
Team 047 Strategy Report

To the Devs:
In the spirit of stevearc’s blog post, this strategy report will serve as a draft for a
future blog post that hopefully new generations of battlecoders can benefit from. It
is sad that tricks and techniques are lost as teams graduate / move on, and the
learning curve continues to scare away new entrants.

Warning to the Reader:
This was all mostly generated in a single session of etherpad collaboration, and may
be a bit hard to follow at times. We apologize for much of the randomness
contained herein.



Overview
The return to classical battlecode with messaging and swarm was a welcome change
from the chaos of last year’s mass random unit battles. One might even say that it
was a return to more elegant times

Game Analysis
The first two days we spent mostly looking over the specs and discussing how we
thought the game was going to play out. We made several conclusions about how
we thought the end-of-month metagame would look.

First of all, we decided that soldiers were completely overpowered. They were
cheap, had high damage output, and not too shabby range. Comparatively,



disrupters had joke damage output, and scorchers seemed very difficult to use
effectively in a swarm. We realized that scorchers were probably designed to
counter soldiers, but with a large enough swarm of soldiers, it would be hard to
effectively enough scorchers to counter it. Also, having scorchers meant not having
any soldiers in the same front due to the collatoral damage mechanic – the soldiers
would have no good attacking positions without risking getting hit.

Second, we realized that the .998 yield bonus meant that efficient code would have
a huge advantage in terms of how much of an army you could support. Despite the
generous limit of having 10000 bytecodes per turn for all robots, spending the total
allocation drops the army’s effectiveness significantly significantly. To see how
much of a difference this makes, consider that Team 16’s soldiers spent about 1k
bytecodes per turn on average, while ours spent on the order of 3k. This meant that
over 1000 turns Team 16 was losing 30 flux less per soldier than us, so he could
train about 25% more soldiers only taking into account bytecode upkeep.

Only archons could actually take advantage of the full 10k bytecodes per turn, plus
maybe units in heavy combat that needed to process a lot of enemies in their sensor
range. We decided to have archons use a more involved navigation system, such as
tangentbug or D*, but realized that our army units had no hope of doing any
complicated navigation since it would take too many bytecodes. Our soldiers were
doomed to just relying on rc.canMove()  and bugnav. See the navigation section
for more about this.

Third, the steep movement costs meant that there was high maintenance for
keeping an aggressive army to chase the enemy around and capture power cores.
Consider a situation where neither side builds any power cores, and nobody does
any tricky flux management. One side builds up an army for a thousand rounds and
then attacks the other side. The other side just sits in his base and builds up an
army. The attacking side will be always be at a deficit in terms of raw army size
since a significant amount of flux was spent moving the army across the map.
Consider a 50x50 map – generally units will have to move ~60 squares to get across
the map, which for soldiers is 24 flux, for disrupters is 72 flux, and for scorchers is
108 flux. Add to that the bytecode overhead of having to run a navigation



algorithm, some kind of swarm heuristic, and its easy to see how expensive moving
an army is. We realized that since mobility and map control are always critical
advantages to have, this further skewed the desirable unit composition towards
mass soldiers.

Robot Type Overviews

Ducks
These units were hidden in the specs, but if you align your archons in a specific
duck pattern. Then a duck will be spawned in the middle of the pattern. We found
this out on the first day, but decided not to use it since ducks are so overpowered.

Archons (Huge Duck)
Archons generate flux and are able to spawn units and towers. This year they are
land units, meaning that they are extremely easy to kill. Good navigation and
retreat code are probably 2x as important this year as in previous years



Scouts (Mini Duck)
Scouts are manufacturered from a protoss stargate and are great for scouting the
enemy base as well as sniping workers and generally annoying the heck out of the
other enemy. They are also quite dangerous when used in packs. Scouts are the
only flying unit and also the fastest and cheapest unit to move. They have a
respectable sensing range and their attack drains flux instead of dealing energon
damange. in addition, they have the ability to heal all units under them at the end of
the round.

Soldiers (Biggest Ducks)
Soldiers have the highest dps/flux, lowest move delay and move cost of any
attacking unit, and best flux capacity/flux cost of any unit. This not only makes
them the best general swarm unit to make, but also the best unit to act as “flux
batteries”



Disrupters (Long Range Ducks)
Disruptors have longer range than soldiers and each attack increases the attack
delay of enemies. However, they are the slowest of all the units and have a hefty
move cost (thought not quite as bad as scorchers). They are better tanks than
soldiers and are useful mainly for countering a mass-scorcher army or fighting over
walls, especially 2-thick walls.

Scorchers (Shitty Ducks)
Due to their absurdly high movement costs and team-damaging splash, we felt that
they were essentially useless and did not implement them at all. This did hurt us a
bit as we didn’t have a good scorcher bot to test against, but overall we feel like the
uselessness of scorchers more than justified this decision

Metagame
Before any implementation, we brainstormed many types of feasible power node
capturing strategies and developed a particular nomenclature for them.

