Data Clusters with Coherence

Benjamin Stopford

The Story...

But data

N\ (General solution is to
scale repository by

Ghe Data Bottleneck

— grid performance is]

coupled to how "
quickly it can send \several machines.

replicating data across

replication does

\and receive data)

(Coherence has) /
evolved - N
functions for Low latency access is
/ server side facilitated by simplifying
processing too. _the contract. -
Ghese include tools for R \ 4 /
providing reliable, \(
asynchronous, Coherence leverages these to
distributed work that can provide the fastest, most
Qae collocated with data. Yy scalable cache on the market.

J ... but data
partitioning does.

There is a problem with this architecture. What is it?

P
-

ode

Data
Source

The database becomes a bottleneck as the grid scales out

DS Node

DS Node

Bottleneck

RN 7

A
S Data
Source

Node

Node

Node

Node

Node

Node

v v v v v v
l J l J l J l J l J l J

This is the Data Bottleneck Problem

Consider a Clustered Database — this is one solution

e Data exists on a shared file
system.

* Multiple machines add
bandwidth and processing
ability

Data is cached in memory on each machine

Greatly increases
bandwidth available
for reading data.

NN

This architecture is that of a Replicated Cache

Data is copied to
different machines.

What is wrong with
this architecture?

Multiple data copies must be kept in sync. There is a
coherence problem.

Becomes
out of
date

Record 1 =foo

Data on
Disk

[Record 1 = bar]

Record 1 =foo

The writing of data leads to a distributed locking problem.

This does not scale.

L J S—

)

[Lock Record 1]

10

Key Point 1: The problem of distrib

Controller

.

All nodes must be locked
before data can be written

=> The Distributed Locking
Problem

J

11

However there is an alternative: Data Partitioning

Each machine is responsible for a
subset of the records. Each record
exists on only one machine.

97, 98, 99...

765, 769... 169, 170...

333, 334... 244, 245...

12

This solves both problems associated with the replicated architecture

*Data volume will naturally increase with the number of
machines in the cluster as the data only exists in one
place.

*\Writes are only ever sent to one machine (that holds
the singleton piece of data being modified) so write
latency scales with the cluster.

13

So what technologies facilitate this process?

* Oracle RAC
* Gigaspaces
e Terracotta

* Oracle Coherence

14

Introducing Coherence
A Story of Accidental Genius

In 1974 3M created a liquid tack. A glue that
stuck but did not bond. This product endured
fairly limited sales for some years until it was

used to make a well known every day item.

What do you think that was?

—

The Post-It Note

The Post-It Note is a great example of Business Evolution — a product
that starts its life in one role, but evolves into something else ...
otherwise known as Accidental Genius.

Coherence is another good example!!

What is Coherence

A 3 party distributed data repository with
multi-level caching

And maybe
S omef/?;ﬁg

O E..---

Putting Coherence
in Context

Key Concept: Coherence is just a HashMap

All data is stored as key value pairs

[key1, value1]
[key2, valueZ2]
[key3, value3]
[key4, valued]
[keyS5, value$]

[key6, value6]

Coherence is not generally used as a Read Through Cache

. DB used for persistence only - Coherence is typically prepopulated
. Caching is over two levels (server and client)
Bulk load at
start up

Database

Write
Asynchronous

Coherence is not a Database
Coherence does not support:

- ACID
- Joins (natively)
- SQL*

Coherence works to a simpler
contract. It is efficient only for
simple data access. As such it can
do this one job quickly and
scalably.

Relationship between RAC and Coherence

What is RAC?

RAC is a clustered database which runs in parallel over
several machines. It supports all the features of vanilla

Oracle DB but has better scalability, fault tolerance and
bandwidth.

Clustered therefore
fault tolerant and
scalable

Supports ACID,
SQL etc

No disk access

Coherence is:

kD

Fault Tolerant Scalable

o e

Fast

In-memory storage of data —
no disk induced latencies

(unless you want them). Objects held in
/ serialised form

Async write behind

srnnnnap Database

. Near <:> Node
Client cachl

Queries run in parallel
where possible
(aggregations etc)

Near Cache kept Coherent via
Proactive update/expiry of data as
it changes

Thus a fast caching layer can support much higher load

o] G- oD
Cache

(Fragile)

27

Fault Tolerance / High Availability

Data is held on at least two machines. Thus, should one fail,
the backup copy will still be available.

The more machines, the
faster failover will be!

Scalable

- Scale the application by adding commodity hardware
- Coherence automatically detects new cluster members

- Near-linear scalability due to partitioned data

Processing / Storage /
Bandwidth

Number of nodes (n)

So how resilient is this architecture?
Not that resilient:
- Single machine failure will be tolerated.

- Concurrent machine failure will cause data loss.

Key Point: Resilience is sacrificed for speed

30

Lets reiterate the difference between Coherence and a database.

* Coherence works to a simpler contract. It is efficient only for
simple data access. As such it can do this one job quickly and
scalably.

* Databases are constrained by the wealth of features they must
implement. Most notably (from a latency perspective) ACID.

* In the bank we are often happy to sacrifice ACID etc for speed
and scalability.

31

Summary so far...

Summary so far...

¥ 4

Co/lef‘e”ce ;5
a data sodrce
Ahat scaleS

agp / sOal1on

Summary so far...

Now lets delve a little deeper...

