Pipeline and Varant annotation tool for identifying causal variants in inherited rare disorders

<u>Kunal Kundu¹, Sadhna Rana¹, Ajithavalli Chellappan¹, Uma Sunderam¹, Jennifer M. Puck², Steven E. Brenner³, Rajgopal Srinivasan^{1#}</u>

¹Tata Consultancy Services Ltd, Innovation Labs, Hyderabad, India, ² Department of Pediatrics, University of California, San Francisco, CA 94143-0519, USA ³University of California, Berkeley, CA 94720, USA [#]Corresponding author: email address raj@atc.tcs.com

University of California San Francisco

We have developed a pipeline for the analysis of genomic variant data, having distinctive features that enabled solving numerous clinical cases SCID Combined related (Severe to Immunodeficiency disease) and related diseases.

Key features of the pipeline

- Multiple variant callers carefully tuned for exome data to yield high quality call set and an extensible framework to include additional
- callers.
 Reporting of extensive quality metrics for mapping, gene coverage and called variants.

 Comprehensive variant annotation by Varant, an open source tool developed by us.

• Gene prioritization module integrating gene annotations, protein interaction networks, pathways and text mining methods.

Varant: An open source variant annotation tool VEP Varant Annovar snpEff Modified Apache AGPLv3 Commercial* LGPLv3 License Python Perl Perl Language Java SNP, Indel SNP, Indel, MNP SNP, Indel, MNP SNP, Indel, MNP Variant Type **Input Format** vcf, bed tsv, vcf, HGVS notation vcf tsv, vcf **Output Format** vcf, tsv, xls vcf, tsv, json object vcf, tsv tsv **Multiple Gene definition supported Uses HGVS notation** Uses Sequence Ontology terms **Region – Intergenic, Intron, Exon, UTR** ... Varant provides key annotations, in addition to **SpliceSites (Donor/Acceptor)** those in other tools. Mutation Type – NonSyn, StopGain etc dbSNP, 1000Genomes(MAF), ESP(MAF) LCR ESE ESS ATATATAT IRES K-Box **Polyphen2 & SIFT predictions Clinically significant variations**

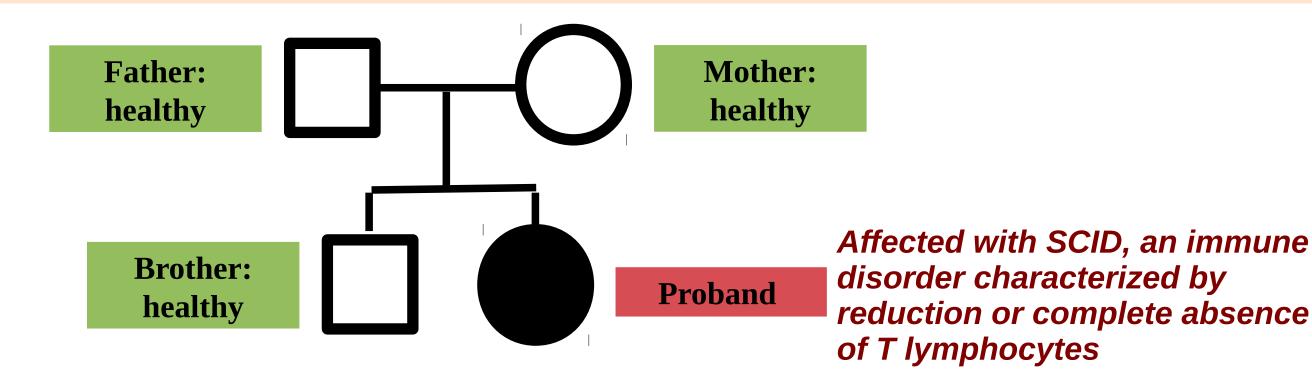
5'UTR 3'UTR CAA -> CAG T -> C Variant position conservation Eq. NOD2 gene associated with Inflammatory bowel disease 1 per

Overview

Varant provides features comparable with other tools, and ...

