EPF REST Web Services v1.02.x
Description:

The REST web services described within this document are the second generation web services developed for EPF using the REST web service style with JSON inputs and outputs instead of the current SOAP style xml based web services. Detailed information on REST web services and JSON objects can be found on the Internet and many libraries exist to help in creating and extracting the information from JSON objects in all popular computer programming languages. The function calls are made through a standard https URL style connection with a JSON object contained within a POST (form style) to the corresponding URL for security reasons.
The “logonkey” and “tokenkey” should be SAVED from each reply as they are refreshed on every request/response call made to the web server. These web services must be called one at a time in serial as the security token refresh process will fail if calls are threaded and you do not pass the most recently refreshed security token in the next function call. Only one active session per user login is supported; multiple users cannot use the same login and expect to succeed as only one user will have the most currently refreshed security token. The security token is returned on each call within the JSON object and also in the response header. From a programming perspective, it may be better to program using the headers from the response object, as when the actual file is downloaded, no JSON object is returned. To make the request calls, a JSON object will need to be created and passed as a POST form parameter obj={jsonObject} for security reasons using content-type “application/x-www-form-urlencoded”. The actual call to retrieve the file will be a different than all the other web service calls, as the file is be delivered from an edge server in another location and information must be presented within the request headers to be successful.
The version function call allows users to test service availability through their firewalls using a browser or in code using a simple GET method with no parameters or JSON object and database connectivity is not required for a response to be successful.

NOTE: All items are considered case sensitive.
Functions:
1. https://epfws.usps.gov/ws/resources/epf/version

GET
2. https://epfws.usps.gov/ws/resources/epf/login

POST
3. https://epfws.usps.gov/ws/resources/epf/logout

POST
4. https://epfws.usps.gov/ws/resources/download/list

POST
5. https://epfws.usps.gov/ws/resources/download/file

POST
6. https://epfws.usps.gov/ws/resources/download/epf

POST
7. https://epfws.usps.gov/ws/resources/download/status

POST
NOTE: the form parameter name must be “obj”, as in obj={json object to string}

The web services look for a parameter called obj and takes the string value and converts it back to a JSON object to retrieve the internal values.

Function Call Details:
Version:

The epf/version function call is a simple GET style call that can be used as a test call in a web browser. By entering the URL, a response object containing a JSON object should be returned immediately. This can also be used to test connectivity through firewalls and if this simple call does not work it could indicate that the web server is hanging up or slow to respond.
INPUT: Call the URL (GET) without any additional parameters and a response JSON object will be return or a server error if the services are not running.

OUTPUT: JSON object similar to example below.

{

 "response":"success",

 "messages":"Web service version and build date.",

 "version":"v1.02.1",

 "build":"2013-05-20"

}

Login:

The epf/login function call is used to log into EPF system and retrieve the required keys for all future web service calls. As with most systems, one should program for sessions timing out and passwords expiring.
INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"login":"[epf login required]",

"pword":"[epf password required]"
}

OUTPUT: JSON object similar to example below.

{

 "response":"[success] or [failed]",

 "messages":"Login validation succeeded.",

 "logonkey":"[logon key]",

 "tokenkey":"[security token]"

}
Logout:

The epf/logout function call is used to log out of EPF system and remove all security tokens from being active. This is not a required function call but is considered good practice and will deactivate your security token.
INPUT: Call the URL via POST method with JSON object serialized and set parameter.
obj={
"logonkey":"[epf logon key required]",
"tokenkey":"[epf security token required]"
}

OUTPUT: JSON object similar to example below.

{

 "response":"[success] or [failed]",

 "messages":" Logout process succeeded."

}
List:

The download/list function call is used to retrieve a list of actively available files for the supplied user login, product code and product id. Additional parameters can be optionally supplied to filter the list even more.
NOTE: Added the ability to filter by more than one status code … you can now pass a string of status codes. “SNX” would bring back all 3 statuses.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.
obj={

"logonkey":"[epf logon key required]",

"tokenkey":"[epf security token required]",
"productcode":"[epf product code required]",
"productid":"[epf product id required]",
"status":"[filter by download status - optional]",
"fulfilled":"[filter by fulfilled date - optional]",

}

OUTPUT: JSON object similar to example below.

{

"response":"[success] or [failed]",

"messages":"Process succeeded.",

"logonkey":"[logon key]",

"tokenkey":"[security token]",

"reccount":"1",

"fileList":[

{

 "fileid":"12345",

 "status":"N",

 "filepath":"/epfdata/ncam/20120815/rdi.tar",

 "fulfilled":"2012-08-15"

},

{

 "fileid":"23456",

 "status":"N",

 "filepath":"/epfdata/ncam/20120915/rdi.tar",

 "fulfilled":"2012-09-15"

}

]

}
Status:

The download/status function call is used to change the file status; either before being downloaded (set to “S” for started) and / or after a successful download (set to “C” for completed).
INPUT: Call the URL via POST method with JSON object serialized and set parameter.
obj={

"logonkey":"[epf logon key required]",

"tokenkey":"[epf security token required]",

"newstatus":"[required – [N] or [S] or [X] or [C] or NCSX for ALL",

"fileid":"123456"

}

OUTPUT: JSON object similar to example below.