'Communication Between Nodes: Well Known Hashing

Algorithm .

cache.get(“foo”)

Foo

Writing Data to the Cluster

myCache.put (“Key , "Value’);

- Connection \

BEIERS)(6) \\

Process

e
e

~ Connection

Data Sto Data Store
Process Process

R o=

| N

NS

up

Node Failure

Death detection is vote
based — there is no central

management | think Node | think Node
X has died X has died

@) @)
~ Node X o)

Data Stor. Data Stor. Data Stor.
Process Process -oces M
» 4

Redistribu —)

distribu m

bartioni partioni

Near Caching - Just in Time provisioning of locally cached data

Data Invalidation Message: value for key1 is now invalid

Near Cache
(in-process)

Node

Near Cache <:> Node ~ Node
Client A

Node

ke%‘ Aal cache.get(key1)

Node Node

cache.put(key1, SomethingNew)

Client B

Locking and Synchronous Operations

97, 98, 99...

Lock(Key3)

Process 765, 769... 169, 170...

Client

Unlock(Key3)

333, 334... 244, 245...

12 Network Hops

(6 internal to cluster, 6 external to cluster)

Entry Processors

Key is
Unlocked

7

Analogous to: Stored Procedures

Key is
Locked
= cache.invoke(EP)
Client

EntryProcessor

Class Foo extends AbstractProcessor
public Object process(Entry entry)

public Map processAll(Set setEntries)

Your code
goes here

Entry Processors

cache.invoke ("Key3",

new ValueChangingEntryProcessor (“NewvVal"));

97, 98, 99...

cache.invoke(..) 765, 169 169, 170...

333, 334... 244, 245. ..
4 Network Hops

(2 internal to cluster, 2 external to cluster)

Invocables
Analogous to: Grid Task

service.execute(new GCAgent(), null, null);

service.execute(some code) ‘
S i

Client

Run any arbitrary piece of code on any or all of the nodes

Backing Map Listeners / Triggers

Analogous to: Triggers

Backing Map Listeners / Triggers allow code to be run in response to a cache event such as an
entry being added, updated or deleted.

- cache.put(foo)

Key is
Unlocked

Key is
Locked

J

Your code
goes here

MapListener

-

Class MapListener

~

Public void entrylInserted(MapEvent evt)

public void entryUpdated(MapEvent evt)

\\Public void entryDeleted(MapEvent evt) //

Cache Stores

Analogous to: Triggers (but with fault tolerance and built in retry)

Exception Retry Queue
e —
Thrown

cache.put(765, X)

Should multiple Class CacheStore

changes be made to
the same key they will
be coalesced public void erase(Object key)

CacheStore Database

public void store(Object key, Object val)

Comparing Entry Processor, Invocable,

BML, CacheStore [Called by Coherence]
[Called by client]

Backing Map
Listener

p B \
Takes ' Responds to a
Parageters \\ cache event
Returns Values i
& 4 N

CacheStore

Invocable

[Is Guaranteed] [CoalesceSJ
changes

%J

Technologies Serviced

All cluster side programming must be done in Java. However clients can be:
e Java

 C#

e C++

Serialisation is done to an intermediary binary format known as POF. This allows theoretical

transformation from POF directly to any language. Currently only Java, C# and C++ are
supported.

C# Object IPofSerialiser ‘ ‘
D

Java Object PofSerialiser ‘ ‘

Calling Server Side Processing Code from C#

Java Invocable
Run on Server

Mapping via
pof-config file

(05
Mylnvocable

Data objects are marshalled as
described in previous slide

Running Processing in the Cache

Data Affinity

Set up associations between affinity attributes so that they are stored on the same machine

Toedes Market Data

Affinity attributes

define mappings
between data

Associated entries are held together on each machine

Trade and market data
for the same ticker are
collocated

Market Data

Entry
Processor

Price trade

based on
market data

This is key requirement is to run
processing inside the cache without

incurring the penalties associated with
remote data access.

Wire Efficiency - An alternative model: Send the processing to the data

===
. ———

(s

\

ublic class foo{ ‘\\
Public void bar()({
//do some stuff
}
J

Send data to code

Send code to data

//;ublic class foo{ <\\
Public void bar(){
//do some stuff
}
\ /
— =

Merging Data and Processing

J

ode

\ 4

J

J

J

Processing Layer: Data Layer:
DataSynapse Grid Coherence Cluster

... Decomes

Processes are performed on
the node where data exists

We decrease transactional latency by executing processing where the

data resides

For example compare data flows in Grid vs. Coherence based
computations

Coherence
Data + Compute

56

This leads to the concept of an Application-Centric Deployment

\

Cache Store

Domain

Processing

Entry
Processor

Update Trade

Coherence as an Application Container

 Free distribution of processing across multiple machines
 Free fault tolerance

* Free scalability to potentially thousands of machines

4)

A very enticing proposition for
new applications
_ Y,

So if Coherence is so great why don’ t we do it all the time? Why use
the Compute Grid at all?

Coherence is not suitable for large scale processor intensive tasks (think Monte
Carlo simulations etc). Why?

 Compute grids provide much more control of the execution environment (priorities, a Ul
etc)

* The grid is far more scalable in terms of compute power (dynamic provisioning of engines
etc).

e The grid is much cheaper (per core) than Coherence.

59

So those key points again...

60

Key Point 1: The problem of distributed locking. This presents a
limit on write scalability.

g Controller

61

Key Point 2: Coherence gets around the distributed locking
problem by partitioning data across multiple machines. This
architecture scales.

-
}

97, 98, 99...

765, 769... 169, 170...

g 333, 334... 244, 245...

62

Key Point 3: By working to a simpler contract caches can be
much faster and more scalable than databases. They simply have
to solve fewer problems.

Acid

63

Key Point 4: Coherence is cleverly optimised for speed but at the
price of resilience

i Q-G G
Cache

(Fragile)

B

64

Key Point 5: Advanced functionality facilitates asynchronous
distributed processing.

Data affinity Reliable Processing

Trades Market Data

)
‘=’I

65

So in conclusion...

Summary so far...