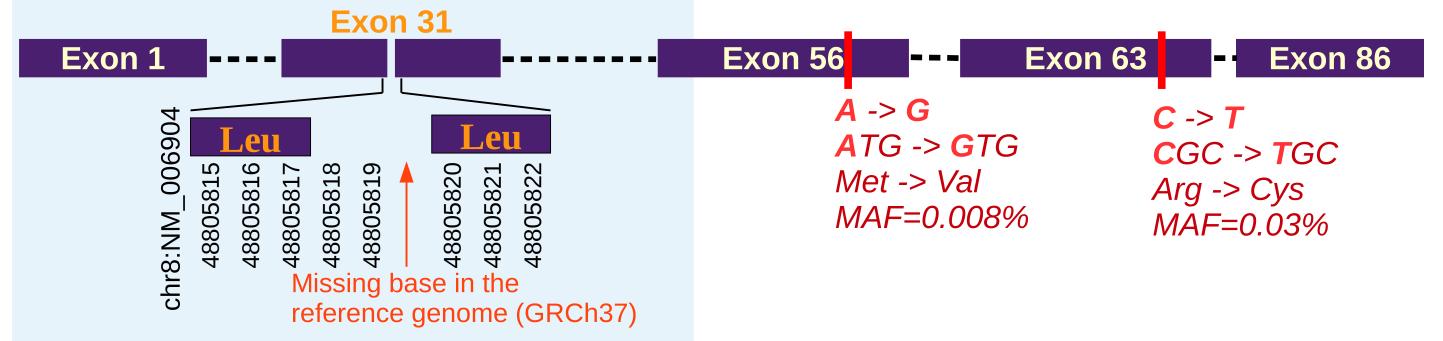
Our pipeline has identified likely causative			
variants cases where typical protocols would			
have been expected to fail.			

miRNA binding site CADD predictions	· ·	
CADD predictions		
	₽.	
GWAS phenotype		
TFBS		

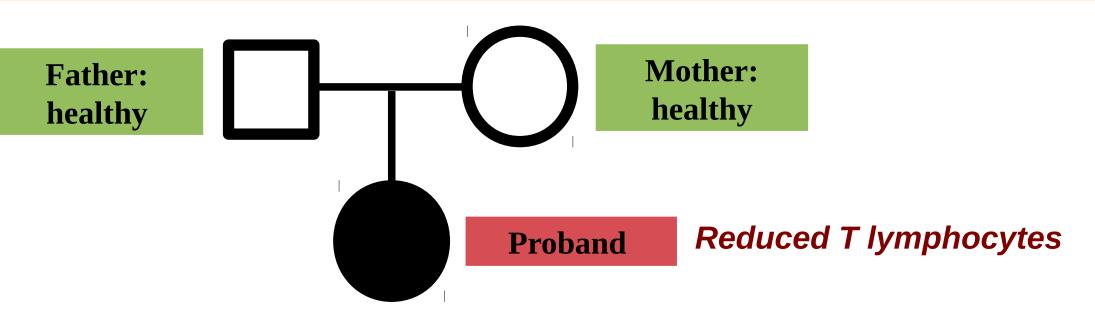

Protein Domain

Diseases associated with gene Capture Region UTR Motifs Low Complexity Region(LCR) **ESE/ESS Sites** eQTLs Flag variants at boundary **Codon usage**

But free


Our pipeline solved cases that would likely have been missed by others

Identified potential causative variants in the presence of inconsistencies in reference genome



Our pipeline shortlisted 2 compound heterozygous variants in the *PRKDC* gene (known to be associated with SCID) in the proband.

Reference Genome has a LoF deletion

Haploinsufficiency annotation of a gene in a family with immune related disorder

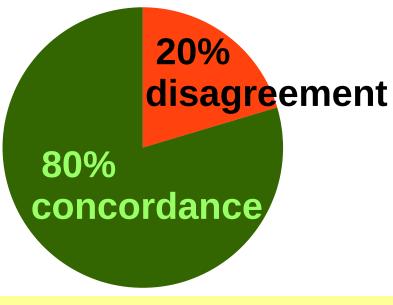
Our pipeline shorlisted a *de-novo* heterozygous variant in the *BCL11B* gene in the proband.

The gene prioritization module's haploinsufficient gene annotation (compiled by manual curation of literature report) recognized $BCL11B^{11}$ gene implying a single copy of mutant gene is sufficient to cause disease.

