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Appendix A: Bifurcations

Figure 1 in the main text shows all outcomes (plant-only, Allee effect, stable coexistence and limit cycles) occurring
together in a rectangle at the bottom left corner of the parameter space β vs γ. We enlarged this rectangle in Figure
A.1 in order to show the bifurcations of the PLA model as we traverse the parameter space along an elliptical path
as indicated.

From Figure A.2 we can conclude that plant equilibrium biomasses (stable or not) are inversely related with
the rate of herbivory (β). A similar response occurs regarding oscillations: as long as β values are large enough to
induce oscillations (the part in the figure marked with circles), such oscillations tend to display lower maxima and
minima for larger values of β, and higher maxima and minima for smaller values instead.

The response of plant biomasses with respect to the insect maturation rate (γ) is more complex. For example
around the middle part of Figure A.2 (between the π/2 and 3π/2 marks), increasing γ causes (equilibrium) plant
biomass increases if herbivory is high, but decreases if herbivory is low. In contrast, increasing γ from very low
values causes plant biomass to increase if herbivory is low (between LP and the 3π/2 mark at the right) or decrease
when it is high (between BP and the π/2 mark at the left).

The transitions between stability and limit cycles are typically super-critical Hopf bifurcations, in which a stable
branch of periodic solutions overlaps a branch of unstable equilibria. The bifurcation diagram (Figure A.2) also
displays a sub-critical Hopf bifurcation, in which an unstable branch of periodic solutions overlaps stable equilibria.
In such cases the long term outcome can be stable coexistence or a limit cycle depending on the initial conditions.
Given the parameter values in Table 1 of the main text, this sub-critical Hopf bifurcation zone was too narrow to
be represented in the parameter space (Figure A.1). Appendix C contains a simulation in which a small change in
the initial conditions causes the system to approach an equilibrium or a limit cycle.

The Ro = 1 line in Figure A.11 can be found analytically. To do this, we need to know when the carrying capacity
equilibrium switches between stable and unstable, which depends on the eigenvalues of the jacobian matrix of the
PLA model evaluated at (x, y, z) = (1, 0, 0). The PLA model is:

dx

dτ
= x(1− x) + σ

αz

η + z
x− βxy

dy

dτ
= ǫ

αx

η + z
z + φz − γβxy − µy

dz

dτ
= γβxy − νz

(A.1)

and its jacobian matrix at (x, y, z) = (1, 0, 0) is:





1− 2x+ σαz
η+z

− βy −βx σαηx

(η+z)2
ǫαz
η+z

− γβy −µ− γβx ǫαηx

(η+z)2 + φ

γβy γβx −ν



 =





−1 −β σα
η

0 −µ− γβ ǫα
η
+ φ

0 γβ −ν



 (A.2)

The eigenvalues of the jacobian are λ1 = −1 and:

λ2 =
−(µ+ ν + γβ)±

√

(µ+ ν + γβ)2 − 4 [ν(µ + γβ)− γβ(φ+ ǫα/η)]

2

thus (x, y, z) = (1, 0, 0) is unstable if at least one of λ2 have a positive real part. This can only happen when:
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Figure A.1: Outcomes of the PLA model as a function of the larval maturation and herbivory rates for specialist
pollinators. The ellipse describes the joint variation of γ and β taking place in the bifurcation diagram in Figure
A.2.
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Figure A.2: Bifurcation diagram along the elliptical path drawn in Figure A.1, with reference values of β and γ for
each quarter of a rotation. Solid (broken) lines represent stable (unstable) equilibria, black (white) circles represent
limit cycle maxima and minima. The x = 1 line corresponds to the plant carrying capacity. HBsuper: super-critical
and HBsub: sub-critical Hopf bifurcations, BP: branching point (transcritical bifurcation), LP: limit point (fold
bifurcation).
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(ǫα+ φη)γβ

ην(µ+ γβ)
> 1 (A.3)

by which automatically both λ2 are real (one is negative and the other is positive). The left-hand side of (A.3) is
Ro in the main text. Making Ro = 1 and writing β as a function of γ, we obtain a decreasing hyperbolic line with
asymptotes β = 0 and γ = 0 as shown in Figures 1 and 3 in the main text. This is yet another reason, a pure
technical one this time, that explains why we choose to present our results in the form of a β vs γ parameter space.

Since the eigenvector of λ1 is a multiple of (1, 0, 0), the eigenvectors of λ2 are orthogonal to (1, 0, 0), i.e.
v = (0, vy, vz), w = (0, wy, wz). This, and the fact that both λ2 are real if the inequality above holds, means that
only perturbations in y and/or z, i.e. an insect invasion, would make (x, y, z) = (1, 0, 0) unstable.

