

2

The Data Bottleneck
– grid performance is
coupled to how
quickly it can send
and receive data

General solution is to
scale repository by
replicating data across
several machines.

But data
replication does
not scale...

… but data
partitioning does.

Coherence has
evolved
functions for
server side
processing too.

These include tools for
providing reliable,
asynchronous,
distributed work that can
be collocated with data.

Coherence leverages these to
provide the fastest, most
scalable cache on the market.

Low latency access is
facilitated by simplifying
the contract.

3

Client

DS Node

DS Node

DS Node

DS Node

Data
Source

4

Client

DS Node

DS Node

DS Node

DS Node

Data
Source

DS Node

DS Node

DS Node

DS Node

Bottleneck

5

6

DB

DB DB

DB DB

DB
Data on

Disk

• Data exists on a shared file
system.

• Multiple machines add
bandwidth and processing
ability

7

Copy 6

Copy 1 Copy 2

Copy 5 Copy 6

Copy 3
Data on

Disk

Greatly increases
bandwidth available
for reading data.

8

Copy 6

Copy 1 Copy 2

Copy 5 Copy 6

Copy 3

Data is copied to
different machines.

What is wrong with
this architecture?

9

Data on
Disk

Record 1 = foo

Record 1 = foo

Record 1 = bar

Client
Writes

Data

Becomes
out of
date

10

Data on
Disk

Record 1 = foo

Record 1 = foo

Record 1 = bar

Client
Writes

Data

Lock Record 1

11

Copy 6

Copy 1 Copy 2

Copy 5 Copy 4

Copy 3
Client
Writes

Data
Controller

All nodes must be locked
before data can be written

=> The Distributed Locking
Problem

12

765, 769…

1, 2, 3… 97, 98, 99…

333, 334… 244, 245…

169, 170… Client

Each machine is responsible for a
subset of the records. Each record

exists on only one machine.

13

• Data volume will naturally increase with the number of
machines in the cluster as the data only exists in one
place.

• Writes are only ever sent to one machine (that holds
the singleton piece of data being modified) so write
latency scales with the cluster.

14

• Oracle RAC

• Gigaspaces

• Terracotta

• Oracle Coherence

15

Node

Node Node

Node Node

Node

16

17

The Post-It Note is a great example of Business Evolution – a product
that starts its life in one role, but evolves into something else …
otherwise known as Accidental Genius.

Coherence is another good example!!

18

Node

Node Node

Node Node

Node Database
Client

Client Client Near
Cache

19

21

All data is stored as key value pairs

[key1, value1]

[key2, value2]

[key3, value3]

[key4, value4]

[key5, value5]

[key6, value6]

22

•  DB used for persistence only - Coherence is typically prepopulated

•  Caching is over two levels (server and client)

Node

Node Node

Node Node

Node Database

Write
Asynchronous

Bulk load at
start up

23

Coherence does not support:

-  ACID
-  Joins (natively)
-  SQL*

 Coherence works to a simpler

contract. It is efficient only for
simple data access. As such it can
do this one job quickly and
scalably.

24

What is RAC?

 RAC is a clustered database which runs in parallel over
several machines. It supports all the features of vanilla
Oracle DB but has better scalability, fault tolerance and
bandwidth.

DB

DB DB

DB DB

DB Cache
Node

Cache
Node

Cache
Node

Cache
Node

Cache
Node

Cache
Node

Clustered therefore
fault tolerant and

scalable

Supports ACID,
SQL etc

No disk access

25

Fault Tolerant Scalable Fast

26

Node

Node Node

Node Node

Node Database
Async write behind Client

Client Client Near
Cache

Near Cache kept Coherent via
Proactive update/expiry of data as

it changes

Queries run in parallel
where possible

(aggregations etc)

Objects held in
serialised form

In-memory storage of data –
no disk induced latencies
(unless you want them).

27

In
Memory
Cache

(Fragile)

DB

28

Data is held on at least two machines. Thus, should one fail,
the backup copy will still be available.

Node 6

Node 1 Node 2

Node 5 Node 4

Node 3

Node 2
Backup

The more machines, the
faster failover will be!

29

-  Scale the application by adding commodity hardware

-  Coherence automatically detects new cluster members

- Near-linear scalability due to partitioned data

Node

Node Node

Node Node Node

Node

Node

Number of nodes (n)

Processing / Storage /
Bandwidth

30

Not that resilient:

- Single machine failure will be tolerated.

- Concurrent machine failure will cause data loss.

Key Point: Resilience is sacrificed for speed

31

• Coherence works to a simpler contract. It is efficient only for
simple data access. As such it can do this one job quickly and
scalably.

• Databases are constrained by the wealth of features they must
implement. Most notably (from a latency perspective) ACID.

• In the bank we are often happy to sacrifice ACID etc for speed
and scalability.

32

Summary so far…

33

Summary so far…

34

Summary so far…

36

Node Node Node Node

Client

UDP

cache.get(“foo”)

Foo
Well Known

Hashing Algorithm

37

Client

Connection
Proxy

Data Storage
Process

Primary

Backup

Connection
Proxy

Data Storage
Process

Primary

Backup

Data Storage
Process

Primary

Backup

Data Storage
Process

Primary

Backup

myCache.put(“Key”,”Value”);!

