory.BuildEntity(reader);
 }
 }
 }
 return user;
 }

 This code in this method should look pretty familiar by now; it is following the standard pattern laid out
for converting data from the database into IEntity instances.

 The third method override for GetUser is a little bit different; it takes an existing User instance and adds
the necessary data to it in order to make it a ClientMembershipUser instance:

 protected override ClientMembershipUser GetUser(User user)
 {
 ClientMembershipUser membershipUser = null;
 string sql = string.Format(
 “SELECT * FROM [User] WHERE UserId = ‘{0}’”,
 user.UserKey.ToString());
 using (DbCommand command = this.database.GetSqlStringCommand(sql))
 {
 using (IDataReader reader = this.database.ExecuteReader(command))
 {
 if (reader.Read())
 {
 membershipUser =
 ClientMembershipUserFactory.BuildClientMembershipUser(
 user, reader);
 }
 }
 }
 return membershipUser;
 }

(continued)

c11.indd 386c11.indd 386 3/18/08 5:55:28 PM3/18/08 5:55:28 PM

Chapter 11: The Client Membership System

387

 This code follows almost the same pattern as the GetUserFromSql method, except that it does not use
the IEntityFactory < T > class to build the ClientMembershipUser instance.

 The Other Method Overrides of the SqlCeClientMembershipProvider Class

 All of the other methods in this class are just performing simple read and update operations in the SQL
CE database, so I do not think there is any point in boring you with that code here. The important thing
to note about this class is that almost all of its methods are either protected or private, which is really
good from an encapsulation standpoint. Almost all of the retrieval logic is stored in the
 ClientMembershipProvider base class. The only two public methods on this class are two of the
 GetUser methods, which simply take a parameter and return a User instance.

 The ClientMembershipService Class
 This class is very similar to the other service classes in that it acts as a fa ç ade to an interface, in this case
the IClientMembershipService interface. Here is what its signature and constructor look like:

using SmartCA.Infrastructure.Membership;

namespace SmartCA.Model.Membership
{
 public static class ClientMembershipService
 {
 private static IClientMembershipProvider provider;

 static ClientMembershipService()
 {
 ClientMembershipService.provider =
 ProviderFactory.GetProvider < IClientMembershipProvider > ()
 as IClientMembershipProvider;
 }

 This should look pretty familiar by now; the constructor is using the ProviderFactroy to instantiate an
instance of the IClientMembershipProvider interface for the class to use.

 I am not going to show all of the methods from the Service class, since they are all simply wrapping
the interface and passing the argument data through. Here is a sample so that you can see what I am
talking about:

 public static User GetUser(object userKey)
 {
 return ClientMembershipService.provider.GetUser(userKey);
 }

 public static User GetUser(string username)
 {
 return ClientMembershipService.provider.GetUser(username);
 }

 Both of these GetUser methods pass their call through to the interface instance held by the Service.

c11.indd 387c11.indd 387 3/18/08 5:55:28 PM3/18/08 5:55:28 PM

Chapter 11: The Client Membership System

388

 Client Membership System Unit Tests
 Instead of showing UI code exercising the Client Membership System, I thought it might be better if I
show some of the unit tests used to develop the Client Membership System. This way you can see the
data going in and out and get a better feel for how to use the system. All of the following tests will be
going against the ClientMembershipService class.

 The Login Test
 This test verifies the behavior of the ValidateUser method:

 /// < summary >
 ///A test for logging in
 /// < /summary >
 [TestMethod()]
 public void ValidateUserTest()
 {
 string username = “timm”;
 string password = “Password!23”;
 bool expected = true;
 bool actual = ClientMembershipService.ValidateUser(username, password);
 Assert.AreEqual(expected, actual);
 }

 As you can see, all of the complexity of the back - end system is masked by the fa ç ade, and the call
to authenticate a User is very easy to make. As long as the Assertion returns true, then the unit test
will pass.

 The Change Password Test
 This test is for changing a User ’ s password:

 /// < summary >
 ///A test for ChangePassword
 /// < /summary >
 [TestMethod()]
 public void ChangePasswordTest()
 {
 string username = “timm”;
 string oldPassword = “Password!23”;
 string newPassword = “Password!24”;
 bool expected = true;
 bool actual = ClientMembershipService.ChangePassword(username,
 oldPassword, newPassword);
 Assert.AreEqual(expected, actual);

 // Change it back so the other tests don’t fail
 ClientMembershipService.ChangePassword(username,
 newPassword, oldPassword);
 }

 Notice how, at the end, I have to change the password again to what it was originally. This is so the rest
of the Client Membership System unit tests will pass because they are expecting the data to be in the
same state as it was at the beginning of this method.

c11.indd 388c11.indd 388 3/18/08 5:55:29 PM3/18/08 5:55:29 PM

Chapter 11: The Client Membership System

389

 The Change Password Question and Answer Test
 This test is for changing a User ’ s password question and answer:

 /// < summary >
 ///A test for ChangePasswordQuestionAndAnswer
 /// < /summary >
 [TestMethod()]
 public void ChangePasswordQuestionAndAnswerTest()
 {
 string username = “timm”;
 string password = “Password!23”;
 string newPasswordQuestion = “What color is the sky?”;
 string newPasswordAnswer = “Grey”;
 bool expected = true;
 bool actual = ClientMembershipService.ChangePasswordQuestionAndAnswer(
 username, password, newPasswordQuestion, newPasswordAnswer);
 Assert.AreEqual(expected, actual);

 // Change it back so the other tests don’t fail
 ClientMembershipService.ChangePasswordQuestionAndAnswer(
 username, password, newPasswordQuestion, “Blue”);
 }

 Summary
 In order to satisfy the requirement of allowing users to be able to perform Membership - related tasks
in an offline scenario, I created the Client Membership System in this chapter. This involved a very rich
domain model for representing the Users and their membership data, as well as a new concept of using
a Provider instead of a repository for interacting with the data store. It also was able to piggyback on
the Synchronization Framework from the last chapter, which meant that all local Membership
transactions would be replayed on the server as well as all server Membership transactions being
played back on the client.

 This chapter was by the far the most difficult code to implement, but that is also why it was so much fun!
Probably the one thing that made this chapter ’ s code easier to correct and implement were my unit tests.
I was able to do a lot of refactoring with the comfort of knowing that as long as my unit tests passed I
was all right.