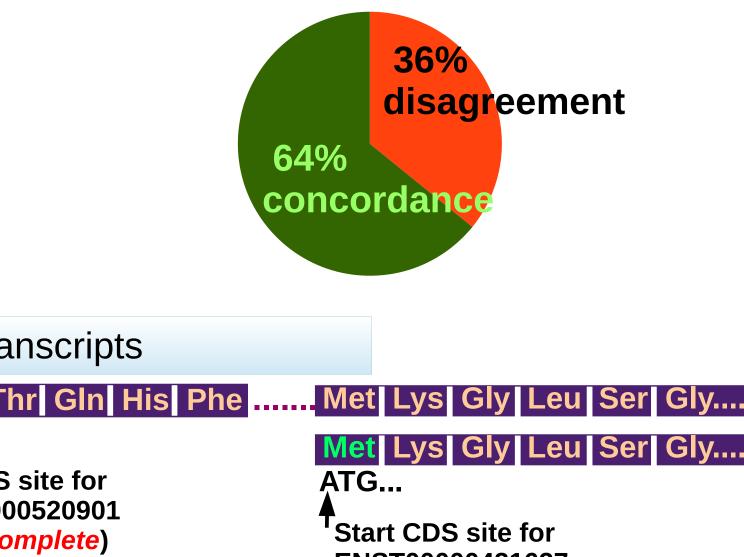
Such stand alone annotations would usually lead to variants being prioritized for review.

Varant has 80% concordance with other tools

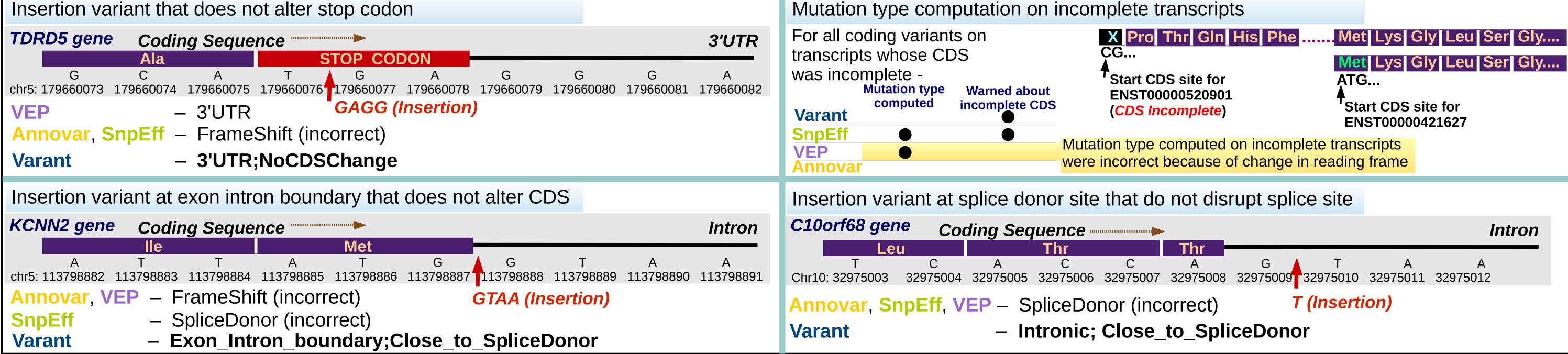
To estimate the accuracy of Varant, annotations for 1.9 million variants (SNPs and Indels) present in ESP[3] vcf were extensively compared among Varant, Annovar[7], snpEff[6] and VEP[5].


• Varant flagged the *PRKDC* gene with **CDS** inconsistency annotation meaning the coding sequence of *PRKDC* gene was not multiple of 3.