Appendix B: Isocline properties

Let us assume that the adult phase is very short lived compared with the larval phase and with the dynamics of the
plant. In the same way as we did in the case of the flowers, assume that the adults reach a steady-state dz/dt ≈ 0
with respect to the other variables, and that the adult biomass can be approximated by z ≈ γβxy/ν. Substituting
this in the ODE system (A.1), we obtain the two-dimensional system:

ẋ = x(1 − x) + σ
αγβx2y

ην + γβxy
− βxy

ẏ = ǫ
αγβx2y

ην + γβxy
+

φγβxy

ν
− γβxy − µy (B.1)

This system has two trivial isoclines, x = 0 for the plant and y = 0 for the insect. The following results only
concern the non-trivial isoclines for plants and insects.

Plant isocline

Making ẋ = 0 in (B.1), the (non-trivial) isocline of the plant can be written as a polynomial in x and y:

x2y + βxy2 − (1 + σα)xy +
ην

γβ
x+

ην

γ
y −

ην

γβ
= 0 (B.2)

To characterize the shape of (B.2) we start by finding asymptotes. To do this we can rewrite (B.2) as a function
of x:

y(x) =
1

2β















−
(

ην
γ

− (1 + σα)x + x2
)

±

√

(

ην
γ

− (1 + σα)x + x2
)2

+ 4 ην
γ
x(1− x)

x















(B.3)

We divide the numerator and the denominator of (B.3) by x:

y(x) =
1

2β







−
ην

γx
+ (1 + σα) − x±

√

1

x2

(

ην

γ
− (1 + σα)x + x2

)2

+
1

x2
4
ην

γ
x(1− x)







=
1

2β







−
ην

γx
+ (1 + σα) − x±

√

(

ην

γx
− (1 + σα) + x

)2

+ 4
ην

γ

(

1

x
− 1

)







and we take the limit when x goes to plus or minus infinity:

lim
x→±∞

y(x) =
1

2β
lim

x→±∞

{

0 + (1 + σα)− x±

√

(0 − (1 + σα) + x)2 + 4
ην

γ
(0− 1)

}

=
1

2β
lim

x→±∞

{

−(x− 1− σα) ±

√

(x− 1− σα)2 − 4
ην

γ

}
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Note that |x− 1− σα| >
√

(x− 1− σα)2 − 4 ην

γ
. Thus, the square root above can be approximated by δ(x)(x−

1− σα), where δ is a number between 0 and 1, and δ(x) → 1 as x → ±∞. We can continue as follows:

lim
x→±∞

y(x) =
1

2β
lim

x→±∞
{−(x− 1− σα)± δ(x)(x − 1− σα)}

=
x− 1− σα

β
lim

x→±∞

{−1± δ(x)}

2

(B.4)

When x → ±∞ and δ → 1, the ’+’ branch, y(x) approaches the horizontal asymptote y = 0. For this ’+’ branch
we also have that −1 < {−1 + δ(x)} < 0 in (B.4), which means that y is negative when x → +∞, and positive
when x → −∞. In other words, the horizontal asymptote is approached from below when x → +∞ and from above
when x → −∞.

When x → ±∞ and δ → 1, the ’–’ branch, y(x) approaches the slanted asymptote:

y =
1 + σα − x

β
(B.5)

which decreases with x. For this ’–’ branch we also have that −1 < {−1− δ(x)}/2 < −1/2 in (B.4), which means
that when x → +∞, y < 0 and |y| < |(x− 1− σα)/β|. In other words, y lies between 0 and the slanted asymptote
when x → +∞.

If we write (B.2) as a function of y rather than as a function of x, we will find a vertical asymptote x = 0, and
the slanted asymptote (B.5) again. Because (B.2) is symmetric regarding the signs of its terms, the properties of the
vertical asymptote must consistent with those of the horizontal: y(x) goes towards +∞ when x = 0 is approached
from the left, and towards −∞ when x = 0 is approached from the right. Also because of symmetry x must lie
between 0 and the slanted asymptote when y → +∞.

The following statements tells us the location of special points of (B.2) as well regions in which (B.2) cannot be
satisfied.

Lemma 1: the plant isocline contains the following (x, y) points:

K = (1, 0)

O = (0, β−1)

P = (σα − ηνγ−1, β−1)

Q = (1, (σα − ηνγ−1)β−1)

(B.6)

Proof: evaluate (B.2) at x = 1 to get a quadratic equation in y with roots y = 0 and y = (σα − ην/γ)/β, this
gives points K and Q respectively. Evaluate (B.2) at y = β−1 to get a quadratic equation in x with roots x = 0 and
x = σα− ην/γ, this gives points O and P respectively. Points K (the plant’s carrying capacity), and O are always
biologically feasible (both have non-negative coordinates).