 I sure have come a long way since the first chapter! If you remember, I started out with nothing more
than a problem statement and some design ideas to build a smart client application. During the course of
the book, I took you on a journey of building a pretty robust Repository Framework (that was refactored
several times), introduced WPF and the Model - View - ViewModel pattern, implemented lot of business
logic for the various functional areas of the application, built a Synchronization Framework, and finally
concluded with a Client Membership System. If nothing else, I hope you at least got some great reusable
code from all of these exercises that I took you on throughout the book! Finally, I want to thank you for
being patient enough to read through this book, I appreciate the fact that you are reading it right now!

c11.indd 389c11.indd 389 3/18/08 5:55:29 PM3/18/08 5:55:29 PM

c11.indd 390c11.indd 390 3/18/08 5:55:29 PM3/18/08 5:55:29 PM

In
de

x

A
AddProposalRequestTest method,

239–240
Address class

creating headquarter address
dropdown, 147

defining Aggregate boundaries, 111–112
designing domain model, 110

Address property, Project, 68–70
Addresses UserControl, 145–146
AddressesViewModel class, 148–151
AddressFactory class, 127
AddRfiTest method, RFI, 204–205, 207
AddSubmittalTest method, 162, 164
AddTest method, IClientTransaction

Repository, 331
AddTest method, ICompanyRepository,

115–116
Aggregate boundaries

Change Order, 268
Company and Contact, 111–112
Construction Change Directive

Aggregate, 298
Employee, 57–58
Project, 57–58
Proposal Request, 236–237
Request for Information, 202
Submittal, 159–160

Aggregates
Change Order Aggregate, 266–268
Company Aggregate, 57–58, 111–112
Construction Change Directive Aggregate,

296–298
Contact Aggregate, 110–112
Employee Aggregate, 57–59
overview of, 16–17

Project Aggregate, 56–59, 111–112
Proposal Request Aggregate, 234–237
RFI Aggregate, 201–203, 213–219
Submittal Aggregate, 158–161

Allowances property, Project, 75
AmountChanged property,

ChangeOrder, 277
API (application programming

interface), 14
AppendAddresses method,

CompanyRepository, 125–126
AppendConstructionAdministrator

method, ProjectRepository, 85
AppendContractor method
ChangeOrderRepository class, 283
ConstructionChangeDirective

class, 308
AppendCopyToList method
RequestForInformation class, 214,

217–218
Submittal class, 180–181

AppendFrom method
ProposalRequest class, 254
RequestForInformation class, 214
Submittal class, 179

AppendOwner method,
ProjectRepository, 84

AppendPrincipal method,
ProjectRepository, 85

AppendProjectAllowances method,
ProjectRepository, 84, 85–86

AppendRoutingItems method
ChangeOrderRepository class,

283–284
RequestForInformation

class, 214
Submittal class, 182–183

Index

bindex.indd 391bindex.indd 391 3/17/08 3:01:59 PM3/17/08 3:01:59 PM

392

AppendTo method
ConstructionChangeDirective

class, 308
ProposalRequest class, 254
Submittal class, 179–180

AppendTrackingItems method,
Submittal, 181–182

Application class, 371–372
application layer

defined, 7–9
designing, 14
services, 16

application programming interface (API), 14
Application property,

IClientMembershipProvider, 373
Applying Domain-Driven Design and Patterns,

With Examples in C# and .NET (Nilsson),
15, 30

architectural layers. See layered
architecture

Auto-update requirement, 5, 11
Availability requirement, 4, 6

B
BidPackageNumber property, Contract, 77
BindingList<MutableAddress> type,

CompanyViewModel, 140–141
BindingList<T>, SubmittalViewModel

constructors, 188–189
BrokenRule class, ProposalRequest,

249–250
BrokenRuleMessages class
ChangeOrder class, 282
ConstructionChangeDirective

class, 304
ProposalRequest class, 250–251

BuildBaseWhereClause method,
SqlCeRepositoryBase<T>, 79, 88

BuildChildCallbacks method
ChangeOrderRepository class, 283
CompanyRepository class, 125
ConstructionChangeDirective class,

307–308
ProjectRepository class, 83–86

ProposalRequest class, 254
RequestForInformation class,

213–214
SqlCeRepositoryBase<T> class, 39
SubmittalRepository class, 178–179

BuildEntitiesFromSql method,
SqlCeRepositoryBase<T>, 41

BuildEntity method,
IEntityFactory<T>, 42

BuildEntityFromReader method,
SqlCeRepositoryBase<T>, 40–41

BuildEntityFromSql method,
SqlCeRepositoryBase<T>, 40

BuildFactory method,
EntityFactorBuilder class, 44–45

BuildNewEntity method,
ConstructionChangeDirectiveView -
Model, 323

C
C# 3.0 object initializer features, 100
CalculateDaysLapsed method,

Submittal, 177
caller registration, Unit of Work, 30
CancelCommand property, ViewModel,

51, 94
Change Order Aggregate, 266–268
Change Orders, 265–293

design, 266–267, 267, 268,
268–271, 271

problem, 265
solution, 271–275, 275–280, 280–283,

283–285, 285–288, 288–289,
289–291, 292–293

ChangeOrderNumberSpecification
class, 278

ChangeOrderRepository class, 283–285
ChangeOrderRuleMessages class, 282
ChangeOrderService class, 288–289,

305–306
ChangeOrderViewModel class, 289–291
ChangePassword method,

IClientMembershipProvider,
364–365, 379–381

AppendTo method

bindex.indd 392bindex.indd 392 3/17/08 3:02:00 PM3/17/08 3:02:00 PM

393

In
de

x

ChangePasswordQuestionAndAnswer
method,
IClientMembershipProvider,
365–366, 381–382

CheckParameter method,
SecurityHelper class, 362–363

CheckPassword method,
IClientMembershipProvider, 378

CheckPasswordAnswer method,
IClientMembershipProvider, 378

ChildCallBacks property, 39, 84
class signature
ClientMembershipProvider class,

374–375
SqlCeClientMembershipProvider

class, 384
User class, 360–361

classes
application layer design, 14
Change Order Aggregate, 267
Company and Contact Aggregates, 111
Construction Change Directive, 296
Construction Change Directive

Aggregate, 298
designing Repositories for, 58–59
Project Aggregate, 56–57
Repository base, 33–41
Request for Information, 200
RFI Aggregate, 201–202
Submittal Aggregate, 159

ClickOnce technology, 11
Client Device requirement, 5–7
Client Membership System, 357–389

designing, 358–359
domain model classes, 360, 360–367,

367–371, 371–372, 387. See Client
Membership System Provider

Microsoft ASP.NET Membership vs., 359
password security, 358
problem, 357
unit tests, 388–389

Client Membership System Provider,
372–387

ClientMembershipProvider class,
374–384

designing, 359

IClientMembershipProvider, 372–373
ProviderFactory class, 373–374
SqlCeClientMembershipProvider

class, 384–386
ClientMembershipProvider class,

374–384
class signature and private fields,

374–375
constructors, 375
IUnitOfWorkRepository

implementation, 384
methods, 375–384

ClientMembershipUser class
class signature and private fields, 367
constructor, 367–368
methods, 368–369, 369–370, 370, 371
properties, 368

