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1 Introduction

This package implements the Adjacency Clustering algorithm designed by Chris Bolen.

2 Installation

Currently, installing AdjClust takes a bit of work. This will eventually be streamlined,
but until the code is done, you’ll need to download the source code from Bitbucket and
compile it according to the instructions below.

2.1 Install required packages

> install.packages(c("gplots", "hexbin", "parallel”, "png"))
> source("https://bioconductor.org/biocLite.R")
> biocLite(c("cytofkit", "flowCore"))

2.2 Building adjClust

The build instructions assume that you have downloaded the most recent version of
AdjClust, and have started an RStudio project in the download directory.

1. Install build dependencies:
> install.packages(c("devtools", "roxygen2", "testthat", "knitr", "rmarkdown"))
2. Build with RStudio

e Build -> Configure Build Tools
e Check use devtools option

e Check use roxygen option

Select configure roxygen options and check everything.
Build -> Build and Reload

2.3 Compiling tSNE

Before tSNE can be used, you must compile the source code. AdjClust contains a
function, compileTSNE, which will automatically compile the code and make it usable
within R. To use your system’s default c++ compiler, simply call compileTSNE using
the default parameters:

> compileTSNE()



2.3.1 Compiling tSNE with OpenMP support

If you are planning to run the adjClust algorithm with large datasets, it is almost a
necessity that the tSNE algorithm be run in parallel. To do this, we will need to compile
the code with OpenMP support. On Linux and Windows systems, this should be as
simple as adding a single parameter to the compileTSNE function call:

> compileTSNE (use_omp=TRUE)

OpenMP support on OSX

As of October 2015, the default compiler for Mac operating systems ("clang++") does
not come with a working copy of OpenMP. That means that in order to enable OpenMP
on a mac, you must install a different c++ compiler. There are many options available,
but the Gnu compilers are one of the most popular. To install a recent version, follow
the instructions below:

1. Install Homebrew (http://brew.sh/):

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

2. Install gcc version 4.9:

Open up the terminal and run:
brew install gcc49

3. Confirm GCC 4.9 is installed:
g++-4.9 —-version

Once gce has been successfully installed, tSNE can be compiled with the newly
installed compiler as follows:

> compileTSNE(compiler = "g++-4.9", use_omp = T)


http://gcc.gnu.org
http://brew.sh/

3 The AdjClust workflow

3.1 Step 1: Reading in the FCS files

The first step in Adjacency Clustering is to perform dimensionality reduction with the
tSNE algorithm. In the future we’ll make this nice and streamlined, but for now it’s
gonna be a bit of a hassle. To do this, we need to read the data into R so that we can
process it and get it into the format we want.

Let’s say we have a folder filled with FCS files:

> fcsFolder = "~ /fcsFiles"

> ##read all the filenames into a vector

> fcsFiles = dir(fcsFolder, full.names = T)
> fcsFiles

[1] "/Users/chris/fcsFiles/setl.poolA.1172.wk104.ns.CD8T.fcs"
[2] "/Users/chris/fcsFiles/setl.poolA.1172.wk104.pi.CD8T.fcs"
[3] "/Users/chris/fcsFiles/setl.poolA.1172.wk18.ns.CD8T.fcs"
[4] "/Users/chris/fcsFiles/setl.poolA.1172.wk18.pi.CD8T.fcs"
[5] "/Users/chris/fcsFiles/setl.poolA.1172.wk40.ns.CD8T.fcs"
[6] "/Users/chris/fcsFiles/setl.poolA.1172.wk40.pi.CD8T.fcs"
[7] "/Users/chris/fcsFiles/setl.poolA.1172.wk53.ns.CD8T.fcs"
[8] "/Users/chris/fcsFiles/setl.poolA.1172.wk53.pi.CD8T.fcs"
[9] "/Users/chris/fcsFiles/setl.poolA.ctrll.NA.ns.CD8T.fcs"
[10] "/Users/chris/fcsFiles/setl.poolA.ctrll.NA.pi.CD8T.fcs"

The first thing we need to do is read in all of these fcs files. To do this, we need to
use the flowCore package from Bioconductor.

