

A Java Developer’s Introduction to In-Memory Distributed

Computing

James Bayer

Principal Sales Consultant

The following is intended to outline our general product

direction. It is intended for information purposes only,

and may not be incorporated into any contract. It is not

a commitment to deliver any material, code, or

functionality, and should not be relied upon in making

purchasing decisions.

The development, release, and timing of any features

or functionality described for Oracle’s products remains

at the sole discretion of Oracle.

©2009 Oracle Corporation 3

<Insert Picture Here>

Agenda

• Defining a Data Grid

• Coherence Clustering

• Data Management Options

• Data Processing Options

• The Coherence Incubator

<Insert Picture Here>

Defining a Data Grid

<Insert Picture Here>

“A Data Grid is a system composed of multiple

servers that work together to manage information

and related operations - such as computations - in a

distributed environment.”

Cameron Purdy

CEO, Tangosol, Inc.

VP of Development, Oracle

<Insert Picture Here>

Coherence Clustering

Coherence Clustering:
Tangosol Clustered Messaging Protocol (TCMP)

• Completely asynchronous
yet ordered messaging built
on UDP multicast/unicast

• Truly Peer-to-Peer: equal
responsibility for both
producing and consuming
the services of the cluster

• Self Healing - Quorum based
diagnostics

• Linearly scalable mesh
architecture.

• TCP-like features

• Messaging throughput scales
to the network infrastructure.

Coherence Clustering:

The Cluster Service

• Transparent, dynamic
and automatic cluster
membership
management

• Clustered Consensus:
All members in the
cluster understand the
topology of the entire
grid at all times.

• Crowdsourced member
health diagnostics

Coherence Clustering:

The Coherence Hierarchy

• One Cluster (i.e.
“singleton”)

• Under the cluster there
are any number of
uniquely named
Services (e.g. caching
service)

• Underneath each
caching service there
are any number of
uniquely named
Caches

<Insert Picture Here>

Data Management Options

Data Management:

Partitioned Caching

• Extreme Scalability:
Automatically, dynamically and
transparently partitions the data
set across the members of the
grid.

• Pros:
– Linear scalability of data capacity

– Processing power scales with data
capacity.

– Fixed cost per data access

• Cons:
– Cost Per Access: High percentage

chance that each data access will go
across the wire.

• Primary Use:
• Large in-memory storage

environments

• Parallel processing environments

Data Management:

Partitioned Fault Tolerance

• Automatically,
dynamically and
transparently
manages the fault
tolerance of your data.

• Backups are
guaranteed to be on a
separate physical
machine as the
primary.

• Backup responsibilities
for one node’s data is
shared amongst the
other nodes in the
grid.

Data Management:

Cache Client/Cache Server

 • Partitioning can be
controlled on a member
by member basis.

• A member is either
responsible for an
equal partition of the
data or not (“storage
enabled” vs. “storage
disabled”)

• Cache Client – typically
the application instances

• Cache Servers –
typically stand-alone
JVMs responsible for
storage and data
processing only.

Data Management:

Near Caching

• Extreme Scalability &
Performance

– The best of both worlds between
the Replicated and Partitioned
topologies. Most
recently/frequently used data is
stored locally.

• Pros:
– All of the same Pros as the

Partitioned topology plus…

– High percentage chance data is
local to request.

• Cons:
– Cost Per Update: There is a cost

associated with each update to a
piece of data that is stored locally on
other nodes.

• Primary Use:
– Large in-memory storage

environments with likelihood of
repetitive data access.

Data Management:

Data Affinity

• The ability to

associate objects

across caches

guaranteeing they

are located on the

same member.