ClientTransaction class, 329, 338
ClientTransactionRepository class,

334, 341
ClientTransactionRepositoryFactory

class, 340
ClientTransactionService class,

348–349
CollectionView class, 49
CollectionView variable,

SubmittalViewModel, 189, 192
ComboBox control, headquarters address

dropdown, 147
ComboBox declaration, ViewModel, 52–53
command handlers. See handlers
Command pattern, WPF, 47–53
Command property, Delete Button, 146
Commit method, Unit of Work
AddProposalRequestTest method, 240
AddRfiTest method, 205
AddSubmittalTest method, 163
AddTest method, Companies, 116
CompanyService class, 135
overview of, 33
RepositoryBase<T> class, 132
synchronizing with server, 333–334

Companies and Contacts, 109–155
designing, 110, 110–111, 110–119,

111–112, 112–114, 114–119
problem, 109

Companies and Contacts

bindex.indd 393bindex.indd 393 3/17/08 3:02:00 PM3/17/08 3:02:00 PM

394

Companies and Contacts (continued)
solution, 119–121, 119–155, 121–123,

123–124, 124–130, 130–131,
131–134, 134–137, 137–143,
144–147, 148–154, 154–155

Company Aggregate, 57–58, 111–112
Company class, 70–71, 119–121
Company property, Contact, 111
CompanyRepository class, 124–130
AppendAddresses method, 125–126
AppendOwner method, 84
BuildChildCallbacks method, 125
GetBaseQuery method, 126
GetBaseWhereClause, 127
implementing, 124
overview of, 124–130
public constructors, 125
Unit of Work implementation, 127–130

CompanyRepositoryTest class, 114
CompanyService class, 134–135
CompanyView class
HeadquartersAddress dropdown, 147
overview of, 144–145
using Xceed DataGrid, 145–146

CompanyViewModel class, 137–143
constructors, 140–141
handlers, 143
implementing, 137–140
properties, 141–143

Configuration folder
EntityFactoryFramework, 44
RepositoryFramework, 24–28

configuration section, Entity Factory
Framework, 42–44

configuration section, Repository Factory,
24–28

ConfigurationElementCollection
class, 27

ConfigurationSection class, 25
Construction Administration Database

design requirement, 4–6
problems of legacy application, 1–3
solution, 6–11

Construction Administrator, Project Domain,
56–57

Construction Change Directive, 295–325
designing, 296, 297, 298, 299, 300
problem, 295
solution, 300–302, 302–304, 304–305,

305–306, 306–307, 307–309,
310–313, 313–314, 314–321,
321–323, 324–325

Construction Change Directive Aggregate,
296–298

ConstructionAdministrator property,
Project class, 71–73

ConstructionChangeDirectiveRule
Messages class, 304

ConstructionChangeDirectiveService
class, 313–314

ConstructionChangeDirectiveView
Model class

EditableViewModel<T> class, 317–319
handlers, 319–320
overview of, 314–316
refactoring ViewModel class, 316

constructors
ChangeOrder class, 271–275
ChangeOrderViewModel class, 289–290
ClientMembershipProvider class, 375
Company class, 121
CompanyRepository class, 125
Construction Change Directive, 300–302
ConstructionChangeDirectiveView
Model class, 315

ContactRepository class, 130
EditableViewModel<T> class, 317–318
EmployeeRepository class, 88–89
Project class, 65–67
ProjectContactViewModel class, 152
ProjectInformationViewModel class,

98–101
ProjectRepository class, 80–83
ProposalRequest class, 242–245
ProposalRequestViewModel class,

258–259
RequestForInformation class,

207–209
RequestForInformationViewmodel

class, 228–229

Companies and Contacts (continued)

bindex.indd 394bindex.indd 394 3/17/08 3:02:01 PM3/17/08 3:02:01 PM

395

In
de

x

SqlCeClientTransactionRepository
class, 342

Submittal class, 164–166
SubmittalViewModel class, 188–189
Synchronizer class, 349
TransmittalViewModel<T> class, RFI,

225–226
UnitOfWork class, new, 335
User class, 361–363

Contact Aggregate, 110–112
Contact class, 121–124
Contact instance, ProjectContact,

123–124
ContactRepository class, 130–131
Contacts. See Companies and Contacts
ContactService class, 135–137
ContingencyAllowanceAmount property,

Project, 75
Contract price, ChangeOrder, 265
Contract time, Change Order, 265
ContractBase class, 339
Contracts, Project Domain, 56–57
Contracts property, Project, 76–77
controls, and Rich Client Applications, 11
Converter class, 345–346
CopyTo instances, RequestFor

Information, 217–219
CopyToList property, Submittal, 171–172
CopyToList section, SubmittalView,

195–197
CreateNumberedProjectChild

method, 307
CSLA Framework (CSLA Framework), 249
CurrentChangeOrder property,

ChangeOrderViewModel, 290–291
CurrentCompany property
CompanyViewModel class, 141–143
Contact class, 111–112, 123
ProjectContactViewModel, 153

CurrentEntity property,
EditableViewModel<T>, 319

CurrentObjectState property,
EditableViewModel<T>, 318–319

CurrentObjectState property,
ProjectInformationViewModel, 105

CurrentSubmittal property,
SubmittalViewModel, 190–191

CurrentTransmittal property,
TransmittalViewModel<T>, 226

customization, and Rich Client
Applications, 11

D
Data Contracts, 339
Data Transfer Objects (DTOs), 15, 339
data transfer, requirement, 6
Database property,

SqlCeRepositoryBase<T>, 39
data-binding, 47
DataGridControl, 145–146
DataHelper class, 40–41
DateOfSubstantialCompletion property,

ChangeOrder, 277–278
DatePicker control, 194
DateReceived property,

RequestForInformation, 206
DateSent property, RoutingItem, 177
DateToFieldSpecification property,

RequestForInformation, 212
DaysLapsed property,

RequestForInformation, 211
DDD rule, 270
declarative programming, WPF, 10
DeferredApproval property,

Submittal, 174
DelegateCommand class, 49–51
DelegateCommand properties
CompanyViewModel class, 144
ProjectContactViewModel class, 153
SubmittalViewModel class, 191–192

Delete Button, Xceed DataGrid, 146
DeleteAddressCommandHandler method,

CompanyViewModel, 143
DeleteCopyToCommandHandler method,

SubmittalViewModel, 192
DeleteCopyToList method
PersistUpdatedItem method, 257
RequestForInformation class, 218, 222

DeleteCopyToList method

bindex.indd 395bindex.indd 395 3/17/08 3:02:01 PM3/17/08 3:02:01 PM

396

DeleteCopyToList method (continued)
Submittal class, 186

DeleteRoutingItems method
RequestForInformation class, 222
Submittal class, 186

DeleteTrackingItems method,
Submittal, 186

DeliveryMethod property, Submittal,
170–171

dependencies, implementing Visual Studio, 19
deployment, and Rich Client Applications, 11
DeploymentItem attribute, 63
Description property, Proposal