The first and most obvious strategy was to send all archons to capture power nodes



going straight towards the enemy, right from the beginning, training an army with
the excess flux.

Another strategy would be to split up the archons 3-3 and try to capture power
nodes going on the sides of the maps. The goal of this strategy would be that one
side would run into the 6 archon enemy swarm and fight it, while the other side
backdoors to victory.

The 3-3 may lose outright to a team that just captures straight to your base and kills
your core. To deal with this, we considered the 2-2-2 strategy, which has 2 archons
cap along one side, 2 cap straight towards the enemy, and 2 cap along the other
side.

To deal with these possible backdoor strategies, we thought of having 5 archons
push straight to the enemy base, and 1 archon defends the power core. This would
be effective against 2-2-2 and 3-3, but not so effective against a 6 archon push.

And the final breakthrough, we thought we were being pretty clever here. For
starters, we figured out that we can have archons signal to each other by doing a
movement pattern ‘dance’ where they walk in a predesignated pattern like NW-
NE-SE-SW or something, and the other archons keep checking for that specific
pattern. Then, we would have one archon go to the enemy base and scout out how
strong the enemy defenses were, one archon stay at home and defend, and four
archons go to the middle of the map. The scouting archon would signal if the
defenses were weak enough for a frontal assault to work, and the defending archon
would signal if the rest of the archons needed to come home and defend the power
core. We called this the 1-4-1 strategy, and figured it would be adaptive enough to
handle all kinds of other strategies.

In retrospect, we were kind of overthinking it in the beginning. After building up
our core infrastructure (about 1.5-2 weeks in), we decided that the first thing to
make was the simple thing - 6 archons capturing power nodes straight to the enemy
base. By this point our infrastructure already had a lot of features, including a
system how communicating how many enemy archons we had killed, a system for



sharing exploration for map edges, terrain tiles, and power node locations between
archons, and a heuristic for guess the enemy power core location based on the
symmetry of the map. Our first idea was, for each archon, to capture the power
node with the smallest ([distance between current archon location and power node]
+ [distance between power node and enemy power core guess]) heuristic. This
ended up working out very well and we basically kept this heuristic until the end.

After playing ourselves a few times and some games on the scrimmage server, we
realized that nobody was doing any efficient capturing strategy. Most teams would
either defend or just capture nodes haphazardly, and take absolutely forever to get
close to your power core. We decided, why bother capturing power nodes at all!
It’s not like we were ever winning because we killed their power core fast, usually it
just came down to a huge fight where our forces met. We changed our strategy to
just rush for the guessed enemy power core location on turn 1. Depending on how
straightforward the map was, we would reach their base between turn 70 and turn
1000, and proceed to just spam soldiers in their face.

The truth is, we always had this unfounded fear of being backdoored, so we gave
our archons a condition for when to return home from their rush. The condition
was a prespecified turn number or after we saw their power core and didn’t see any
enemies remaining. After returning home, we would resume our standard power
node capture strategy.

On the scrim server, our strategy reigned supreme up until the end. We never lost a
game to being backdoored during our rush. Turns out that players that made any
significant number of towers just died outright to our rush. We set the metagame to
an extent that others teams would be like “this strategy won’t work because we’ll
just get rushed by fun gamers”.



It turns out we didn’t really believe our rush strategy was the best one. It had its
advantages, giving us a lot of map exploration, knowledge about the power node
graph structure, and map control in the early game, giving us the initiative, and
forcing the other teams to respond. But it also had significant disadvantages,
wasting valuable flux on movement cost, potential of getting archons and army
units left behind and engaging with an inferior force, and if the map was especially
nasty, possibly never even finding the enemy before our conditions told the rushing
force to return home. Though we knew our strategy could be easily beaten by a
strong defense, we kept it up on the scrim server so that other teams would have to
respond to it. We basically shut down any strategy involving fast power node
capture, forcing most teams to just turtle and defend until our rush was “over”. We
feel like power node capture strategies may have been feasible, but our rush
strategy basically forced the opponents to have superior combat code to deal with
it. The only team that had excellent combat code was Team 16, so they dealt with it



pretty well by defending.

What we really saw as being optimal was some sort of “slow push” strategy, where
you turtled up for a bit while burning as little flux on upkeep/movement as possible,
then roll out while a large army, slowing taking power nodes. The goal is to engage
the enemy on your side of the map if possible, since that means that he will have
spent more flux on movement than you, so you should have a superior army. Of
course we risk losing due to end of game tower decay, but we deal with that by
detecting the decay as soon as it starts, and switching to desperation power node
capture mode where we just capture as many nodes as possible as fast as possible to
mitigate the decay damage.