> library(flowCore)
> fcsDat = lapply(fcsFiles,function(fn){read.FCS(fn)})

We're then going to take each one of these FCS objects and extract the marker
expression data from them:

> fcsMats = lapply(fcsDat, function(fcs){
#get marker vals
eset = exprs(fcs)

##replace channel names with marker names

channels = fcs@parameters@data$desc

names (channels) = colnames (eset)

channels[is.na(channels)] = colnames(eset) [is.na(channels)]

+
+
+
+
+
+
+
+ colnames(eset) = channels



+
+ return(eset)

+ 3}
> fcsMats[[1]][1:10,1:6]

Time Event_length  BC1 BC2 BC3 BC4

[1,] 2442.604 35 4.435 18.247 7.484 95.764
[2,] 5441.979 43 4.255 26.072 7.239 126.849
[3,] 5826.432 40 0.000 36.553 7.302 90.253
[4,] 8387.188 38 0.000 17.719 7.852 95.326
[6,] 8915.117 37 0.000 20.914 7.599 60.876
[6,] 9489.388 30 0.000 29.219 9.105 26.002
[7,] 10560.703 27 1.199 26.466 8.894 171.672
[8,] 11107.930 61 0.000 29.771 9.983 112.359
[9,] 11484.792 30 0.050 23.987 8.285 89.709
[10,] 12380.052 44 1.430 41.458 10.950 83.965

(side note: if you're working with lots of fcs files, you're gonna be using a lot of
memory here. To mitigate this problem, remove objects as you go):

> rm(fcsDat)

Note that each one of these matrices are going to have different numbers of cells, but
the column names of each of them should match:

> ##the number of cells
> sapply(fcsMats, nrow)

[1] 1093 1612 11135 8688 2063 1018 19310 13363 861 464

> ##the columns in each matrix
> sapply(fcsMats, colnames)[1:10,1:4]

[,1] [,2] [,3] [,4]

Time "Time" "Time" "Time" "Time"
Event_length "Event_length" "Event_length" "Event_length" "Event_length"
Pd104Di "BC1" "BC1" "BC1" "BC1"
Pd106Di "BC2" "BC2" "BC2" "BC2"
Pd108Di "BC3" "BC3" "BC3" "BC3"
In113Di "BC4" "BC4" "BC4" "BC4"
In115Di "CD57" "CD57" "CD57" "CD57"
La139Di "CD16" "CD16" "CD16" "CD16"
Ce140Di "beads" "beads" "beads" "beads"
Pr141Di "IL8" "IL8" "IL8" "IL8"



Now, optionally: if we have lots of fcs files, each with lots of cells, we may want to subsample
the files to make sure the tSNE algorithm doesn’t take forever. To do this, we’re going to set
the maximum number of cells for each matrix to 10,000 and randomly subsample any fcs files
that are larger than that number:

> ##maximum number of cells in each matrix

> maxCell = 10000

> ##subsample each matrix

> fcsSubsample = lapply(fcsMats, function(mat){

+  #pick which rows to keep

+ i = sample(1:nrow(mat), min(nrow(mat), maxCell))
+ #return those rows
+ mat[i,]
+ 3}
>

And now we can combine them together into a single matrix:

> combinedEset = do.call(rbind, fcsSubsample)
> dim(combinedEset)

[1] 45799 49

Ideally, your final dataset should have less than 1 million cells. More than that
is okay, but the processing time increases exponentially with the number of cells, and even on
a fast computer 2 million cells would take more than a day to run. Additionally, the quality
of the map will decrease when the number of cells is above 2.5 million, so it is recommended
that you never go above that.

In this case, we have a bit under 46,000 cells, which is a very reasonable number. However,
before we can run tSNE, there’s three more things we need to do. First, select the markers we
want to include in the map:

> markers = c("CD57","IL8", "CD45R0", "perforin","TNF","CD25", "MIP1b","CD103",
+ "CD107ab", "CD27","CD45RA", "CXCR5", "CD28", "CD38", "CD69", "TGFb",
+ "IL2","IFNg","IntB7","CCR7","HLA-DR", "CD40L","PD-1", "CD127")

> combinedEset = combinedEset[,markers]

This dataset only contains CD8+ T cells, so we are only going to include parameters
relevant to that cell type.
Second, transform the data using the arcsinh transformation:

> combinedEset = apply(combinedEset, 2, arcsinhTransform())

And third, label which file each cell came from:



> ##calculate number of cells from each file
> cellCounts = sapply(fcsSubsample, nrow)
> ##make vector indicating source file for each cell
> sourceFile = rep(basename(fcsFiles), times=cellCounts)
> #store this in the rownames of combinedEset
> rownames (combinedEset) = sourceFile
> combinedEset[1:10, 1:4]

CD57 IL8 CD45R0 perforin
setl.poolA.1172.wk104.ns.CD8T.fcs 0.8813736 2.1722397 1.4021823 0.8813736
setl.poolA.1172.wk104.ns.CD8T.fcs 2.6807824 2.3017927 0.8813736 0.8813736
setl.poolA.1172.wk104.ns.CD8T.fcs 1.8810560 0.8813736 3.5941699 4.3706957
setl.poolA.1172.wk104.ns.CD8T.fcs 0.8813736 1.3730408 3.6591353 4.1774186
setl.poolA.1172.wk104.ns.CD8T.fcs 1.6994229 6.7494688 1.4981793 0.8813736
setl.poolA.1172.wk104.ns.CD8T.fcs 2.1672794 3.1720323 0.9677238 0.8813736
setl.poolA.1172.wk104.ns.CD8T.fcs 5.4905238 0.8813736 1.8795652 5.7061175
setl.poolA.1172.wk104.ns.CD8T.fcs 5.0829696 0.8813736 2.6696749 4.0514614
setl.poolA.1172.wk104.ns.CD8T.fcs 5.5734680 0.8813736 3.3170278 4.4722263
setl.poolA.1172.wk104.ns.CD8T.fcs 4.7924485 1.8675624 3.6933417 5.4296543

Now we’ve finally finished processing the fcs files, and we can move on to running tSNE.



3.2 Step 2: Running tSNE

Again, I hope that in the future I can streamline this a lot more, but for now running tSNE
takes a bit of work. Before running this section, make sure you have tSNE correctly installed
and compiled according to the instructions in section

Saving data for tSNE

Once we have a matrix of cells, such as the combinedEset matrix that we generated in sec-
tion we can finally start using the functions in adjClust. First, we need to save the data
in a format that tSNE understands. To do this, we will use the saveTSNEdat function. This
takes as input the combinedEset matrix and the folder where the data should be saved.

> outFolder = "~/tsneRun"
> saveTSNEdat (combinedEset, outFolder)

Optionally, the saveTSNEdat function also takes a number of other parameters, including:

e num_proc - The number of processors to use. Default is the maximum number for your
machine.

e theta and perplexity - Run parameters for tSNE. It is generally fine to leave theta
at the default, but it can be very useful to increase the perplexity when running tSNE
with large datasets. When running tSNE with large datasets (>500k cells), the
perplexity should be increased to 100. This will improve the clustering of cells into
similar groups.

Running tSNE

Once the data has been saved, the tSNE algorithm can be run using the runTSNE function. Be
warned: for large datasets, this can take more than 24 hours!

> runTSNE (outFolder)

Step 1: Computing input similarities...
Step 2: Building tree...

| | 100%

Step 3: Learning embedding...

| | 100%

Finished!

Alternatively, tSNE can be run directly on the command line. The runTSNE function
provides an option for returning just the commands for running tSNE, which can be pasted
directly into a terminal to run tSNE.

> runTSNE (outFolder, commandOnly=T)

cd ~/tsneRun
/Library/Frameworks/R.framework/Versions/3.2/Resources/library/adjClust/tSNE/pbh_tsne

(NOTE: This command will be different for each system. Don’t just copy the command above.)
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Reading in the tSNE results

Finally, once the tSNE map has finished running, the final map can be read into R using
the loadTSNEdat function. This returns an object of class tmap, which contains both the
newly generated tSNE map and the original marker values, as well as most of the clustering
information that we are about to generate.

> tmap = loadTSNEdat (outFolder)



3.3 Analyzing the tSNE map

The adjClust package contains a number of functions for visualizing and analyzing a tSNE
map. This section covers the basic plotting methods.

hexplot

Once the tSNE results has been loaded (via the LloadTSNEdat function), the first step is to plot
out the map.

> plot(tmap)

20

10

tSNE dim2

-30 -20 -10 0 10 20 30

tSNE dim1

For tmap objects, the default plotting function calls hexplot, a highly customizable set of
plotting functions specifically designed for visualizing high-density data. The default hexplot
parameters split the plotting region up into a set of hexagonal bins, and everything in that bin
is combined together into a single point, with the total number of points in each bin visualized
using a color gradient. Low density bins are shown in dark blue, and higher density areas are
represented using a color scale, going from cyan -> green -> yellow -> orange -> red.