Request, 240
DescriptionRuleMessageKeys class, 304
DescriptionSpecification property
ConstructionChangeDirective class,

302–303
ProposalRequest class, 248

Deserialize method, 345
Deserializer class, 345
Design Patterns: Elements of Reusable

Object-Oriented Software (Gamma,
Helm, Johnson and Vlissides), 110

Discipline property, RoutingItem, 177
domain layer

designing, 15–18
fulfilling Maintainability requirement, 8–9
services, 16

domain model
Change Orders, 266–267
Client Membership System classes, 360,

360–367, 367–371, 371–372, 387.
See Client Membership System Provider

Companies and Contacts, 110
Construction Change Directive, 296
Project, 56
Proposal Requests, 234–235
Request for Information, 200–201
Submittal Transmittal, 158

Domain-Driven Design, concepts of, 15–17
Domain-Driven Design: Tackling Complexity in

the Heart of Software (Evans), 2, 15,
17, 69, 200

double dispatch, 384
DTOs (Data Transfer Objects), 15, 339

E
EditableViewModel<T> class, 316,

317–319
Employee Aggregate, 57–59
Employee class, 71–73
Employee Repositories, 59, 88–90
EmployeeService class, 91–92
EncodePassword method,

IClientMembershipProvider,
378, 380

encryption, password security, 358
Entities

Domain-Driven Design concept, 15
Value objects vs., 15

Entity Factory Framework
configuration section, 42–44
defined, 41
EntityFactorBuilder class, 44–45
IEntityFactory<T> interface, 42
IProjectRepository implementation,

82–83
EntityBase class
ChangeOrder class, 280–282
implementing architectural layers, 20–22
ProposalRequest class, 250–251
RequestForInformation class,

217–218
ValidateInitialization method, 275

EntityFactorBuilder class, 44–45
EntityName property,

RequestForInformation, 217–219
ExecuteReader method,

SqlCeRepositoryBase<T>, 40–41
expectedContractorReturnDays class

variable, 244
Extensible Application Markup Language

(XAML), 10, 144–147

F
Factories, Domain-Driven Design, 17
FieldNames static class, 83
Find methods, 23
FindAll methods, 78–79, 82

DeleteCopyToList method (continued)

bindex.indd 396bindex.indd 396 3/17/08 3:02:02 PM3/17/08 3:02:02 PM

397

In
de

x

FindAllDisciplines method,
ISubmittalRepository, 161

FindAllMarketSegmentsTest method,
unit test, 64

FindAllSpecificationSections method,
ISubmittalRepository, 161

FindAllSubmittalStatuses method,
ISubmittalRepository, 161

FindAllTest method,
ICompanyRepository, 115

FindBy method
ChangeOrderRepository class, 284
ConstructionChangeDirective
class, 309

FindSubmittalsByProjectTest
method, 162

ProjectRepository class, 79, 81–82, 132
SubmittalRepository class, 161

FindByKeyTest method,
ICompanyRepository, 114–115

FindByProjectNumberTest method,
63–64

FindBySegmentsAndNotCompletedTest
method, 62–63

FindPending method,
SqlCeClientTransactionRepository,
343–347

FindPendingTransactionsTest method,
IClientTransactionRepository,
331–332

FindProposalRequestsByProjectTest
method, 239

FindRfisByProjectTest method, 204
FindSubmittalsByProjectTest method,

161–162

G
Gang-of-Four (GoF), 110
GetBaseQuery method
CompanyRepository class, 126
ContactRepository class, 131
Employee Repository class, 89
ProjectRepository class, 86
refactoring FindAll method, 78

GetBaseWhereClause method
CompanyRepository class, 127
ContactRepository class, 131
ProjectRepository class, 86
SqlCeRepositoryBase<T> class, 79

GetBrokenRulesMessages method,
ChangeOrder, 282

GetClientMembershipUser method,
IClientMembershipProvider, 379

GetConstructionAdministrators
method, IEmployeeRepository, 65,
89, 91–92

GetCurrentProject method,
ChangeOrder, 275

GetEmployee method, Proposal
Request, 254

GetEntitiesList method,
ConstructionChangeDirectiveView
Model, 324

GetExpectedContractorReturnDays
method, ProposalRequest, 243–244

GetLastSynchronization method,
SqlCeClientTransaction

Repository, 347
GetLastSynchronizationTest

method, 332
GetLastSynchronized method,

Synchronizer, 349–350
GetPassword method,

IClientMembershipProvider, 376
GetPasswordAnswerFromPersistence

method,
IClientMembershipProvider, 377

GetPreviousAuthorizedAmountFrom
method, ChangeOrder, 269, 276,
284–285

GetPreviousTimeChangedTotal method,
ChangeOrder, 269, 277–278

GetPreviousTimeChangedTotalFrom
method, ChangeOrder, 285

GetPrincipals method,
IEmployeeRepository, 64, 89,
91–92

GetProjectContact method
ProjectContactService, 180
ProposalRequest c, 254

GetProjectContact method

bindex.indd 397bindex.indd 397 3/17/08 3:02:02 PM3/17/08 3:02:02 PM

398

GetProjects method, ProjectService, 47
GetRepository method,

RepositoryFactory, 28–30
GetRuleDescription method,

ProposalRequest, 250
GetTransmittals method
ProposalRequestViewModel class, 260
RequestForInformationViewmodel

class, 231
TransmittalViewModel<T> class,

226, 228
GetUser method
ClientMembershipService class, 387
IClientMembershipProvider, 376
SqlCeClientMembershipProvider

class, 384–386
GoF (Gang-of-Four), 110
Gossman, John, 47

H
handlers
ChangeOrderViewModel class, 291–292
EditableViewModel<T> class, 319–320
ProjectContactViewModel class, 154
ProposalRequestViewModel class,

259–260
RequestForInformationViewmodel

class, 230–231
SubmittalViewModel class, 191–192
TransmittalViewModel class, 321–323
TransmittalViewModel<T> class,

227–228
HasBeenTransformedToChangeOrder

property, ConstructionChange
Directive, 303–304

hashing, password security, 358
headquarter address dropdown, 147
HeadquartersAddress property, Company,

121, 142–143

I
IAggregateRoot interface, 270–271, 297
IBindingList<T> interface, 188–189

IChangeOrderRepository interface,
269–271, 283–285, 288–289

IClientMembershipProvider interface,
372–373, 375

IClientTransactionRepository
interface, 329, 331–332

ICommand interface, 49
ICompanyRepository interface

designing Company Repository, 112–113
unit tests, 114–115, 115, 115–116,

116–117, 117
IConstructionChangeDirective

Repository interface
ConstructionChangeDirective
Service class, 313–314

implementing Repository, 307–309
overview of, 299

IContactRepository interface, 118
IDataReader interface, 38, 40–42
IDescribable interface, 297
IEmployeeRepository interface
EmployeeRepository class, 89–90
EmployeeService class, 91–92
overview of, 59
unit tests, 64–65