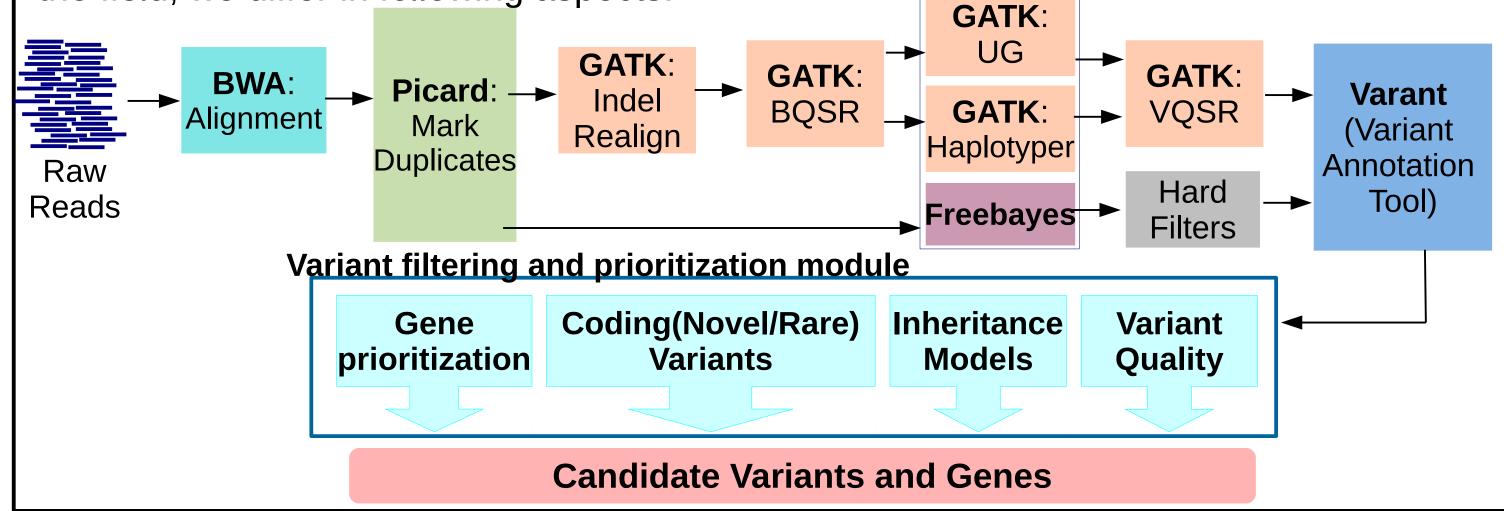
• The missing bases in the reference genome were found to be upstream of the prioritized variants in *PRKDC* gene.


 Manual inspection revealed that the prioritized variants in PRKDC gene were nonsynonymous relative to the normal coding sequence.

 Several tools like Annovar[7] do not warn about such genomic CDS anomalies, and thus these variants would have been overlooked.


Annotation comparison across all genomic region among 4 tools

Annotation comparison for 70,347 loss of function variants(FrameShift, StopLoss, **StopGain & Splicing) among 4 tools**



When Varant disagrees with other methods, its predictions are superior

Exome Analysis Pipeline

Our pipeline uses series of steps to identify causal variants in rare inherited disorders. Though the alignment (BWA⁸) and calling (GATK⁹ & Freebayes¹⁰) steps are standard in the field, we differ in following aspects:

Conclusion

- Our genome analysis pipeline generates reliable variant calls and quality variant annotation for better interpretation of human genetic variants.
- Our pipeline has identified likely causal variants in several cases where other pipelines would have been expected to fail.
- Some of the key features of our pipeline that has helped to make confident genotype-phenotype predictions includes –
- Use of multiple callers and combined calling
- Use of Varant which provides a broad range of annotations with equal or better precision and accuracy in comparison with other well known tools.
- Varant is freely available for use (http://compbio.berkeley.edu/proj/varant).

 Burge CB et al. (2002) Science. 297, 1007-13. Epub 2002 Jul 11 Exome Variant Server, NHLBI GO Exome Sequencing Project(ESP), Seattle, WA. Batzoqlou S et al. (2010). PLoS Comput Biol. 6, e1001025. doi:10.1371/journal.pcbi.1001025 McLaren W et al. (2010). Bioinformatics. 26, 2069-2070. doi: 10.1093/bioinformatics/btq330 Douglas M. Ruden et al. (2012) Fly (Austin). 6, 80–92. doi:10.4161/fly.19695 Hakon Hakonarson et al. (2010) Nucl. Acids Res.38, e164. doi:10.1093/nar/gkq603 Li H, Durbin R, (2009) Bioinformatics, 25, 1754-1760. doi:10.1093/bioinformatics/btp324 	10. Garrison E, Marth G, (2012). ArXiv e-prints: 1207.3907. 11. Dang VT, et al. (2008) Eur J Hum Genet, 16,
--	---