38

Data Storage
Process
Primary
Node X

Backup Bar

Data Storage
Process

Primary…

Backup…

Data Storage
Process

Primary Bar

Primary
Node X
Backup
Node X Backup Foo

Data Storage
Process

Primary…

Backup…
Redistribution

Repartioning

Node X

I think Node
X has died

I think Node
X has died

Death detection is vote
based – there is no central
management

Redistribution

Repartioning

Consensus

39

Node

Node Node

Node Node

Node
Client A

Near Cache

key1, val

Data Invalidation Message: value for key1 is now invalid

Client B
cache.put(key1, SomethingNew)

cache.get(key1)

Near Cache
(in-process)

40

12 Network Hops
(6 internal to cluster, 6 external to cluster)

765, 769…

1, 2, 3… 97, 98, 99…

333, 334… 244, 245…

169, 170… Client

Lock(Key3)

Process

Unlock(Key3)

41

Client

cache.invoke(EP)

765, 769…

1, 2, 3… 97, 98…

333, 334… 244, 245…

169, 170…

Class Foo extends AbstractProcessor !

public Object process(Entry entry)!

public Map processAll(Set setEntries)!

EntryProcessor

Key is
Locked

Key is
Unlocked

Your code
goes here

Analogous to: Stored Procedures

42

4 Network Hops
(2 internal to cluster, 2 external to cluster)

765, 769…

1, 2, 3… 97, 98, 99…

333, 334… 244, 245…

169, 170… Client
cache.invoke(..)

cache.invoke("Key3",!

new ValueChangingEntryProcessor(“NewVal"));!

43

 Run any arbitrary piece of code on any or all of the nodes

Client
service.execute(some code)

service.execute(new GCAgent(), null, null);!

Node

Node Node

Node Node

Node

Analogous to: Grid Task

44

Analogous to: Triggers
Backing Map Listeners / Triggers allow code to be run in response to a cache event such as an

entry being added, updated or deleted.

Client
cache.put(foo)

 765, 769…

1, 2, 3… 97, 98…

333, 334… 244, 245…

169, 170…

Class MapListener !

Public void entryInserted(MapEvent evt)!

public void entryUpdated(MapEvent evt)!

public void entryDeleted(MapEvent evt)!

MapListener

Key is
Locked

Key is
Unlocked

Your code
goes here

45

Analogous to: Triggers (but with fault tolerance and built in retry)

Client

cache.put(765, X)

765, 769…

1, 2, 3… 97, 98…

333, 334… 244, 245…

169, 170…

Class CacheStore !

 public void store(Object key, Object val)!

 public void erase(Object key)!

CacheStore

Retry Queue Exception
Thrown

Database

Should multiple
changes be made to

the same key they will
be coalesced

46

Invocable

Backing Map
Listener

CacheStore

Entry Processor Locks the key

Takes
Parameters

&
Returns Values

Is Guaranteed

Called by client
Called by Coherence

Coalesces
changes

Responds to a
cache event

47

All cluster side programming must be done in Java. However clients can be:
•  Java

•  C#

•  C++

 Serialisation is done to an intermediary binary format known as POF. This allows theoretical
transformation from POF directly to any language. Currently only Java, C# and C++ are
supported.

C# Object

Java Object

Node

Node Node

Node Node

Node

IPofSerialiser

PofSerialiser

48

C#
MyInvocable

Java Invocable
Run on Server

Node

Node Node

Node Node

Node

Mapping via
pof-config file

Data objects are marshalled as
described in previous slide

50

Set up associations between affinity attributes so that they are stored on the same machine

Trades Market Data

Affinity attributes
define mappings

between data

51

Trades
Market Data

Entry
Processor

Price trade
based on

market data

Trade and market data
for the same ticker are

collocated

53

Public class foo{!

Public void bar(){!

!//do some stuff!

}!

}!

Send code to data

Public class foo{!

Public void bar(){!

!//do some stuff!

}!

}!

Send data to code

DATA

DATA

54

Client

DS Node

DS Node

DS Node

DS Node

Node

Node Node

Node Node

Node

Data Layer:
Coherence Cluster

Processing Layer:
DataSynapse Grid

55

Client Node

Node Node

Node Node

Node

Processes are performed on
the node where data exists

56

Client
DS Node
(Compute)

DB
(Data)

Client
Coherence

Data + Compute

57

Feed
Server

Trade
Cache

Cache Store

Domain
Processing

Update Trade

Entry
Processor

58

•  Free distribution of processing across multiple machines

•  Free fault tolerance

•  Free scalability to potentially thousands of machines

A very enticing proposition for
new applications

59

Coherence is not suitable for large scale processor intensive tasks (think Monte
Carlo simulations etc). Why?

•  Compute grids provide much more control of the execution environment (priorities, a UI
etc)

•  The grid is far more scalable in terms of compute power (dynamic provisioning of engines
etc).

•  The grid is much cheaper (per core) than Coherence.

60

61

Copy 6

Copy 1 Copy 2

Copy 5 Copy 4

Copy 3
Client
Writes

Data
Controller

62

765, 769…

1, 2, 3… 97, 98, 99…

333, 334… 244, 245…

169, 170… Client

63

64

In
Memory
Cache

(Fragile)

DB

65

Trades Market Data

Client

1, 2, 3… 97, 98…

333, 334… 244, 245…

169, 170…
Cache
Store DB

Data affinity Reliable Processing

66

So in conclusion…

67

Summary so far…