IEntity interface
Transaction class implementing, 330
User class implementing, 360
ValidateInitialization method,

274–275
IEntityFactory<T> interface,

39–40, 42
immutable Value objects, 15
indexer
CompanyService class, 135
UpdateSubmittalTest method, 163

infrastructure layer
designing, 18
fulfilling Maintainability requirement, 8–9
naming standards for, 14
services, 16

Initialize method
IClientMembershipProvider

class, 375
SqlCeClientMembershipProvider

class, 384

GetProjects method, ProjectService

bindex.indd 398bindex.indd 398 3/17/08 3:02:03 PM3/17/08 3:02:03 PM

399

In
de

x

INotifyPropertyChanged interface,
ViewModel class, 94

InsertCopyTo method,
RequestForInformation, 218–219,
221–222

InsertCopyToList method
RequestForInformation class,

218–219, 221–222
Submittal class, 184–185

InsertRoutingItems method
ChangeOrder class, 287
Submittal class, 184–185

InsertTrackingItems method,
Submittal, 184–185

Intelligent Installation requirement, 5, 11
INumberedProjectChild interface

Change Orders, 267, 269–270, 274, 280
Construction Change Directive, 297,

306–307
IProjectRepository interface

Companies and Contacts, 113–114,
118–119

managing projects, 61–64, 77, 81–83, 91
IProposalRequestRepository interface,

238, 253–257
IReferenceDataRepository, 351,

352–354
IRepository<T> interface
IEmployeeRepository implementing, 59
implementing Repository Framework,

22–23
INumberedProjectChild extending, 269
IProjectRepository implementing, 59
refactoring FindAll method, 78–79
RepositoryBase<T> class implementing,

33–35
TRepository parameter, 29–30

IRequestForInformationRepository
interface, 203, 206

IRoutableTransmittal interface, 215, 221
ISubmittalRepository interface, 161,

178–187
ITransmittal interface
ProposalRequest class, 234
RequestForInformation class,

214–215, 217–218

IUnitOfWork interface
refactoring for synchronization with

server, 329
RemoveProposalRequestTest

method, 241
RepositoryBase<T> class implementing,

35, 132
Unit of Work implementation, 31–33

IUnitOfWorkRepository interface
ClientMembershipProvider class

implementing, 384
RepositoryBase<T> class

implementing, 35
Unit of Work implementation, 31–33

K
Key property, Transaction, 335–337
KeyFieldName property,

RequestForInformation, 217–218
KPIs (key performance indicators), 5

L
layered architecture, 13–53

designing, 13–14, 14, 15–18, 18
problem, 13
solution, 19, 20–22, 41–45, 45–53.

See Repository Framework
Layered Supertype, 18, 20–22
LINQ queries, RFIs, 212
login test, 388

M
Maintainability requirement, 5, 7–9
managing projects, 55–107

designing, 56, 56–57, 57–58, 58–59,
60–65

problem, 55
solution, 88–90, 90–92, 92–102,

102–106. See Project class; Project
Repository

managing projects

bindex.indd 399bindex.indd 399 3/17/08 3:02:03 PM3/17/08 3:02:03 PM

400

Market Segments (Sectors), Project Domain
defined, 56
Project Aggregate classes, 57
Segment property, Project class, 73–75
unit tests, 63–64

MarketSector class, 73–75
MarketSegment class, 74–75
Microsoft ASP.NET Membership, 359
Microsoft Synchronization Services for ADO

.NET, 7, 327–328
Model-View-Controller (MVC) pattern, 47
Model-View-Presenter (MVP) pattern, 47
Model-View-ViewModel pattern, 45–53

defining ViewModel, 46
example, 47–53
overview of, 46
traditional presentation patterns, 45–46

MutableAddress class
CompanyViewModel class, 141, 142–143
creating headquarter address

dropdown, 147
ProjectInformationViewModel

class, 99
using C# 3.0 initializer features, 100

MutableCopyTo type,
SubmittalViewModel, 189

MutableCopyToList property,
SubmittalViewModel, 191–192

MVC (Model-View-Controller) pattern, 47
MVP (Model-View-Presenter) pattern, 47
MyTestInitialize method, unit test, 62

N
Name property, Project, 67–68
namespace pattern, Visual Studio, 14
.NET Generics, 23
.NET Reflection, 44–45
.NET Value types, 68
NewCommandHandler method
ChangeOrderViewModel class, 291
CompanyViewModel class, 143
EditableViewModel<T> class, 319–320
ProjectContactViewModel class, 154
ProposalRequestViewModel class, 259

RequestForInformationViewmodel
class, 230–231

SubmittalViewModel class, 191–192
TransmittalViewModel<T> class,

227–228
NewConstructionCost property,

ChangeOrder, 276–277
Number property, Project, 67–68
NumberedProjectChildFactory class,

306–307
NumberedProjectChildRepository-

Helper class, 309
NumberedProjectChildValidator class,

273–274
NumberSpecification property
ChangeOrder class, 278–280
ProposalRequest class, 247–248
RequestForInformation class,

211–212

O
object registration, Unit of Work, 30
ObjectState property, ViewModel, 94
Offline capability requirement, 5, 6–7
OnFinalDistributionList property,

ProjectContact, 124
OriginalConstructionCost property,

ChangeOrder, 275–276
Owner, Project, 56, 57, 84
Owner property, Project class, 70–71

P
password security
ClientMembershipProvider class

methods, 375–384
ClientMembershipUser class, 368–369,

369–370, 370, 371
designing, 358
IClientMembershipProvider and, 373
unit tests for, 388–389
User class, 364–365, 365–366,

366–367

Market Segments (Sectors), Project Domain

bindex.indd 400bindex.indd 400 3/17/08 3:02:04 PM3/17/08 3:02:04 PM

401

In
de

x

PasswordAnswerAttemptFailed method,
ClientMembershipUser, 370

PasswordAnswerAttemptSucceeded
method, ClientMembershipUser, 371

PasswordAttemptFailed method,
ClientMembershipUser, 368–369

PasswordAttemptSucceeded method,
ClientMembershipUser, 369–370

PasswordFormat enumeration, 358
Patterns of Enterprise Application

Architecture (Fowler), 15, 17–18, 30
PersistChangedPassword method,

IClientMembershipProvider, 381
PersistChangedPasswordQuestion
andAnswer method,

IClientMembershipProvider, 382
PersistDeletedItem method
CompanyRepository class, 129–130
ProjectRepository class, 88,