The hexplot function includes a number of options for making custom plots of the tSNE
map, including parameters to control the colors, the number of bins, and how density infor-
mation is displayed. Many of the most common customization options have been included in
adjClust as separate functions, but it may eventually be useful to generate your own. Refer
to the hexplot help file for more details.
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plotMarkers

Now that we know what the map looks like, we can start to analyze where specific cell types
have ended up on the map. We can do this using the plotMarkers function. This function
uses parameter values from the original N-dimensional dataset to generate a custom-colored
hexplot. Areas of the map with high expression of a specific parameter will be colored red,
while areas with low expression will be colored green. Looking at these maps for each parameter
individually makes it possible to find specific areas representing known cell types.

Below, we are plotting the expression of CD69, a marker of activation in T cells. We see
that the map has three major groups: one large region in the center that is negative for CD69,
and two smaller regions on the left and right sides of the map that are positive for CD69.

> plotMarkers (tmap, markerList=c("CD69"))

11



plotGroups

Another common task when examining tSNE maps is to compare sets of samples to each other.
For example, our dataset contains ten total samples, half of which are unstimulated (ns), and
the other half stimulated with PMA and Ionomycin (pi). We have information about each file
stored in a data frame called fileInfo:

> fileInfo

fn stim week donor
1 setl.poolA.1172.wkl104.ns.CD8T.fcs ns 104 1172
2 setl.poolA.1172.wk104.pi.CD8T.fcs pi 104 1172
3 setl.poolA.1172.wk18.ns.CD8T.fcs ns 18 1172
4 setl.poolA.1172.wk18.pi.CD8T.fcs pi 18 1172
5 setl.poolA.1172.wk40.ns.CD8T.fcs ns 40 1172
6 setl.poolA.1172.wk40.pi.CD8T.fcs pi 40 1172
7 setl.poolA.1172.wkb3.ns.CD8T.fcs mns 53 1172
8 setl.poolA.1172.wkb3.pi.CD8T.fcs pi 563 1172
9 setl.poolA.ctrll.NA.ns.CD8T.fcs ns NA ctrl
10 setl.poolA.ctrll.NA.pi.CD8T.fcs pi NA ctrl

If we want to see where the cells from "ns” and "pi” samples are located in the map, we can
use the plotGroups function. This function takes a data frame “grp.info” which contains two
columns. The first column is a list of filenames matching those in our dataset, and the second
column is the group membership of that file. So if we want our two groups to be "ns” and "pi”,
we would run plotGroups as follows:

> grp.info = fileInfo[,c("fn","stim")]
> plotGroups(tmap, grp.info = grp.info)

12



It is also possible to define the groups using an R formula. For example, if we want to
separate out the controls from the actual samples, we can run plotGroups as follows:

> plotGroups (fn~donor+stim, data = fileInfo, tmap = tmap)

”fn” is name of the column containing the filenames in fileInfo, and "donor” & ”stim” are the
columns that we want to use to separate groups.

1172_ns
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3.4 Adjacency Clustering

The stuff I describe in the previous chapters is nice, but the Adjacency Clustering algorithm is
the reason this package exists. The Adjacency Clustering method is an adapted version of the
same hierarchical clustering method used in citrus. This method clusters groups of cells based
off of similar marker expression, but adds the limitation that those sets of cells must be adjacent
to each other in the 2-dimensional tSNE map as well. The result is a set of smooth-bounded
clusters that are both biologically relevant and easy to interpret.

This chapter describes how to use the clustering algorithm, how to tweak the parameters
for optimal performance, and how to determine the markers that define those clusters.

To start, we will attempt to cluster our tmap using the cluster. tmap function. In addition
to taking the tmap object we loaded in using loadTSNEdat, this function also requires that you
enter a number of clusters, nclust. There’s no good rule for how many clusters to use, so
we're going to start with a guess and change it as we see fit.

> tmap = cluster.tmap(tmap, nclust = 20)

(Note: The cluster.tmap function adds cluster information to our original tmap object, so we
are overwriting the previous tmap object to save memory)
We can see how the clustering worked using the plotClusters function:

> plotClusters(tmap)
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This function generates a hexplot with each cluster assigned a random color (if we run the
function again, the colors of each cluster will change). Based on this map, we can see that the
cluster edges generally do a good job at following the general topography of the tSNE map,
but it’s definitely not perfect.