Combat
This is probably the most critical piece in determining who had the superior bot.
Most games came down to one team rolling the other in combat and then winning,
or a drawn out engagement in which one team eventually pulled out ahead. To test
our bot, we played it against older iterations of itself. Whenever we made a
significant update to the combat code, we would beat our older bot something like
50-0, while whenenver we made a significant update to something else, like flux
management or navigation or general strategy, we would beat ourself like 28-22.
Point is, combat code wins battles, and won battles almost always mean won games.
It doesn’t matter if your more efficient code can support an extra 25% more units if
they still lose to the smaller army of your opponent. It doesn’t matter even if your
navigation code gets all your units trapped behind hooks if they still kill the enemies
while trapped in hooks. So how do you do combat? There are three main
components, sensing/targetting, micro, and retreating. Oh, there’s also unit
composition, but we’re just going to assume mass soldiers for now since soldiers are
so overpowered.

Sensing and Targetting
For this we had two subsystems. One we called the radar system, and was basically
a cache of RobotInfo objects. We updated this every turn in battle, and every few
turns out of battle. On top of this, we had an extended radar system (the “ER”).



Every 3-6 turns, units in battle would broadcast the position, unit type, id, and a
heuristical strength estimate value of every enemy in their sensing range, plus stats
about themselves only if they were ready for battle or already fighting. Every
soldier aggregates these broadcasts into their ER, and whenever they need to do a
targetting calculation, they add up all the strength estimates of the units around
them. If they compute that the allied forces are stronger, they move towards the
enemy, but if they compute that the enemy forces are stronger, they kite or retreat
from the enemy. When soldiers, are about to attack, they use the radar and also the
ER to check if anything is in its attacking range, and if there is something, it attacks
the unit with the lowest energon.

Micro
This part is super tricky. It’s all about being clever, and handling tons of different
cases. For example, consider this insanity: on a completely open map, a soldier can
kill 5 chasing soldiers just by kiting backwards all the way across the map. The
soldier attacks as soon the enemy is in its attack range, then backs off on the same
turn. The offending soldier moves in, gets hit, but can’t attack back because
attacking has to happen before moving. Therefore, the kiting soldier NEVER
GETS HIT! This essentially means that you can’t chase soldiers with soldiers, all
you’ll do is lose soldiers. We don’t really see this in practice though, since there are
a lot of units on the map, and chances are some soldier will eventually flank the
kiting soldier, or a barrier or ally will get in its wall and prevent it from kiting
further. But still, good micro can get your units a lot of free shots off.

For instance, say you have a unit at (0,0), facing towards (1,0), and your opponent
has a unit at (3,1), facing towards (1,1). He moves into the square (2,1), and is
about to attack you. You want to retreat. But if you simply tell your soldier to
retreat in the opposite direction of the enemy, you will end up retreating towards (-
1,-1), which involves you TURNING FIRST, and means the enemy has a turn to
attack you before you move. This is a fatal error. You should really just retreat
towards (-1,0).

On a similar note, say you’re backing off from a soldier. You’re at (0,0), and he’s at
(1,0), facing towards (0,1). Most people will back off towards (-1,0). But if you



back off towards (-1, -1), you can keep him in your attack radius, but he can’t
attack you anymore! Since the move delay is higher than the attack delay, there will
a large period of time where the enemy can’t touch you until he has the ability to
turn. Pretty cool, huh?

Retreat
We don’t need to, cause we too good yo. Chasing an enemy is pretty easy, just go
towards him and attack when you can. But retreat is difficult. For archons, this is
key to survival. For soldiers, good retreat means you can get a few extra shots off.
For scouts, it means you can live to heal another day.

Our attacking units (soldiers, disruptors) use a sort of swarm based retreat. While
engaging, they try to eat ducks (big ones) [AWW YEA THE BIGGEST]!!!!!!]]]]
and estimate the strength of the enemy swarm. If the enemy force is much too large
to engage, then the soldiers will try to retreat by moving backwards towards the
closest archon. Similarly, attacking units too far from archons would return to
archons.

For scouts, we use a more complicated method to evaluate nearby enemies (and
map edges) and then try to flee in the direction most clear of obsticles. Most of the
time though, the scouts should not need to flee from enemies - after scouting the
map edges in the early game, they stick close to archons, and hence “retreating” is
really just taking a step back from the closest enemy to get closer to the center of
the swarm.

For archons we tried several types of retreat code. The first one was to merely
retreat from the closest enemy or the enemy swarm center. This is better than no
retreat code, but really works much better as a heuristic for not getting too close to
the enemy swarm than as actual retreat code.