132–133
RequestForInformationRepository

class, 222–223
SubmittalRepository class, 186–187

persistence ignorance, 7, 17
PersistNewItem method
ChangeOrderRepository class,

285–287
CompanyRepository class, 127–128
ConstructionChangeDirective
class, 310–311

IProjectRepository, 88
ProjectRepository class, 132–133
ProposalRequest class, 255–256
RequestForInformationRepository

class, 220–221
SubmittalRepository class, 183–185

PersistNewTransaction method,
SqlCeClientTransaction
Repository, 342–343

PersistUpdatedItem method
ChangeOrderRepository class,

287–288
CompanyRepository class, 128–129
ConstructionChangeDirective
class, 311–313

IProjectRepository, 87–88

IUnitOfWorkRepository, 384
ProjectRepository class, 132–133
ProposalRequest class, 256–257
RequestForInformationRepository

class, 221–222
SubmittalRepository class,

185–186
Person class, 72–73
Plain-Old CLR Objects (POCO) approach, 15
POCO (Plain-Old CLR Objects) approach, 15
PopulateAddresses method,

ProjectContactViewModel, 153
PopulateMutableCopyToList method
SubmittalViewModel class, 190–191
TransmittalViewModel<T> class, 227

PopulateRoutingItems method,
SubmittalViewModel, 191

PopulateSubmittalChildren method
SubmittalViewModel class, 190
TransmittalViewModel<T> class,

226–227
presentation layer, designing, 18
PreviousAuthorizedAmount property,

ChangeOrder, 276
PreviousTimeChangedTotal property,

ChangeOrder, 277
PriceChangeDirection property,

ChangeOrderViewModel, 290
Principal-in-Charge, Project Domain, 56–57
PrincipalInCharge property, Project,

71–73
private fields
ChangeOrder class, 271–275
ClientMembershipProvider class,

374–375
ConstructionChangeDirective class,

300–302
EditableViewModel<T> class, 317–318
Project class, 65–67
ProposalRequest class, 242–245
RequestForInformation class,

207–209
SqlCeClientMembershipProvider

class, 384
Submittal class, 164–166
User class, 360–361

private fi elds

bindex.indd 401bindex.indd 401 3/17/08 3:02:04 PM3/17/08 3:02:04 PM

402

ProcessReferenceData method,
Synchronizer, 350–351

ProcessServerTransactions method,
Synchronizer, 354–355

Project Aggregate, 56–59, 111–112
Project class, 65–77
Address property, 68–70
ConstructionAdministrator property,

71–73
ContingencyAllowanceAmount property,

75
Contracts property, 76–77
Name and Number properties, 67–68
overview of, 65
Owner property, 70–71
PrincipalInCharge property, 71–73
private fields and constructors, 65–67
Segment property, 73–75
TestingAllowanceAmount property, 75
UtilityAllowanceAmount property, 75

Project Repository. See also
IProjectRepository interface

Companies and Contacts, implementing,
131–134

managing projects, 77–88, 78–79, 80, 80–
83, 83–86, 86, 87–88

ProjectAddress property,
ProjectInformationViewModel, 106

ProjectContact class
defining agggregates, 110–111
designing domain model, 110
designing Repositories, 113–114
implementing, 123–124
ProjectRepository class, 132

ProjectContactView class, 154–155
ProjectContactViewModel class

constructors, 152
handlers, 154
overview of, 148–151
properties, 153

ProjectInformationView class, 102–106
ProjectInformationViewModel class

constructors, 98–101
creating, 94–98
properties, 101–102
view implementation, 102–106

projectKey parameter, Submittal, 164
ProjectName property,

ProjectInformationViewModel,
101–102

ProjectNumber property,
ProjectInformationViewModel,
101–102

ProjectService class
implementing, 90–91
saving ProjectContact, 136–137
ViewModel class, 47–53

properties
ChangeOrder class, 275–280
CompanyViewModel class, 141–143
ConstructionChangeDirective class,

302–304
ConstructionChangeDirectiveView
Model class, 315–316

EditableViewModel<T> class, 318–319
ProjectContactViewModel class, 153
ProjectInformationViewModel class,

101–102
ProposalRequest class, 245–248
RequestForInformation class,

209–213. See also Submittal class,
properties

RequestForInformationViewmodel
class, 230

Submittal class. See Submittal class,
properties

SubmittalViewModel class, 190–191
TransmittalViewModel<T> class,

226–227
UnitOfWork class, new, 335
User class, 363

Proposal Request Aggregate, 234–237
Proposal Requests, 233–263

designing, 234–235, 235–236, 236–237,
237–238, 239–241

problem, 233–234
solution, 242–245, 245–248, 248–253,

253–257, 257–258, 258–260, 260–
261, 261–262, 263

ProposalRequest class, 242–245
ProposalRequestViewModel class,

258–260

ProcessReferenceData method, Synchronizer

bindex.indd 402bindex.indd 402 3/17/08 3:02:04 PM3/17/08 3:02:04 PM

403

In
de

x

Provider Framework. See Client Membership
System Provider

ProviderFactory class, 373–374

Q
QuestionAnswerSpecification property,

RequestForInformation, 213

R
Recipient property, RoutingItem, 177
ReferenceDataRepositoryFactory class,

351–352
Reliability requirement, 4, 6–7
RemainderLocation property,

Submittal, 178
RemoveProposalRequestTest

method, 241
RemoveRfiTest method, 206–207
RemoveSubmittalTest method, 164
RemoveTest method, 117
Repositories

designing, 58–59, 112–114, 160–161,
203, 237–238, 268–271, 299

Domain-Driven Design concept, 17
implementing, 88–90, 124–130, 130–131,

131–134, 213–219, 253–257, 283–285,
307–309. See Project Repository;
Submittal Transmittals, Repository

using in domain layer, 17–18
Repository Factory

configuration section, 24
configuration section handling, 24–28
defined, 23
RepositoryFactory class, 28–30

Repository Framework, 22–41
in infrastructure layer, 18
interfaces, 22–23
Repository Factory, 23–30
RepositoryBase<T> class, 33–35
SqlCeRepositoryBase<T> class, 35–41
Unit of Work, 30–33

RepositoryBase<T> class, 33–35, 38, 78

RepositoryFactory class, 28–30
RepositoryMappingCollection data

type, 25–27
RepositoryMappingConstants class, 25
RepositoryMappingElement class, 27–28
RepositoryMappings element, 24–25
RepositoryMappingsConfiguration

configuration section, 25
RepositorySettings class, 25, 27
Request for Information. See RFI (Request

for Information)
RequestForInformation class

defining Aggregate boundaries, 202–203
defining RFI Aggregate, 201–202
designing RFI Repository, 203
private fields and constructors, 207–209
refactoring RFI Repository, 215
RFI domain model, 200–201
writing unit tests, 204–207