To see how well these clusters match up against marker expression, we can again use the
plotMarkers function.

> plotMarkers(tmap, markerList = c("CD69","CD27","MIP1b","IL2"))

Above is just an example with four of the markers. Now that clustering has been performed,
the cluster outlines have been automatically added to these plots (Note: this will actually
work for all the plotting methods we’ve used so far). Adding the cluster outlines makes
it much easier for us to see how the cells are clustering together, and whether or not the clusters
accurately follow the marker expression.

Looking at these clusters, two things become apparent: First, that we chose to make too
many clusters. There seems to be a large number of clusters that do not follow any marker,
suggesting that boundaries have been defined based on very small changes in expression. Thus,
lowering the number of clusters is probably appropriate. Second, some cluster edges seem to
be following marker differences that are less important. For example, right in the middle of the
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map there is a cluster border separating cells with low (green to black) expression of MIP1b
from those with zero (bright green) expression. While this difference certainly exists, it is
most likely uninteresting from a biological perspective, as both groups would most likely be
considered negative for MIP1b expression. To rectify this, we can provide weights for specific
parameters, which will allow the clustering algorithm to favor differences in some parameters
over others. Specifically, we’ll give less weight to the MIP1b parameter while also increasing
the weight of those parameters which the clusters don’t adequately follow.

After some iteration and studying the clusters, I've come up with weightings for many of
the markers in our map. Here’s our second attempt at clustering:

> markerWt = c(MIP1b=0.75, CD27=1.5, IL2=1.5, IntB7=0.75,

+ CXCR5=0.5, CD25=0.5, CD107ab=0.5, CD69=1.25,
+ IFNg=1.3, CD28=0.75, IL8=1.25,perforin=1.2)

> tmap = cluster.tmap(tmap, nclust = 15, markerWt = markerWt)

v

plotClusters(tmap)
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These clusters looks pretty good. We could play with it more, but they appear to follow
the general trends in the data quite well, and hopefully they are much easier to interpret than
the default clusters.
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3.4.1 Defining cluster phenotypes

Most of the time, playing around with the marker weights is enough to learn what markers
define each cluster. However, sometimes it is useful to dig a little deeper into individual clusters
to see what makes them unique. The adjClust package contains a method, clusterReport,
which gives a summary of the major differences in marker expression between neighboring
clusters. To generate the cluster report, run the function as follows:

> report = clusterReport (tmap)

The report is a list containing reports for every individual cluster. To view the report for
a specific cluster, we can look at that entry in the list:

> report[[8]1]

[1] "Compared to 4: Low in CD45R0; High in CD45RA;"
[2] "Compared to 5: Low in CD57, perforin; High in CD27, CD28, CCR7, CD127;"
[3] "Compared to 6: Low in CDE9;"

This report implies that cluster 8 is CD45RA+CCR7+ (i.e. naive), and CD69 low (resting).
This lines up pretty well with what we saw from the marker maps, and makes it easy to
characterize the phenotype of those cells. However, some of the clusters are harder to figure
out. Cluster 14, for example, is small and seems to be difficult to characterize. Even worse,
the cluster report doesn’t appear to tell us anything about this cluster.

> report[[14]]
[1] "Compared to 13:" "Compared to 15:"

That’s because the differences in this cluster are smaller. The clusterReport works by only
examining those markers that are most different. By default, it will only report the 5% of mark-
ers that are most differentially expressed across all clusters, but we can change this parameter
to make the cutoffs more relaxed.

> report = clusterReport (tmap, alpha = 0.1)
> report[[14]]

[1] "Compared to 13: High in CD69;"
[2] "Compared to 15: Low in TGFb, IL2;"
[3] "Compared to total map: High in TNF;"

This allows us to see the smaller differences between these clusters. However, beware: now
that the cutoffs are lower, we may see differences that are much less important. For example,
the expression of CD69 is higher in cluster 14 than cluster 13, but looking back at the marker
map in section we see that all of the clusters in this area are high for CD69, and cluster
14 is simply the highest.