Corollary 1: Simple observation of (B.6) tells us that points P and Q are simultaneously biologically feasible
if γσα > ην. Conversely, both are unfeasible if γσα < ην.

Lemma 2: Points P and Q lie below the slanted asymptote (B.5).
Proof: substitute y = β−1 in (B.5) to obtain point (σα, β−1), and substitute x = 1 in (B.5) to obtain point

(1, σα/β). Simple inspection shows that point (σα, β−1) is always to the right of point P, and point (1, σα/β) is
always above point Q.

Lemma 3: the plant isocline crosses the x- and y-axis only at points K and O respectively, and nowhere else.
Proof: substituting y = 0 in (B.2) gives only one root x = 1 (i.e. point K). Substituting x = 0 in (B.2) gives

only one root y = β−1 (i.e. point O).
Lemma 4: the plant isocline is not satisfied in the (−,−) quadrant.
Proof: let a, b ≥ 0 and substitute x = −a and y = −b in (B.2). This leads to:

−

[

a2b+ βab2 + (1 + σα)ab +
ην

γβ
a+

ην

γ
b+

ην

γβ

]

= 0 (B.7)

since all parameter values are positive, the statement above is false, thus (B.2) is not satisfied in the (−,−) quadrant.
Using this information about the asymptotes (x = 0, y = 0 and eq. B.5), and Lemmas 1, 2, 3 and 4 we can

conclude that the plant’s isocline must have one of the two forms depicted in figure B.1. Corollary 1 explains the
form taken in figure B.1A, when γσα < ην, and the form in figure B.1B, when γσα > ην. These are the two main
cases referenced in the main text, where only the positive quadrant is considered. For points between the O–K
segment and the axes ẋ > 0, otherwise ẋ < 0.
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Figure B.1: The two main configurations of the plant isocline. We only consider the O–K segment in the positive
octant (hatched square). In A the isocline lies below the plant’s carrying capacity (i.e. left of K), in B parts of the
isocline lie above (i.e. right of K).

Figure B.2 shows how the positive part of the plant isocline changes as we vary some of the bifurcation param-
eters. Increasing γ or decreasing η or ν, causes the isocline to be “compressed” against the asymptote (B.5) and it
adopts the shape of a mushroom, the letter Ω or an anvil. Increasing β causes points P and Q to decrease along
the vertically axis. It is more difficult to follow the effect of the rest of the parameters, for example increasing σ
and α cause P and Q to move right and upwards respectively, but they also move the asymptote (B.5) right and
upwards, so we cannot tell if this will cause the isocline to adopt a mushroom shape.

Larva isocline

Making ẏ = 0 in (B.1) the larva isocline is:

y(x) =
p(x)

q(x)
(B.8)

where the numerator and denominator:

p(x) = ǫαγβx2 − ηνγβ(1 − φ/ν)x − ηµν (B.9)

q(x) = γβ [γβ(1− φ/ν)x + µ]x (B.10)

are second order polynomials, i.e. parabolas. By assuming instead ẏ > 0 one obtains (B.8) but with a “>” sign,
which means that insect biomass grows for points lying below the isocline and conversely decline for points above
the isocline.

For function p(x): p(0) = −ηµν < 0 and limx→±∞ p(x) = +∞. This means that p(x) has one negative root and
one positive root; and also that p(x) < 0 between the negative and positive roots, and p(x) > 0 otherwise. Since
p(x) is the denominator of (B.8), the larva isocline has the same roots as p(x) in the x-axis. The positive root of
(B.9) and (B.8) is:
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Figure B.2: Changes in the shape of the plant’s isocline. (A) As γ increases and η, ν decrease, points P and Q
move closer to the diagonal asymptote (broken line), and the isocline eventually adopts the form of a mushroom.
(B) As β increases, O, P, Q and the diagonal asymptote move towards the plant axis and the isocline is compressed
vertically.

x0 =
ην

2ǫα

(

1−
φ

ν

)

+

√

[

ην

2ǫα

(

1−
φ

ν

)]2

+
ηµν

ǫαγβ
(B.11)

For function q(x): it has one root at x = 0, a second one at:

xv = −
µ

γβ(1− φ/ν)
(B.12)

and limx→±∞ p(x) = −∞. This means that q(x) > 0 between 0 and xv, and q(x) < 0 otherwise. Both roots make
the denominator of (B.8) equal to zero, which means that the larva isocline has two vertical asymptotes, x = 0 and
xv.