RequestForInformationDate
Specification class, 212

RequestForInformationNumber
Specification class, 211

RequestForInformationQuestion
AnswerSpecification class, 213

RequestForInformationRepository
class, 203, 213–214

RequestForInformationService
class, 224

RequestForInformationViewModel class,
224, 228–231

ResetPassword method, 366–367,
382–383

RFI (Request for Information), 199–232
designing, 200–201, 201–202, 202, 203,

204–207
private fields and constructors, 207–209
problem, 199
properties, 209–213. See also Submittal

class, properties
Repository implementation, 213–214, 214,

219–223
RequestForInformation class,

213–219
RequestForInformationService class,

223–224

RFI (Request for Information)

bindex.indd 403bindex.indd 403 3/17/08 3:02:05 PM3/17/08 3:02:05 PM

404

RFI (Request for Information) (continued)
RequestForInformationViewModel

class, 228–231
TransmittalViewModel<T> class,

224–228
View, 231–232

RFI Aggregate, 201–203, 213–219
Rich Client Application requirement, 5,

9–11
routable Transmittals, 219
RoutableTransmittal class, 235
RoutableTransmittal User Control, 263
RoutingItems class
RequestForInformation class,

201, 219
RoutingItems property, 175–176
SubmittalTransmittal class, 158

RoutingItems property
RoutingItems class, 177
Submittal class, 175–177
SubmittalViewModel class, 191–192

S
SaveCommandHandler method
ChangeOrderViewModel class, 291–292
ProjectContactViewModel class, 154
ProposalRequestViewModel class, 260
RequestForInformationViewmodel

class, 230–231
TransmittalViewModel<T> class, 227

SaveContact method,
IProjectRepository, 113–114,
118–119, 132

SaveCurrentEntity method
ConstructionChangeDirectiveView
Model class, 323–324

TransmittalViewModel class, 322–323
SaveProject method
CompanyService class, 135
ProjectService class, 91

SaveProjectContact method,
ProjectService, 136–137

Scalability requirement, 5–7
SecurityHelper class, 362–363

Segment property, Project, 73–75
SelectCommand property, ViewModel, 51
SelectProjectView class, 47–49, 51,

102–103
SelectProjectViewModel class, 49–52
Separated Interface pattern

defined, 17
ProviderFactory class, 374
RepositoryFactory class, 23, 24

Serialize method, 345
Serializer class, 345
server

supporting requirement, 6
synchronizing data with. See

synchronization with server
ServerTransaction class, 338–339
Service class implementations
ChangeOrderService class, 288–289
ClientMembershipService class, 387
CompanyService class, 134–135
ConstructionChangeDirective
Service class, 313–314

ContactService class, 135
EmployeeService class, 91–92
ProjectService class, 90–91, 136–137
ProposalRequestService class,

257–258
RequestForInformationService class,

223–224
SubmittalService class, 187–188

Services, Domain-Driven Design concept, 16
SetCurrentEntity method,

TransmittalViewModel, 323
SetLastSynchronization method,

SqlCeClientTransaction
Repository, 347–348

SetLastSynchronizationTest
method, 332

SetLastSynchronized method,
Synchronizer, 350

Smart Client anti-pattern, 2
smart client applications, 9–11
Smart Design, defined, 1
SmartCA application. See Construction

Administration Database
Specification class, 200

RFI (Request for Information) (continued)

bindex.indd 404bindex.indd 404 3/17/08 3:02:05 PM3/17/08 3:02:05 PM

405

In
de

x

Specification Section
AddSubmittalTest method, 162–163
every Submittal associated with, 164
RFI vs. Submittal Transmittal, 201
Submittal Transmittals, 158

SpecSection property, Submittal, 170
SQL CE (SQL Server Compact Edition) 3.5,

6–7, 11
SQL Server, 6
SQL Server Express, 7
SqlCeClientMembershipProvider class,

384–386
SqlCeClientTransactionRepository

class, 341–348
constructor, 342
defined, 341
FindPending method, 343–347
GetLastSynchronization method, 347
PersistNewTransaction method,

342–343
SetLastSynchronization method,

347–348
SqlCeReferenceDataRepository class,

352–354
SqlCeRepositoryBase<T> class

refactoring FindAll/FindBy methods,
78–79

Repository Framework and, 35–41
RequestForInformation class,

222–223
RFI Repository, 203, 215–216

SqlCeRoutableTransmittalRepository
<T> class, 223

SqlCeTransmittalRepository<T> class,
215, 219

StackPanel elements, SubmittalView
class, 193–194, 195

static methods, application layer design, 14
Status class, 200–201
Status property, Submittal, 175,

177–178
Submittal Aggregate, 158–161
Submittal class

private fields and constructors, 164–166
refactoring RFI Repository, 215
as root of Submittal Aggregate, 158

Submittal class, properties, 166–178
CopyToList property, 171–172
DeferredApproval property, 174
DeliveryMethod property, 170–171
overview of, 166–169
RemainderLocation property, 178
RoutingItems property, 175–177
SpecSection property, 170
Status property, 175, 177–178
TotalItemsReceived property, 174
TotalItemsSent property, 174
TrackingItems property, 173–174

Submittal Transmittals, 157–197
designing, 158, 159, 159–160, 160–161,

161–164
problem, 157
Repository, 178–179, 178–187, 179,

179–180, 180–181, 181–182,
182–183, 183–187

service implementation, 187–188
Submittal class private fields and

constructors, 164–166
Submittal class properties. See
Submittal class, properties

SubmittalView class, 192–197
SubmittalViewModel class, 188–192

SubmittalService class, 187–188
SubmittalStatus class, 177–178
SubmittalView class, 192–197
CopyToList section, 195–197
overview of, 192–193
using StackPanel element, 193–194
using Xceed DatePicker control, 194

SubmittalViewModel class, 188–192
synchronization with server, 327–356

design, 328–330, 330, 331–332
problem, 327
solution, 349–355, 355–356. See Unit of

Work implementation
SynchronizationServerProxy class, 356
Synchronize method, Synchronizer

class, 355–356
Synchronizer class, 349–355

constructor, 349
GetLastSynchronized method,

349–350

Synchronizer class

bindex.indd 405bindex.indd 405 3/17/08 3:02:06 PM3/17/08 3:02:06 PM

406

Synchronizer class (continued)
IReferenceDataRepository, 351–354
ProcessReferenceData method,

350–351
ProcessServerTransactions method,

354–355
ReferenceDataRepositoryFactory

class, 351–352
SetLastSynchronized method, 350
Synchronize method, 355–356

System.String class, 69

T
TCandidate Generic parameter, 280
Template method pattern, 83–86, 89
TEntity parameter, 29
Test method attribute, 63
TestContext private field, 62
TestingAllowanceAmount property,

Project class, 75
TimeChanged property, ChangeOrder, 278
TimeChangeDirection property,

