Oracle Coherence
By Mustafa Ahmed

Agenda

VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV v

The Problem

Solution

Data Grids

Replicated Topology
Partitioned Topology
Near Topology

Events

Query

Read Through Caching
Write Through Caching
Write Behind Caching
Coherence Code Examples

Conclusion
- Performance
- Availability
- Scalability

The Problem

» Data

- Extreme increase in Access Volume & Complexity of
Data

» Driving Data Demand

* Virtualization
- Ability to move applications around several machines
- Service Oriented Architecture (SOA)

- Integrated services that can be used in Multiple
business domains

- Relying on other services

Solution - Oracle Coherence

» Provide Reliable, Scalable, Universal Data
Access and Management.
- Performance
- Solves Latency and Bandwidth Problems
- Availability
- Having the data available at all times
- Scalability
- Handle growing demand of Data Efficiently

Data Grids

» Manages Information in a grid environment
- Lots of servers working together
- Servers do not run independently
- Server manages state
- Even server failure occurs.
- Adding more servers
- Concept of scale out

- It will manage more data and can handle more transactions
per second.

» Data as a Service
- Middle Tier
* In App Server

» Data Integration is in Data Service
* Integration can occur in Domain Model

Data Grids

» Combines Data Management with Data

Processing

- Push processing where data is being managed

- Read or Write data across any number of servers
» Single System Image

- No need to show server infrastructure

- Pretend all the information is Local

- Logical view of all data in all the servers

Data Grids

» There are two things you can move in a
Distributed Environment

- State

- Distribution of a state is referred to as replication
- Behavior

- Moving messages

» Data Grids combine these two concepts

* You can either move data or the processing where
data is sitting

* Push all the processes to the Information

Data Grids

» Locality of Data
- Most applications spend most of the time waiting
for data

- If the data is partitioned with non overlapping
regions the behavior can be moved to the server
that owns the data to process

- Results In lower latency

Replicated Topology

» Technology introduced In 2001

» Replicate information among all servers
- Data is replicated to all members in Data Grid

» Problems
> Scalability Problem
- Capacity of
Information Stays
the same

Replicated Topology

» EXpensive
- Update Each Server every time
- Conceptually its expensive

.

/aﬂmo-ﬂa
Mapj Application)
Z

JVYM 2

Application

eplicated Cache Map_/ \Eeplicated Cache MapJ | Application)
v 3 / v 4

e R

Partitioned Topology

» Each Information is
spread out across the
servers (Peer to Peer)

» Load Balancer

- Keeps track of the load

- Move from one server
to another

« Sends to the server
which owns the data
» Exactly one server
owns the information

- Has a sync back up for
it

Primary

| Backup

Logical

Application

Partitioned Cache

Application

VM 2

Logical

Primary

| Backup

Logical

Application

Partitioned Cache

Partitioned Cache

Application

VM3

VM 3

11

Partitioned Topology

» Failure Occurs

« The operation still
finishes correctly

* Increase servers from
2 to 2000 servers it
increases scalability

- All servers are

disposable at any
period of time

0000

Application

Application

12

Near Topology

» L2 Cache vs. L1 Cache

- Partitioned Topology as L2 Cache
- Near Topology as L1 Cache

» Stores it Locally
- If asks again then gets it locally

» Demand base replicated caching
» Zero Latency access to recently used data

13

Near Topology

O

- SR

Local Logical Logical Cocal LCogical

Cache Partitioned Cach\ rtitioned Cache Cache

Application Near Cache \ / Near Cache Application

NM I (localstorage=false) >(VM2 (localstorage=false)
N\

N/
LN

]

Backup Backup
Logical Logical ~Tear W
Fartitioned Cache Partitioned Cache Cache
Application Near Cache Near Cache Application

jvn 3 "oca storage=true) IUH 7 Hoca storage=true)

Events

» All the dataset
provide events
regardless of
Topology

» Events are
distributed
efficiently to the
interested listeners

Logical

.\
Application *, ’,’ Partitioned Cache
N,
ra

Application g

15

Query

» Parallel Query

* Query performed
parallel across the
data grid using
indexing

- All doing the local
portion of the

Query

A
Query ||| £A} | Queryl W TTeeo.
Execution T~
A
! \
B 0 PO v T -

Application F‘artltloned Cache \\ Fartitioned Cach Application

!

VHT

:

] '
Application Partitioned Cache Application

VF'3 VM3

16

Query

» Continuous Query

- Combines a Query
with Events to
provide a local |
materialized view

Application Application

- Result is up to date

in real time

» Like in near
topology but always
contains the desired

Application

d at a Application

Read Through Caching

» Finds it in L1 or |
L2 Cache 0

> Otherwise sends o |
a request to the 29/@ : L
database o e | ||| o

Application Near Cache Near Cache Application

D

&)
e?eé

©

®EC
i

,_
2
2

)
5
o Bl
5
L)

} Only Sends One VM T (localstorage=ralse) VAT

requests DB

0208 inde
» Coalesces o olole
multiple reads ofe |@

{ ! c
Logical Local Logical Logical

to re d u C e t h e Cache P roned Cache Pardtoned Cache o

Application Near Cache Near Cache Application

(Y

jeeee

database load P -

Write Through Caching

» Writes first to the
database and then
commits to the
cache o

@e0

o
L]
Fsl

» Not a Two-Phase i r—
Commit f

_

» Keeps the in- e
memory data and - o S | .

Application Near Cache Near Cache Application

&
Eﬂ
ele
2
it

]|

g
{eeet

the database in S o

sync.

Write Behind Caching

» First writes it to the
cache

o Later commits it to
the database

> This assures the
latest version of the
cache
» Batches all the
writes into one
object

» Geico uses it
> Improved
performance

> 90% reduction in
database usage

oq- :

II

3
e
e

oe
~
g
8
-
5]
B,
&)
g

0800
e

5
a3
8

ogi
el e P ot Cache

Application

Near Cache Near Cache

Application

TVM T (localstorage-ralse) 9 VM2

bt
@086

egec

| |
Logical

_o 1
& di

Partitioned Cache

Data Source

Application

Near Cache

Application

NH 3 (localstorage=false)

20

Coherence Code Examples

» Joins an
existing
cluster or
forms a new

one

» Leaves the
current
cluster

Cluster cluster = CacheFactory.ensureCluster ()

CacheFactory.shutdown () ;

21

Coherence Code Examples

NamedCache nc = CacheFactory.getCache (“mine”) ;
Object previous = nc.put (“key”, “hello world”);
Object current = nc.get (“key”);

int size = nc.size();

boolean exists = nc.containsKey (“key”);

Coherence Code Examples

» Observe
changes in
real time as
the occur

NamedCache nc = CacheFactory.getCache (“stocks”);

nc.addMapListener (new MapListener () {
public void onInsert (MapEvent mapEvent)

}

public void onUpdate (MapEvent mapEvent)
}

public void onDelete (MapEvent mapEvent)

}
1) ;

{

{

{

23

Conclusion - Performance

» Performance

> Solves Latency Problems And Preserve network
bandwidth

- Cache recently used data
- Ability to execute tasks parallel across the data grid
- Moving the process where the data is

24

Conclusion - Availability

» Availability
- Remove all single point of failure
- Added redundancy to improve availability
- Able to Queue updates if database is not available

> Increase availability from 11 days to 2.5 hours per
year

25

Conclusion - Scalability

» Scalability
- Scale Out functionality
- Database Sharding
- Coherence eliminates Database Sharding
> Distributed cache
- Updates performed against the cache data
> Scaling both capacity and throughput
- Adding more nodes to the Coherence Cluster

26

Any Questions