And finally, the larva isocline has one horizontal asymptote:

yh = lim
x→±∞

p(x)

q(x)
=

ǫα

γβ(1 − φ/ν)
(B.13)

Notice that the signs of xv and yh depend on φ/ν:

{

φ < ν : xv < 0, yh > 0

φ > ν : xv > 0, yh < 0
(B.14)

This information about the parabolas (p(x), q(x)), and the signs of the asymptotes (xv, yh), is enough to sketch
the possible shapes of the larva isocline: the isocline crosses the x-axis at the roots of p(x); its jumps to infinity at
the roots of q(x); and is positive (negative) whenever p(x) and q(x) have the same (different) signs. According to
(B.14) we have two main cases:

1. If φ < ν the vertical asymptote xv is negative and the horizontal asymptote yh is positive. As we can see,
there are two alternatives, depicted by Figure B.3A and B. Both are indistinguishable in the positive octant,
which is the only part that matters: they both start at the x0 in the plant axis and grow up to a plateau yh.

2. If φ > ν the vertical asymptote xv is positive and the horizontal asymptote yh is negative. In this configuration
we also have two alternatives, as depicted in Figures B.3C or D. However, we can quickly dismiss alternative
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Figure B.3: Possible configurations of the larva isocline, pictured as a three segment black line. For A and B φ < ν.
For C and D φ > ν. Only parts in the positive octant (hatched square) are considered. The green parabola p(x) is
the numerator of the isocline and the circles indicate its roots, where x0: positive root. The red parabola q(x) is the
denominator of the isocline, which has two roots x = 0 and x = xv, both of which are also the vertical asymptotes of
the isocline. The isocline also has an horizontal asymptote yh. The alternative in part D can be dismissed because
it implies a detrimental effect of plants on insects.

D: the insect is meant to grow for points that are below the larva isocline, but since the isocline is decreasing,
this automatically means to grow when plant abundance is low rather than high. This is nonsensical because
the plant always has a positive effect on insects.

Figure B.4 shows how the positive part of the larva isocline responds to some parameter changes. From the
equations that define the isocline’s root (B.11) and asymptotes (B.12,B.13) we can conclude that increasing γ, β
tends to move the isocline closer to the larva axis.

Appendix C: Additional simulations

Figure C.1 displays limit cycles in the PLA model with plant biomasses entirely above the carrying capacity. The
parameters are as in Table 1 of the main text, but with γ = 0.00973, β = 0.01. Figure C.2 shows an example where
oscillations can damped out or evolve towards a limit cycle depending on the initial conditions. Parameters as in
Table 1 of the main text, but with γ = 0.06, β = 20, ν = 5. The attraction basins for both outcomes are separated
by an unstable orbit, like the one show in the bifurcation plot in Appendix A.

Figure C.3 displays the dynamics of plants, flowers, larva and adult insects under the interaction mechanism
from which the PLA model is derived (ODE system 1 in the main text). This simulation uses parameter values
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Figure B.4: (A) For φ < ν the larva isocline moves closer to the larva axis and becomes more shallow as γ and β
increase. For φ > ν the larva isocline becomes closer to the larva axis.

from the last column of Table 1 of the main text with γ = 0.01, b = 0.005. This figure is comparable to Figure 2
in the main text: the 200 time in units there, become t = τ/r = 200/0.05 = 4000 time units here, and the plant’s
carrying capacity there (x = 1), becomes c−1 = 0.01−1 = 100 here.

Appendix D: Source codes

We used XPPAUT (http://www.math.pitt.edu/~bard/xpp/xpp.html) to generate the parameter spaces and
bifurcation diagrams. We used the Runge-Kutta(4,5) method of Matlab (https://www.mathworks.com/products/
matlab/) or Octave (https://www.gnu.org/software/octave/) to integrate the differential equations.
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Figure C.1: Limit cycles in the PLA model, with plants above the carrying capacity (dotted line). Blue:plant,
green:larva, red:adult.
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Figure C.3: Interaction dynamics of plants, larva and adults, with the flowers explicitly considered. Blue:plant,
green:larva, red:adult, black:flowers. The dotted line indicates the plant’s carryng capacity.
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Algorithm 1 XPPAUT script for the β versus γ parameter space.
# Filename: antmut.ode