Next, we implemented something similar to what we use for scouts (in actuality, the
scout retreat code was copy-pasted from the archon retreat code) - we mark each
direction with an enemy, and then try to find the largest block of unmarked
directions. We then retreat in the direction of the center of this block. This worked



pretty well when the enemy units were in a clear swarm, but became much more
problematic in the cases where the enemy swarm was fragmented and the archon in
question is somewhat in the middle of the enemy swarm. Since we treat all number
of enemy units equivalently, then a single out of flux unit could severly affect the
archon’s escape path. Indeed, we decided to treat units out of flux as normal, since
they could easily be revitalized next turn by a simple flux transfer - a team could
easily keep lots of out of flux units around, only to wake them up using a single
sleeping unit with flux. While this retreat code did pretty well overall, it causes our
units to spread out on retreating more, instead of sticking together (which can be
seen as both a pro and a con).

Finally, we settled on a point value system: we assign a point value of 1 for each
attack capable enemy unit (soldiers/disruptors/scorchers) and a point value of -1 for
each such allied unit. then, we sum up the number of points in each direction, and
convolve by summing for each direction its neighbors to the immediate left and
right. Then, marking all minimum values as “open” and all other values as “closed”,
we ran the previous retreat code. After much testing, we decided that this behavior
was much better for overall survivability since it glitches less in semi-surrounds and
also handles walls better (we can assign point values to walls depending on how
close we are).

Scout Behavior
At some point during the competition, most teams probably considered (with
varying levels of seriousness) a mass scout strategy: not only is the scout the fastest,
cheapest, and flyingest unit in the game, it has a long, 360 degree range, is immune
to the splash damage of scorchers, and has the lowest movement upkeep (other
than archons, of course). Though we eventually put aside the lolsiness of scouts in
favor of the OPness of soldiers, it was easy to see that scouts had their place in the
game.

Their ability to regenerate is perhaps their most important function in our bot: even
if a scout regenerates only itself, it is essentially converting flux to energon at an
exchange rate of 2:1 (0.4 flux to heal 0.2 energon). We can see that this is pretty



good relative to, say, spawning a new soldier at a rate of 3:1 (120 flux to spawn a 40
energon unit). Any extra healed unit is only added profit. (Of course, we still made
sure that our scouts always went to the closest square that maximized the number
of nearby damaged units).

The second primary goal of the scout was to help the archons distribute flux
amongst the army. As we detail below in the Flux Management section, our swarm
code relies on archons being able to dump flux to units outside of battle so as to
reduce upkeep, as well as on units being able to dump flux back to the archons in
battle so that more units can be made. Rather than require, say our soldiers running
back to archons in the middle of a fight, our just and humble scouts actively sought
to gather flux from units who have too much and deliver it to units who have too
little, keeping just enough for themselves to stay alive.

The eponymous function of our scouts was, ironically, not nearly as important as
the two already mentioned: in the beginning of every game, a couple scouting
scouts were produced to find the edges of the map, learn a bit of the graph structure
of the power nodes, and, if they were lucky, detect and report the enemy to the
archons. Scouts were especially well-suited for this capacity since they were fast
and didn’t have to worry about walls.

Our scouts also have a harass mode in which they chase down lone archons or
scorchers, stealing their flux, broadcasting their location to our soldiers, and giving
the stolen flux back to our soldiers or archons.

Last but not least, our scouts also played a role as spies: on the scrimmage server
and during the seeding tournament, our scouts occassionally would listen to enemy
messages and dump them as match observations for us to peek at later. Though we
did make some forays into various message attacks, these message dumps held
another value. By looking at the message format of other teams, our scouts (and,
consequently, our archons) are at times able to detect which team we are playing in
game by looking at the format of an enemy message and comparing it to a
precompiled set of characteristics that map to some of the top teams (and some of
the not-so-top teams, for testing purposes). For example, Team 16 sends 3 ints and



a MapLocation, where the 3rd int is the round number. Boxdrop (and Yippee)
send an int and a string. Apathy sends a string and 2 ints (a hash and the round
number) disguised as a MapLocation.

In theory, we could at worst disregard this information about the enemy team and
at best blind counter our enemy by changing our strategy. We also save the enemy
team number in memory so that our archons in game 2 (and game 3, should we
need it :p) know the enemy team right off the bat. Unfortunately, this was a rather
recent development in our bot, and we were only able to incorporate this idea
against Team 16. Even then, we have yet to see if this change in strategy will even
be effective.

Altogether, our scouts were quite busy throughout the game. Given all the
computation they must do in a single round (healing, giving flux, exploring,
zapping enemies, sniffing enemy messages), they use quite a few bytecodes, and
thus a large amount of upkeep. Overall, the scouts seem to act as drug addicts,
constantly orbiting our archons, seeking more and more flux, flying off and burning
it, only to inevitably return, asking for more.

