
By Mustafa Ahmed

1

 The Problem
 Solution
 Data Grids
 Replicated Topology
 Partitioned Topology
 Near Topology
 Events
 Query
 Read Through Caching
 Write Through Caching
 Write Behind Caching
 Coherence Code Examples
 Conclusion

• Performance
• Availability
• Scalability

2

 Data
• Extreme increase in Access Volume & Complexity of

Data

 Driving Data Demand
• Virtualization

 Ability to move applications around several machines

• Service Oriented Architecture (SOA)

 Integrated services that can be used in Multiple
business domains

 Relying on other services

 3

 Provide Reliable, Scalable, Universal Data
Access and Management.
• Performance

 Solves Latency and Bandwidth Problems

• Availability

 Having the data available at all times

• Scalability

 Handle growing demand of Data Efficiently

4

 Manages Information in a grid environment
• Lots of servers working together
• Servers do not run independently

 Server manages state
 Even server failure occurs.

• Adding more servers
 Concept of scale out
 It will manage more data and can handle more transactions

per second.

 Data as a Service
• Middle Tier
• In App Server

 Data Integration is in Data Service
• Integration can occur in Domain Model

 5

 Combines Data Management with Data
Processing
• Push processing where data is being managed

• Read or Write data across any number of servers

 Single System Image
• No need to show server infrastructure

• Pretend all the information is Local

• Logical view of all data in all the servers

6

 There are two things you can move in a
Distributed Environment
• State

 Distribution of a state is referred to as replication

• Behavior

 Moving messages

 Data Grids combine these two concepts
• You can either move data or the processing where

data is sitting

• Push all the processes to the Information

7

 Locality of Data
• Most applications spend most of the time waiting

for data

• If the data is partitioned with non overlapping
regions the behavior can be moved to the server
that owns the data to process

• Results In lower latency

8

 Technology introduced In 2001

 Replicate information among all servers
◦ Data is replicated to all members in Data Grid

 Problems
◦ Scalability Problem

 Capacity of

 Information Stays

 the same

9

10

 Expensive
• Update Each Server every time

• Conceptually its expensive

 Each Information is
spread out across the
servers (Peer to Peer)

 Load Balancer
• Keeps track of the load
• Move from one server

to another
• Sends to the server

which owns the data

 Exactly one server
owns the information
• Has a sync back up for

it

11

12

 Failure Occurs
• The operation still

finishes correctly

• Increase servers from
2 to 2000 servers it
increases scalability

• All servers are
disposable at any
period of time

 L2 Cache vs. L1 Cache
• Partitioned Topology as L2 Cache

• Near Topology as L1 Cache

 Stores it Locally
• If asks again then gets it locally

 Demand base replicated caching

 Zero Latency access to recently used data

13

14

15

 All the dataset
provide events
regardless of
Topology

 Events are
distributed
efficiently to the
interested listeners

 Parallel Query
• Query performed

parallel across the
data grid using
indexing

• All doing the local
portion of the
Query

16

 Continuous Query
• Combines a Query

with Events to
provide a local
materialized view

• Result is up to date
in real time

• Like in near
topology but always
contains the desired
data

17

18

 Finds it in L1 or
L2 Cache
◦ Otherwise sends

a request to the
database

 Only sends one
requests

 Coalesces
multiple reads
to reduce the
database load

 Writes first to the
database and then
commits to the
cache

 Not a Two-Phase
Commit

 Keeps the in-
memory data and
the database in
sync.

19

 First writes it to the
cache
◦ Later commits it to

the database
◦ This assures the

latest version of the
cache

 Batches all the
writes into one
object

 Geico uses it
◦ Improved

performance
◦ 90% reduction in

database usage

 20

 Joins an
existing
cluster or
forms a new
one

 Leaves the
current
cluster

21

Cluster cluster = CacheFactory.ensureCluster();

CacheFactory.shutdown();

22

NamedCache nc = CacheFactory.getCache(“mine”);

Object previous = nc.put(“key”, “hello world”);

Object current = nc.get(“key”);

int size = nc.size();

boolean exists = nc.containsKey(“key”);

 Observe
changes in
real time as
the occur

23

NamedCache nc = CacheFactory.getCache(“stocks”);

nc.addMapListener(new MapListener() {

 public void onInsert(MapEvent mapEvent) {

 }

 public void onUpdate(MapEvent mapEvent) {

 }

 public void onDelete(MapEvent mapEvent) {

 }

 });

 Performance
◦ Solves Latency Problems And Preserve network

bandwidth

 Cache recently used data

 Ability to execute tasks parallel across the data grid

 Moving the process where the data is

24

 Availability
◦ Remove all single point of failure

◦ Added redundancy to improve availability

◦ Able to Queue updates if database is not available

◦ Increase availability from 11 days to 2.5 hours per
year

25

 Scalability
◦ Scale Out functionality

 Database Sharding

◦ Coherence eliminates Database Sharding

◦ Distributed cache

◦ Updates performed against the cache data

◦ Scaling both capacity and throughput

 Adding more nodes to the Coherence Cluster

26

27