# Default parameter values

par sigma=5

par epsilon=0.5

par alpha=5

par beta=10

par gamma=0.01

par eta=0.1

par mu=1

par nu=2

par phi=0

# Initial values

init x=1

init y=0.1

init z=0

# Settings

@ dt=0.001 bound=10000 total=500

@ yp1=x yp2=y yp3=z

@ ylo=0 yhi=10 xhi=500 nout=2000 nplot=3

# The following settings must be manually supplied

# to the AUTO module of XPPAUT

# nmax=500 nst=30 ds=0.01 dsmin=0.001 dsmax=0.01

# epsu=0.0000001 epss=0.0000001 epsl=0.0000001

# Equations

x’=x*(1 - x) + (sigma*alpha*x*z)/(eta + z) - beta*x*y

y’=(epsilon*alpha*x*z)/(eta + z) + phi*z - gamma*beta*x*y - mu*y

z’=gamma*beta*x*y - nu*z
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Algorithm 2 XPPAUT script for the bifurcation plot along the β vs γ ellipse.
# Filename: antmut_ellipse.ode

# Default parameter values

par sigma=5

par epsilon=0.5

par alpha=5

par eta=0.1

par mu=1

par nu=2

par phi=0

par angle=0

# Initial values

init x=1

init y=0.01

init z=0

# Ellipse parameters

number gammac=0.012

number betac=10

number width=0.004

number height=4

number phase=pi/2

# Elliptical path in beta vs gamma space

gamma=gammac + width*cos(-angle+pi)*cos(phase) - height*sin(-angle+pi)*sin(phase)

beta=betac + width*cos(-angle+pi)*sin(phase) + height*sin(-angle+pi)*cos(phase)

# To know which gamma and beta correspond to a given angle

aux gg=gamma aux bb=beta

# Settings

@ dt=0.001 bound=10000 total=500

@ yp1=x yp2=y yp3=z

@ ylo=0 yhi=10 xhi=500 nout=2000 nplot=3

# The following settings must be manually supplied

# to the AUTO module of XPPAUT

# nmax=500 nst=30 ds=0.01 dsmin=0.001 dsmax=0.01

# epsu=0.0000001 epss=0.0000001 epsl=0.0000001

# Equations

x’=x*(1 - x) + (sigma*alpha*x*z)/(eta + z) - beta*x*y

y’=(epsilon*alpha*x*z)/(eta + z) + phi*z - gamma*beta*x*y - mu*y

z’=gamma*beta*x*y - nu*z
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Algorithm 3 Matlab/Octave PLA model odefile.

function dx = odepla(t,x)

% Filename: odepla.m

% Scaled Plant(1), Larva(2), Adult(3) model

% Do not uncomment the following commands, they are meant to be issued

% from the MATLAB/OCTAVE interpreter or a script file to integrate this

% odefile. Modify them appropriately for the other models.

% tspan = 500;

% n0 = [1, 0.01, 0];

% options = odeset(’RelTol’,1e-6,’AbsTol’,[1e-6 1e-6]);

% [t, npla] = ode45(@odepla, [0, tspan], n0, options);

global s a b g e h m n phi

dx = zeros(3,1);

dx(1) = x(1)*(1 - x(1)) + (s*a*x(1)*x(3))/(h + x(3)) -b*x(1)*x(2);

dx(2) = (e*a*x(1)*x(3))/(h + x(3)) + phi*x(3) -g*b*x(1)*x(2) -m*x(2);

dx(3) = g*b*x(1)*x(2) - n*x(3);

end

Algorithm 4 Matlab/Octave PL model odefile.

function dx = odepl(t,x)

% Filename: odepl.m

% Plant(1), Larva(2) model

global s a b g e h m n

dx = zeros(2,1);

dx(1) = x(1)*(1 - x(1)) +(s*a*g*b*x(2)*x(1)^2)/(h*n + g*b*x(1)*x(2)) -b*x(1)*x(2);

dx(2) = (e*a*g*b*x(2)*x(1)^2)/(h*n + g*b*x(1)*x(2)) -g*b*x(1)*x(2) -m*x(2);

end

Algorithm 5 Matlab/Octave PFLA model odefile.

function dx = odepfla(t,x)

% Filename: odepfla.m

% Plant(1), Flower(2) Larva(3), Adult(4) model

global r c sigma a b s w epsilon gamma m n phi

dx = zeros(4,1);

dx(1) = r*x(1)*(1 - c*x(1)) + sigma*a*x(2)*x(4) - b*x(1)*x(3);

dx(2) = s*x(1) - w*x(2) - a*x(2)*x(4);

dx(3) = (epsilon*a*x(2) + phi)*x(4) - gamma*b*x(1)*x(3) - m*x(3);

dx(4) = gamma*b*x(1)*x(3) -n*x(4);

end
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