Navigation
So basically, I LOVE FIVES AND STUFF. time to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramastime to watch some dramastime to watch some dramastime to
watch some dramas

As mentioned in the overview, our archons use tangentbug, our scouts use a greedy
algorithm, and our soldiers use bug.



We implemented a distributed tangentbug algorithm within the first week or so,
and had our archons use the spare bytecodes to compute the virtual bug trace. We
also implemented a shared exploration system in the second week, where exploring
units would broadcast messages containing packed information of individual terrain
tiles, and archons would spend their spare bytecodes unpacking this information
and storing it in their map cache.

Messaging
General Messaging
Messaging was largely built off the solid string manipulation framework that
Gunface discovered back in 2011. We made several significant improvements to
their library, namely:

1. message type and channel headers were stored inside of enums so that the
library was much easier for a team to use and collaborate on. It turns out that
having to agree on a convention for single letter ascii character is too much of a
pain, especially when people are rapidly prototyping different messages

2. We pushed the header/channel bindings waay past ascii range (MAX_INT - 1
to be precise) so that we wouldn’t incur extra cost on serialization and
deserialization of data packets.

3. And we also discovered the hilariouly cheap cost of String.concat compared to
StringBuilder.append, and switched over a significant amount of the codebase
to this system.

Extended Radar
One of the strongest parts of our combat code (but also the costliest) was our
extended radar system. We used messages for all units to spot enemies for the
attacking units. This effectively gave us a sort of “swarm sight” where every unit in
our swarm know of every enemy unit any unit in our swarm sees. This gives
soldiers which do not see anything a potential target to chase, allowing our swarm
to quickly regroup against the enemy after temporarily splitting up to fight.



Through gratuitous abuse of the string class, we were able to build an efficient
“timeout set” that contains a set of robotIDs that time out after a certain number of
rounds with which to house the ER data.

Messaging Attacks
The existance of a tool for analyzing MatchObservations  embedded within
replay files changed the game significantly this year. Our seeding bot was designed
to read enemy messages and log them all to file. We later then sat through and
attempted to break enemy message formats. This turned out to be a lot more
difficult than expected (in part because almost all teams were using strings well
outside of printable range), so instead we designed a “team identification” module
to analyze the message and attempt to determine what team we were playing
against and log it to team memory. We use this special case code for exactly one
team – Team16. Upon detecting that we’re playing agianst our arch-nemesis, we
switch our strategy to a camping one that plays better to our strengths and against
his weaknesses.

Flux Management
As discussed earlier, one of the key points of our strategy was to have as few units
as possible, storing as much flux as possible. Then when it was time for combat, all
of the units would pool their flux to the archon, and the archon would quickly
spawn a bunch of extra units. The code we wrote here turned to be one of our key
strengths this year – effective flux management. Consider if the archon has 2000
turns to generate flux. He could build 15 soldiers with that and give them enough
flux to move around for a while, or he could build 8, store them all with 100 flux,
and then hoard the rest. The first situation means moving an army across the map
would burn an addition 150-200 flux. Even more importantly, having pooled up
flux meant we could drop whatever composition of units we wanted (to counter the
enemy composition) right when the battle started.

Battery Mode
This philosophy of battery mode revolves around the idea that flux contained
within a lower number of robots is cheaper upkeep than that of a larger number of



robots. The archons use surrounding units as “batteries” in order to keep the total
unit count down, which is especially useful for traveling large distances as flux
movement costs are quite expensive for combat units. On engagement, we
immediately switch into pool mode.

Pool Mode
In pool mode, each unit immediately tries to transfer back it’s batteried flux into the
closest archon. The archon also begins deploying as many units as it can – this leads
to a mini explosion in army size. Because the cooldown delay (20) wasn’t too bad,
we could effectively rush across large maps, drop tons of robots, and not be any
worse off than the defending team. During the seeding tournament, Tera-Bull
called it “camping in the opponents base” ;-)

Hibernation Mode
As stated before, a major component of this year’s competition was the insanely
high yield-bonus ratio (at 0.998), effectively allowing a robot to enter a low power
state until further needed. We found this spec and the raise to 10k bytecodes to be a
nice touch – the increase bytecode ceiling allowed the competition to be more
beginner friendly while the high yield-bonus continued the same bytecode
mongering that past battlecoders have grown to know and love (or loath in some
cases). Hats off to the devs for that one :)

We custom wrote a blocking loop for our robot – a highly optimized low power
hibernation state costing 69 bytecode under ideal conditions, and up to 130-ish
bytecodes under heavy messaging conditions. This effectively allows our robots to
sustain themselves for 1k rounds on only 2 flux (and impressive feat when archons
generate 1 flux per round) We exploited this fact heavily in order to generate
standing armies of effectively unlimited size.

What we managed to cram into 69 bytecodes:

1. full message receive loop - On hearing a “wakeup” message, robots resume



back to full flux optimizations.