17



3.5 Cluster Analysis

One of the primary goals for cluster analysis is to compare the relative frequencies of a cluster
between two (or more) groups of samples. We've already shown in section how to use the
plotGroups function to visually compare sets of samples. In this section, we’ll detail how to
make statistical comparisons of cluster membership between sample sets and how to extract
the cluster data so that you can perform your own analysis outside of the adjClust package.

3.5.1 Comparing groups

The adjClust package contains a function, compareGroups, which is designed to perform
a quick automated comparison of two groups of samples. This function works more or less
the same as the plotGroups function that we used in section The function takes three
parameters as input, our tmap object, the grp.info data frame, and a contrast string, which
describes the comparison that we want to make. We’re going to use the same "grp.info"
object that we created in that section for this analysis:

> head(grp.info)

fn stim
1 setl.poolA.1172.wk104.ns.CD8T.fcs ns
2 setl.poolA.1172.wk104.pi.CD8T.fcs pi
3 setl.poolA.1172.wk18.ns.CD8T.fcs ns
4 setl.poolA.1172.wk18.pi.CD8T.fcs pi
5 setl.poolA.1172.wk40.ns.CD8T.fcs ns
6 setl.poolA.1172.wk40.pi.CD8T.fcs pi

The comparison is then run as follows:

> cmpInfo = compareGroups(tmap, grp.info = grp.info, contrast = "pi-ns")
> head(cmpInfo)

cluster statistic p.value fdr

4 4 4 0.0947 0.444
6 6 21 0.0947 0.444
7 7 21 0.0947 0.444
5 5 6 0.2100 0.444
12 12 19 0.2100 0.444
10 10 18 0.2950 0.444

The table details the results of a two-sample test comparing the "ns” and ”pi” groups, with
info on p-values, test statistics, and fdr included for each cluster (In this case, the "statistic”
column refers to the W statistic from the Wilcoxon rank-sum test. More extreme values—i.e.
close to either 0 or N1*N2-represent more significant tests, and thus will have more significant
p-values. If we want to use a t-test instead, we can specify that parametric=TRUE, meaning
that we should use a parametric test).
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We see that although none of the p-values reach significance with an alpha of 0.05, the most
significant clusters are numbers 4, 6 and 7; all of which are, based on the clusterReport, most
likely activated cell types.

For more complicated group structures, it is possible to define groups using an R formula,
just like we did for plotGroups. Below, we use this function to compare the ns and pi samples
from a single donor, effectively dropping the controls from the analysis:

> cmpInfo = compareGroups(fn~donor+stim, data = filelnfo,
+ contrast = "1172_pi-1172_ns", tmap = tmap)
> head(cmpInfo)

cluster statistic p.value fdr

4 4 2 0.112 0.421
5 5 2 0.112 0.421
6 6 14 0.112 0.421
7 7 14 0.112 0.421
3 3 4 0.186 0.558
1 1 4 0.312 0.642

Again, clusters 4, 6, and 7 come out as significant, although the p-value is slightly higher
due to the reduced numbers of samples.

3.5.2 Cluster counts and percentages

There are far too many ways to analyze clustering data, and it would be silly to try and include
them all in this package. However, the package provides two simple functions, clusterCounts
and clusterFract, which return the cell counts and cell fractions, respectively, for each sample
and cluster.

> cts = clusterCounts (tmap)
> cts[1:4,1:6]

1 23 4 5 6
setl.poolA.1172.wk104.ns.CD8T.fcs 138 0 0 9 8 257
setl.poolA.1172.wk104.pi.CD8T.fcs 383 0 0 13 42 61
setl.poolA.1172.wk18.ns.CD8T.fcs 1253 15 6 251 1172 201
setl.poolA.1172.wk18.pi.CD8T.fcs 126 2 0 10 28 2523

> pct = clusterFract (tmap)
> signif(pct[1:4,1:4],3)

1 2 3 4
setl.poolA.1172.wk104.ns.CD8T.fcs 0.1260 0.00000 Oe+00 0.00823
setl.poolA.1172.wk104.pi.CD8T.fcs 0.2380 0.00000 0e+00 0.00806
setl.poolA.1172.wk18.ns.CD8T.fcs 0.1250 0.00150 6e-04 0.02510
setl.poolA.1172.wk18.pi.CD8T.fcs 0.0145 0.00023 0e+00 0.00115

These matrices can be used for whatever analyses you like, so do with them as you will.
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