{

"response":"[success] or [failed]",

"messages":"Update process succeeded.",

"logonkey":"[logon key]",

"tokenkey":"[security token]"

}
File:

The download/file is used to get the actual file from the AKAMAI edge server. This call is more complicated than the other calls as it requires information to be placed in the request headers so that AKAMAI can identify the file requiring download. Akamai only allows the file download after the information sent has been validated is our database.

INPUT: Call the URL via POST method with JSON object serialized and set parameter.
obj={

"logonkey":"[epf logon key required]",

"tokenkey":"[epf security token required]",

"fileid":"[fileid from file list required]"

}

Four headers are required to be added to the REQUEST object.
(All of these required items are returned in the LIST response)
request.Headers.Add("Akamai-File-Request", "/epfdata/ncam/rdi/20120715/rdi.tar");

request.Headers.Add("logonkey", [epf logon key required]);

request.Headers.Add("tokenkey", [epf token key required]);

request.Headers.Add("fileid", "589765");

OUTPUT: File is returned as the response object. Logonkey and tokenkey have to be extracted from the headers to be used in the next web service call.
Header User-Logonkey = [logonkey]
Header User-Tokenkey = [tokenkey]

[image: image1.png]& Live HTTP headers

Headers | Gonerator | Config | bt |

[_[CIx]

HTTP Headers

HITR1.1 200 0K
Date: Wed, 08 Aug 2012 20:33:59 GMT

Server: Apache-Coyote/ 1
Access-Contral-Allow-Origin: *
Access-Control-Allow-Methads: POST
ccess-Control-Allow-Credentias: true
ccess-Contral-Allow-Headers: X Requested-With
Access-Control-Max-Age: 86400

Content-Type: applcation/json
Via: 1.1 epfwebat usps.gov
Keep-alive: tineout=15, may:
Connestion: Keep-Alive.
Transfer-ncoding: chunked

EEAILOCE

HYPTMAKSHAR2]

116MK

o]
Save Al ey,

W Capture

epf:

The download/epf function call is used to download smaller EPF files from the web servers instead of the AKAMAI edge servers (used only for large files). This call and response is similar to the call to download the large files, but does not require the header information as AKAMAI will pass this request through to EPF. For programming reasons, if you include the header information it will just be ignored as AKAMAI response to the URL pattern /download/file and not download/epf.
INPUT: Call the URL via POST method with JSON object serialized and set parameter.

obj={

"logonkey":"[epf logon key required]",

"tokenkey":"[epf security token required]",

"fileid":"[fileid from file list required]"

}

OUTPUT: File is returned as the response object. Logonkey and tokenkey have to be extracted from the headers to be used in the next web service call.

Header User-Logonkey = [logonkey]
Header User-Tokenkey = [tokenkey]

[image: image2.png]& Live HTTP headers

Headers | Gonerator | Config | bt |

[_[CIx]

HTTP Headers

HITR1.1 200 0K
Date: Wed, 08 Aug 2012 20:33:59 GMT

Server: Apache-Coyote/ 1
Access-Contral-Allow-Origin: *
Access-Control-Allow-Methads: POST
ccess-Control-Allow-Credentias: true
ccess-Contral-Allow-Headers: X Requested-With
Access-Control-Max-Age: 86400

Content-Type: applcation/json
Via: 1.1 epfwebat usps.gov
Keep-alive: tineout=15, may:
Connestion: Keep-Alive.
Transfer-ncoding: chunked

EEAILOCE

HYPTMAKSHAR2]

116MK

o]
Save Al ey,

W Capture

JSON Object Field Descriptions (may be case sensitive):
· logonkey – user login key returned from the login call. This key will not change, but must be used in every call for security validation.

· tokenkey – security token returned from the login call. This key must be used in every function call with a newly refreshed security token being return to use in your next call. Threading should not be used, as the security token could get out of synch, only serial calls are supported.
· productcode – This is the product code assigned to products. You will need to know your product codes and only one product code can be requested per list call.
· productid – The is a sub-key of the product code. You will need to know your product ID and only one product code + product ID can be requested per list call. This basically acts as a filter to limit the size of the list being returned.
· status – (optional) The current download status of the listed file. This can be used as an additional filter with most requesters being interested in only newly released files. After the file is downloaded, status should be set to completed.
· fulfilled – (optional) The fulfillment date can be used as an additional filter. Date format is ‘CCYY-MM-DD’ and will be ignored if passed in an incorrect format.
File Statuses: (leave out for ALL to be returned)