2. damage detection - If we take energon damage or our flux gets sapped by a
scout, we power back on and attempt to return fire to the sender.

3. help message broadcasting - We send a LOW_FLUX_HELP  message every 50
rounds directed towards scouts who are programmed to come transfer flux to
clusters of powered down robots.

Slightly overkill, but we spent a few hours digging through the output of javap  to
see where additional bytecodes could be saved in order to achieve our 69 bytecode
loop. This “hibernation” mode allowed us to maintain a large number of robots
more easily, allowing us to have a larger army in the main battles.

Bytecode Tips and Tricks
This section is mostly dedicated to beginner teams hoping to learn about the arcane
magic of bytecodes (aka the lecture that we all wish we had but never got). We
figure this section is warrented as bytecodes were such an important part of the
game this year.

General Tips

1. Code reasonably 
Don’t over optimize in the first run through (since you never know what will
actually reduce bytecodes the first time through), but at the same time, code
efficiently, don’t use O(n^2) algorithms when an O(n) algorithm suffices.

2. Profile profile profile 
When you think you know what is taking a lot of bytecodes, profile to make
sure! Nothing is worse than wasting time “optimizing” code that wasn’t the
bytecode bottleneck

3. Test 
If you are unsure how code will react bytecode-wise to the battlecode engine,
write a bot specifically to test bytecodes. Since each match is deterministic, you



can tell the robotID’s of all your archons, so it should be easy to suicide all but
one archon, and have that archon run the code you want to test bytecodes of.
We used this extensively to quickly prototype and test various coding
constructions

4. Study MethodCosts, DisallowedPackages, and AllowedPackages 
Make sure you know what methods have a modified/fixed cost, and what
methods are “free.” For example, string operations are very cheap - but only if
you use the right methods!

5. Meta-code 
In intense optimization, sometimes you will need to write code to write code.
Make sure you save such meta-code so that if the code needs to be modified,
one can just modify the meta-code and generate new code

6. Use Tools 
One of the best tools available is Dr. Garbage’s Bytecode Visualizer. Being able
to see the exact instruction flowchart is extrodinarily useful in finding ways to
short-circuit code and reduce loop overhead.



7. Correctness 
Last but not least, don’t forget correctness. Don’t do something horribly
complicated in the last hour trying to squeeze out 100 bytecode if you are not
certain you can get it correct the first time through. Running out of bytecode is
bad, but not as bad as exploding robots or exception throwing robots.

Optimization Tricks

Beginner

1. do NOT use HashSet/ArrayList/HashMap/other java.Util data structures They



are absolutely horrible bytecode-wise. A single HashSet.iterator.getNext, i.e.
getting a random element from a hashset, cost well over 2000 bytecode. Instead,
implement your own version using strings and arrays.

2. For a small decrease in bytecode usage, bring member variables down to local
space, especially if you’re using them a lot. You may think that a local myRC  vs
a member variable myRC  are equivalent, but that is not the case – the implicit
this  reference call costs you an extra bytecode (often in the form of
aload_0 )

Intermediate

1. Use switch/case Replace your if/else if chains with a switch/case statement if
possible. switch/case statements are very efficient as they compile to
tableswitch  statements, giving higher efficiency than a chain of if_icmpeq
statements.. This may require some code restructuring or extra calculations, but
if done correctly can be quite good.

Advanced
A very common construction is the for loop:

for (int x=0; x<N; x++)

If the order of iteration doesn’t matter, this can be switched to

for (int x=N; --x>=0; )

To save 2 bytecode per iteration. Comparing against zero triggers the single ifge
bytecode which is better than iload  followed by an if_icmpge

Pro

1. Math.Random  costs 144 on initial seeding, and 80 bytecodes per call



afterwards. This cost is ridiculously high when you just want another number.
If you can live with deterministic randomness, use
Clock.getRoundNum() % period == robotID % period  where the period
is the frequency that you wish for an event to be triggered. If you absolutely
must have a random number generator, write your own! We wrote our own
implementation of the Multiply-With-Carry algorithm, cutting our cost of
generating pseudorandom numbers in half – down to 40 bytecodes. note:
MAKE SURE YOU EXTENSIVELY TEST THAT YOUR RANDOM
NUMBER GENERATOR IS INDEED RANDOM

2. 1 class, 1 method. Using classes takes bytecode overhead, calling methods
takes bytecode overhead, accessing fields takes bytecode overhead. The only
way to solve all these problems is to do everything in a single java class,
RobotPlayer.java, in a single method, run(), and use only local variables.
Instead of calling methods, just code the logic right into the code where you
need it. This eliminates all such bytecode overheads as mentioned and should
produce the most bytecode optimal code. Sure it sounds like a nightmare to
code like this, so instead use meta-code: code your bot normally, then code a
flexible “compiler” that takes everything and merges it into one file, one
method. (note: no one ever has enough time to write this lol)