ChangeOrderViewModel, 290
ToAddress method, MutableAddress, 100
ToCompany method, 346
ToCompanyContract method, 346
ToEntity method, 347
TotalItemsReceived property,

Submittal, 174
TotalItemsSent property, Submittal, 174
TrackingItems class, 173–174
TrackingItems property, Submittal,

173–174
Transaction class
ClientTransaction class, 338
ClientTransactionRepository

class, 341
ClientTransactionRepository
Factory class, 340

ClientTransactionService class,
348–349

Data Contracts, 339
overview of, 335–337

ServerTransaction class, 338–339
SqlCeClientTransactionRepository

class, 341–348
TransactionScope class, 33
TransformToChangeOrder method,

ConstructionChangeDirective,
305–306

Transmittal class
ConstructionChangeDirective

class i, 297
designing Proposal Request Aggregate,

234–235
refactoring RFI Repository, 214–217

Transmittal User Control, 261–262
TransmittalDate property,

Transmittal, 244
TransmittalViewModel class, 321–323
TransmittalViewModel<T> class,

225–228
TRepository parameter, 29–30
Type property, Transaction, 335–337

U
UI (user interface)

declarative programming for, 10
fulfilling Maintainability requirement, 7–9
legacy application, 2

Unit of Work implementation
ChangeOrder class, 285–288
Client Membership System, 359
CompanyRepository class, 127–130
ConstructionChangeDirective class,

310–313
ContactRepository class, 131
ProjectRepository class, 87–88
ProposalRequest class, 254–257
Repository Framework, 30–33
RequestForInformation class,

219–223
SubmittalRepository class, 183–187
synchronizing with server, 328–330,

333–334, 335, 335–339, 340, 341,
341–348, 348–349

Synchronizer class (continued)

bindex.indd 406bindex.indd 406 3/17/08 3:02:06 PM3/17/08 3:02:06 PM

407

In
de

x

unit tests
Change Orders, 271
Client Membership System, 388–389
Companies and Contacts, 114–117,

114–119, 118, 118–119
Construction Change Directive, 300
Projects and Employees, 60–65
Proposal Requests, 239–241
Request for Information, 204–207
Submittal Transmittals, 161–164
synchronizing with server and,

331–332
UnitOfWork class

synchronizing with server, 335
Unit of Work implementation, 31–33
unit tests, 62

Update requirement, 5, 11
UpdateProposalRequestTest method,

240–241
UpdateRfiTest method, 205–206
UpdateSubmittalTest method, 163
UpdateTest method,

ICompanyRepository, 116–117
UpdateUser method, IClientMembership

Provider, 383–384
User class, 360–367
ChangePassword method, 363–364
ChangePasswordQuestionAndAnswer

method, 365–366
constructors, 361–363
properties, 363
ResetPassword method, 366–367
signature and private fields, 360–361

user interface. See UI (user interface)
UtilityAllowanceAmount property,

Project, 75

V
Validate method
ChangeOrder class, 280–283
ConstructionChangeDirective class,

304–305
ProposalRequest class, 248–253

ValidateCurrentObject method,
EditableViewModel<T>, 319–320

ValidateInitialization method
ChangeOrder class, 273
ConstructionChangeDirective

class, 302
ProposalRequest class, 245
User class, 362–363

ValidateInitialState method,
NumberedProjectChildValidator,
273–274

ValidateUser method, 364
ValidateUserWithPasswordAnswer

method, IClientMembership
Provider, 377, 380

ValidateWithUserPassword method,
IClientMembershipProvider, 380

Value Objects
Address property of Project class as, 68
Domain-Driven Design concept, 15
.NET Value types vs., 68

View
ChangeOrder class, 292–293
ConstructionChangeDirective class,

324–325
ProposalRequest class, 260–261
RequestForInformation class,

231–232
SubmittalTransmittal class, 192–197

ViewModel classes
CompanyViewModel class, 137–140,

137–143, 140–141, 141–143, 143
Construction Change Directive, 314–321,

321–323
defining, 47
Model-View-ViewModel pattern, 45–46, 45–

53, 46, 47–53
overview of, 92–94
ProjectContactViewModel class, 148–

151, 148–154, 152, 153, 154
ProjectInformationViewModel class,

94–98, 94–102, 98–101, 101–102,
102–106

ProposalRequestViewModel class,
258–260

ViewModel classes

bindex.indd 407bindex.indd 407 3/17/08 3:02:06 PM3/17/08 3:02:06 PM

408

ViewModel classes (continued)
RequestForInformationViewmodel

class, 224, 228–231
SelectProjectViewModel class, 49–52
SubmittalViewModel class, 188–192
TransmittalViewModel<T> class,

225–228
Visual Studio

designing, 13–14
implementing, 19

Visual Studio Team System (VSTS), unit
test, 60

VSTS (Visual Studio Team System), unit
test, 60

W
Web Access requirement, 5, 11
Web applications, benefits of, 10

Windows applications, benefits of, 10
WPF (Windows Presentation Foundation),

10–11, 47–53

X
XAML (Extensible Application Markup

Language), 10, 144–147
Xceed DataGrid control, CompanyView

class, 145–146
Xceed DatePicker control, SubmittalView

class, 194

Y
YAGNI (You Ain’t Gonna Need It)

principle, 70

ViewModel classes (continued)

bindex.indd 408bindex.indd 408 3/17/08 3:02:07 PM3/17/08 3:02:07 PM

Get more
fromWrox.

Available wherever books are sold or visit wrox.com

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

badvert.indd 409badvert.indd 409 3/17/08 3:01:33 PM3/17/08 3:01:33 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 410badvert.indd 410 3/17/08 3:01:34 PM3/17/08 3:01:34 PM

	.NET Domain-Driven Design with C#: Problem - Design - Solution
	About the Author
	Credits
	Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Introducing the Project: The SmartCA Application
	The Problem
	The Design
	The Solution
	Summary

	Chapter 2: Designing the Layered Architecture
	The Problem
	The Design
	The Solution
	Summary

	Chapter 3: Managing Projects
	The Problem
	The Design
	The Solution
	Summary

	Chapter 4: Companies and Contacts
	The Problem
	The Design
	The Solution
	Summary

	Chapter 5: Submittal Transmittals
	The Problem
	The Design
	The Solution
	Summary

	Chapter 6: Requests for Information
	The Problem
	The Design
	The Solution
	Summary

	Chapter 7: Proposal Requests
	The Problem
	The Design
	The Solution
	Summary

	Chapter 8: Change Orders
	The Problem
	The Design
	The Solution
	Summary

	Chapter 9: Construction Change Directives
	The Problem
	The Design
	The Solution
	Summary

	Chapter 10: Synchronizing With the Server
	The Problem
	The Design
	The Solution
	Summary

	Chapter 11: The Client Membership System
	The Problem
	The Design
	The Solution
	Summary

	Index