· “N” = new file available
· “S” = download started

· “X” = download canceled

· “C” = download completed successfully
Product Codes for AKAMAI Edge Server Files - /download/file
NCAW = weekly files

NCAM = monthly files

Product

Product

Description

CODE

ID

AISVR

AISVIEWER

AIS Viewer (Monthly Build)

AMS

AMS

AMS Data

AMS

DPV

DPV® Data

AMS

DSF

DSF2® Data

AMS

ELOT

eLOT® Data

AMS

IBIP

IBIP Data

AMS

LLK

LACSLink® Data

AMS

SLK

SUITELink® Data

AMS

AMSDK

AMS Developer Kit

AMS

DPVDK

DPV® Developer Kit

AMS

DVD_COMM

AMS Commerical DVD

AMS

DVD_POST

AMS Postal DVD

AMS

DVD_IBIP

AMS IBIP DVD
[weekly]
NCAW

NCL18H

NCOALink® 18 MONTH HASH

NCAW

NCL18F

NCOALink® 18 MONTH FLAT

NCAW

NCL48H

NCOALink® 48 MONTH HASH

NCAW

NCL48F

NCOALink® 48 MONTH FLAT

NCAW

NCL18ANKH
NCOALink® WITH ANKLink® HASH

NCAW

NCL18ANKF
NCOALink® WITH ANKLink® FLAT

[monthly]

NCAWM

NCL18H

NCOALink® 18 MONTH HASH

NCAWM

NCL18F

NCOALink® 18 MONTH FLAT

NCAWM

NCL48H

NCOALink® 48 MONTH HASH

NCAWM

NCL48F

NCOALink® 48 MONTH FLAT

NCAWM

NCL18ANKH
NCOALink® WITH ANKLink® HASH

NCAWM

NCL18ANKF
NCOALink® WITH ANKLink® FLAT

[monthly]
NCAM

DPVFL

DPV® FULL

NCAM

DPVFLT

DPV® FLAT

NCAM

DPVSP

DPV® SPLIT

NCAM

DSFFL

DSF FULL

NCAM

DSFFLT

DSF FLAT

NCAM

DSFSP

DSF SPLIT

NCAM

LACLNK

LACSLink®

NCAM

RDI

RDI™

NCAM

STELNK

SUITELink®

Product Codes for EPF Web Server Files - /download/epf
Product

Product

Description

CODE

ID

ACS

INVOICE

ACS Invoices

ACS

PARENT

ACS Products

ACS

RECONCILE

ACS Reconciliation Report

AEC

AECDATA

AEC Data
AEC

AECDOCS

AEC Documents
AEC

STATRPT

AEC STAT RPT File
AEC

BLANKZIP

AEC ZIP File
AEC

AECIIDATA

AEC II Data
AEC

AECIIDOCS

AEC II Documents
AEC

AECIIZIP

AECII ZIP File
AEC

SUMMARYRPT

AECII Summary RPT File
AEC

SUMMARYTXT

AECII Summary Text File
AEC

STMNTRPT

AECII Statement RPT File
AEC

STMNTTXT

AECII Statement Text File
AEC

FORM3553RPT

AECII Form 3353 RPT File
AEC

FORM3553TXT

AECII Form 3353 Text File

AIS

CR215N

CARRIER ROUTE NATIONAL

AIS

CR215S

CARRIER ROUTE BY STATE

AIS

CS215N

CITY STATE NATIONAL

AIS

DS215N

DELIVERY STATISTICS

AIS

FD215N

FIVE-DIGIT ZIP

AIS

LT215N

eLOT® NATIONAL

AIS

LT215S

eLOT® BY STATE

AIS

ZC215N

Z4 CHANGE

AIS

ZM215N

ZIPMOVE

AIS

ZP215N

ZIP+4® NATIONAL

AIS

ZP215S

ZIP+4® BY STATE

AISW

LT215N

eLOT® NATIONAL

CASS

CASSERROR

CASS Error Report

CASS

CASSFILE

CASS Stage File

CASS2

CASS2ALPHA

Trailing Alpha File

CASS2

CASS2INFO

Z4 Info File

CASS2

CASS2WARN

Early Warning File

CDSW

WEEKLY

CDS Weekly Product
CHART

ZONECHARTS

Zone Charts Matrix

COA

CENSUS_AIS_MTH

Census Fulfillment (Monthly)
COA

CENSUS_AIS_SEMI
Census Fulfillment (Semi-Annual)
COA

CENSUS_TRANSACTIONS
Census Transactions

HUD

NOSTAT

HUD NOSTAT Counts
HUD

VACANT

HUD Vacant Counts

LLIST

LABELINGLISTS

Labeling Lists

NCAD

MAINFRAME

NCOALink® Daily Delete [EBCDIC]
NCAD

TEXTFILE

NCOALink® Daily Delete [TEXT]

PAVE

PAVEFILE

PAVE and MAC Batch Product