Example Bytecode Optimization Process
Here we will show an example optimization process we actually went through for
one component of our code - Scout healing calculation. Since the flux cost for
healing is constant, it is very important to position scouts in the most optimal
location to heal the most units. In our code, we did this by calculating the best
location to position the scouts based on what the scout can see with its sensor
range. Sure, it is possible to do better (longer range) by using broadcasting, but
that would be a very costly and even more bytecode intensive solution which might
not even be that much better. However, this is not a trivial calculation by any
means: Each scout can see 81 squares, and can heal 21 squares - so, we are
essentially convolving the 21 square attack range of the scout over the 81 squares of
damaged, non-regenerating units the scout can see.



Initial implementation to test method Before we even implemented this
calculation, we were using the simple heuristic of having each scout go towards
the weakest unit that is not regenerating. So, first and foremost was to just
implement and test this strategy - there’s no sense wasting hours implementing
optimizations for a strategy that might not even help. We started with a simple
calculation - we used a 5x5 2D array to keep track of the convolution. For each
robot inside the range, we would add 1 to its corresponding square and each
neighboring square (a 3x3 square convolution). Note that this is a simplification
in both the view range of the scout as well as the attack range of the scout.

int[][] d = new int[5][5]; // data

for (Damaged allied robot r in range) {

        x = r.location.x;

        y = r.location.y;

        d[x-1][y-1]++;

        d[x][y-1]++;

        d[x+1][y-1]++;

        d[x-1][y]++;

        d[x][y]++;

        d[x+1][y]++;

        d[x-1][y+1]++;

        d[x][y+1]++;

        d[x+1][y+1]++;

}

// find the max

for (int x=0; x<5; x++)

        for (int y=0; y<5; y++)

                if (d[x][y]>max) // set the max to this x,y 

coordinate



Testing this code showed that it indeed increased the healing efficiency of our
scouts, unfortunately, even this gimped version cost about 3000~4500 bytecode -
already a third of our total bytecode limit.

Optimiation 1: bit packing Using a tactic familiar to anyone who has done the
first 6.172 project, we decided to try bit packing to speed up the calculation. Bit
packing is essentially abusing the fact that the (virtual) machine can operate on
64-bit longs in a single instruction (bytecode) to do multiple operations on
multiple values at a time. Since the long datatype in java has (surprise!) 64-bits
and the view range of the scout is (approximately) 9 wide, we can pack an entire
row of data into a single long. This is done by representing each square in one
row of the scout’s viewrange as 5 bits. Why did we select 5 bits? Well, originally
we had planned on representing the entire scout’s view range, i.e. at the widest, it
would be 11 squares wide, so it had to be less than 6 bits. At the same time, since
the scout’s attack range is 21, the convolution could potentially sum up to 21,
hence the minimum number of bits needed was 5. (Aside: normally in
optimization, we might have decided to relax this later issue so as to be able to
shift by multiples of 4, which would be faster since calculating x * 4 is cheaper
than calculating x * 5 if the compiler properly optimizes. However, this is a moot
point since we are dealing with java bytecodes) So, what we ended up with was
an array of 9 longs to represent the 9x9 square around the scout (since we’re only
missing 4 squares and over counting 4 squares, this was pretty close to perfect)
for the data representation. 

Now, for the convolution - previously, we did the convolution by incrementing
the array entries neighboring each damaged robot we scanned. This time, the
scan loop only served to populate the array of longs - a 1 for each damaged robot,
a 0 otherwise. Instead, since we have longs, we can do “bruteforce” the
convolution by bit shift operations and adding across rows: (d is the initially
scanned data of damaged robots)

long[] d = new long[11]; // data, populated from scanned robots

long[] partial = new long[11]; // partial convolution



long[] convolved = new long[11]; // convolution

// get data

for (Damaged allied robot at location l) {

        d[l.y] += 0x1L<<(5*r.x)

}

// convolve data

for (int r=1; r<10; r++)

        // you can unroll this loop to make it even faster

        partial[r] = (d[r]) + (d[r]<<5) + (d[r]<<10) + (d[r]>>5) + 

(d[r]>>10);

for (int r=1; r<10; r++)

        // you can do a hardcoded rolling hash to make this even 

faster

        convolved[r] = partial[r] + partial[r-1] + partial[r-2] + 

partial[r+1] + partial[r+2];

// get max

for (int y=0; y<10; y++)

        for (int x=1; x<10; x++)

                if (((convolved[y]>>(5*x))&0x1f)>max) // set the 

max to this x,y coordinate

Another trick we see here is using larger arrays than needed to negate the need for
checking for boundary conditions - note that a boundary condition occurs in just 2
placces in an array, however if you check for it using an if statement in a loop, you
are making all the other array.length-2 entries take extra bytecode. Anyways, as
shown, this does the 5x5 convolution for all squares in about 90 summutations,
much better than the 9 summutations we needed before per robot, plus the extra
overhead of 2D arrays. In testing, this took about 2300~2800 bytecodes, already
much better.



Optimization 2: remove arrays Arrays, while useful for organization and
making the code look neater, are actually bad for performance in cases like this,
where you need to do a calculation over a fixed number of elements. By removing
all arrays and replacing with variables, the performance can be much improved:

long d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10;

//etc other variables

// get data

for (Damaged allied robot at location l) {

        switch (l.y) {

                case 0: d0 += 0x1L<<(5*r.x);

                // ... etc

        }

}

partial0 = (d0<<10) + (d0<<5) + d0 + (d0>>5) + (d0>>10);

// ... etc

convolved1 = partial0 + partial1 + partial2 + partial3;

convolved2 = partial0 + partial1 + partial2 + partial3 + partial4;

// ... etc

if (((convolved1>>5)&0x1fL)>max) // set the max to 1,1

if (((convolved1>>10)&0x1fL)>max) // set the max to 2,1

// .. etc

Only a sample of the pseudo code is given, but it should be enough to shows what
you are supposed to do. This essentially equates to a lot of hardcoding since not
only do we know the size of the data set we are convolving over (9x9), but we also
know the exact pattern of the convolution. This code shows how to do the 5x5
square convolution, in our actual code we used the actual pattern of a 5x5 with
corners removed - we leave it as an excercise for the reader to figure out how to



implement that efficiently ;). Perhaps the longest part of this code is the final
unrolled loop at the end - since we are no longer using arrays, we can’t use for loops
to find the max - but this is irrelavent: for the best bytecode performance, if your
loops have constant bounds, it is usually cheaper if you unroll them manually. Of
course, you pay dearly in terms of code size, readability and maintainability, so such
aggressive optimizations should be some of the last (yet still crucial) optimizaations
to be done. After implementing this, we dropped the bytecode usage to a mere
1000~1400! 

As a protip – one way of generating massive chunks of hardcoded stuff is to write a
script to generate it,and then inline that script into either the main method of the
class (if it’s java), or into the javadoc before the function (if it’s in python or another
langauge). This gives you the benefit of having your loop unrolling code also
checked into source control.

Team Collaboration
After 3 years of Battlecode, we’ve finally discovered the proper way to collaborate
on a single bot without either a) stepping on each other’s toes, or b) working on
completely seperate branches, sometimes losing major subsystem improvements
that were implemented in one branch but not another.

Our SCM was pretty standard – we used a hosted mercurial project at BitBucket.
And for IDE, our whole team standardized on notepad on windows eclipse.

The trick to collaboration was to make seperate 4 seperate eclipse launch
configurations, one for each team member. Within each launch config, we pass
-Dbc.testing.strategy=membersname  as a VM argument, which is detected in
robotplayer via java.lang.System.getProperty  and sets a) the appropriate
behavior (implementation of BaseRobot  in our architecture), and b) the
appropriate flags in our debug class. We wrapped all calls to println  and
setIndicatorString  with a function that also takes in a char specifying whose
debug message it is. If we launched from that member’s launch config, then their



debug messages and appropriate behaviors are run. If not, then they are skipped.

This finally resolves the issue of calling across the room with “WHO THE FUCK
IS PRINTING ALL THESE STRINGS,” or “WHO CAUSED A MERGE
CONFLICT IN ROBOTPLAYER.JAVA AGAIN AND OVERWROTE MY
BEHAVIOR.” Not only that, but any changes to core subsystems were
immediately visible to all team members (since we weren’t working in seperate
branches or seperate packages), so code duplication and loss was kept to a
minimum.

Can’t believe it took so long to finally figure this out… hopefully other teams can
learn from this trick.

Weaknesses
There are a number of weaknesses in our bot – specifically the high bytecode usage
of attacking soldiers. As we prototyped various different kinds of behaviors, a lot of
cruft accumulated in our main sensor module RadarSystem.java . We were
scanning for and logging a large number of statistics that were not actually used.
What we really needed was a complete rewrite of our entire sensor module to make
it 2x more efficient, but that unfortunantely didn’t happen fast enough.

Conclusion
Hopefully there was something of use in the preceding document.

Huge ducks. The biggest.

Those that are suffering can certainly benefit from Biotene.

DRY MOUTH MAY START OFF AS AN IRRITANT. I RECOMMEND
BIOTENE. ALL THE BIOTENE PRODUCTS, THE SPRAYS, HAVE
ENZYMES IN THEM. IF IM HAPPY WITH THE RESULTS, MY



PATIENTS ARE HAPPY WITH THE RESULTS, I DONT NEED TO LOOK
ANY FARTHER.