• Typical Use Case:

Parent Child

relationships

<Insert Picture Here>

Data Processing Options

Data Processing:

Events - JavaBean Event Model

• Listen to all events for

all keys

– ENTRY_DELETED

– ENTRY_INSERTED

– ENTRY_UPDATED

NamedCache cache = CacheFactory.getCache(“myCache”);

cache.addMapListener(listener);

Data Processing:

Events - Key Based Event Model

• Listen to changes to

a specific key

NamedCache cache = CacheFactory.getCache(“myCache”);

cache.addMapListener(listener, key);

Data Processing:

Events - Filter Based Event Model

• Listen to a changes

to data that match a

specific criteria (i.e.

Filter)

NamedCache cache = CacheFactory.getCache(“myCache”);

cache.addMapListener(listener, filter);

Data Processing:

Parallel Query

• Programmatic query mechanism

• Queries performed in parallel across the grid

• Standard indexes provided out-of-the-box and

supports implementing your own custom indexes

• Cost-based analysis of Filter application

• Standard Filters provided out-of-the-box (e.g. OR,

AND, ALL, EQUALS, etc.)

Data Processing:

Parallel Query

// get the “myTrades” cache

NamedCache cacheTrades =

CacheFactory.getCache(“myTrades”);

// create the “query”

Filter filter =

 new AndFilter(

 new EqualsFilter("getTrader", traderid),

 new EqualsFilter("getStatus", Status.OPEN));

// perform the parallel query

Set setOpenTrades = cacheTrades.entrySet(filter);

Data Processing:

Parallel Query

Data Processing:

Parallel Query

Data Processing:

Parallel Query

Data Processing:

Parallel Query

Data Processing:

Continuous Query Cache

• Automatically, transparently and dynamically

maintains a view locally based on a specific criteria

(i.e. Filter)

• Same API as all other Coherence caches

• Support local listeners.

• Supports layered views

Data Processing:

Continuous Query Cache

// get the “myTrades” cache

NamedCache cacheTrades = CacheFactory.getCache(“myTrades”);

// create the “query”

Filter filter =

 new AndFilter(

 new EqualsFilter("getTrader", traderid),

 new EqualsFilter("getStatus", Status.OPEN));

// create the continuous query cache

NamedCache cqcOpenTrades = new

ContinuousQueryCache(cacheTrades, filter);

Data Processing:

Continuous Query Cache

Data Processing:

Continuous Query Cache

Data Processing:

Continuous Query Cache

Data Processing:

Continuous Query Cache

<Insert Picture Here>

End Of Part I

<Insert Picture Here>

Part II

Data Processing:

Invocable Map

• The inverse of caching

• Sends the processing (e.g. EntryProcessors) to where

the data is in the grid

• Standard EntryProcessors provided Out-of-the-box

• Once and only once guarantees

• Processing is automatically fault-tolerant

• Processing can be:

• Targeted to a specific key

• Targeted to a collection of keys

• Targeted to any object that matches a specific criteria (i.e.

Filter)

Data Processing:

Invocable Map

// get the “myTrades” cache

NamedCache cacheTrades =

CacheFactory.getCache(“myTrades”);

// create the “query”

Filter filter =

 new AndFilter(

 new EqualsFilter("getTrader", traderid),

 new EqualsFilter("getStatus", Status.OPEN));

// perform the parallel processing

cacheTrades.invokeAll(filter, new

CloseTradeProcessor());

Data Processing:

Invocable Map

Data Processing:

Invocable Map

Data Processing:

Invocable Map

Data Processing:

Invocable Map

Data Processing:

Triggers

• Inject pre-processing logic to data being added to a cache.

• Similar to EntryProcessors, but fired before a mutation takes place.

• They allow your “process” method to override, replace, decorate,

remove or fail a cache mutation.

• Adds veto ability to data insertion.

• Common Uses:
– Prevent invalid transactions;

– Enforce complex security authorizations;

– Enforce complex business rules;

– Gather statistics on data modifications;

Data Processing:

Triggers

Data Processing:

Triggers

Data Processing:

Triggers

The Coherence Incubator

http://coherence.oracle.com/display/INCUBATOR/

http://coherence.oracle.com/display/INCUBATOR/

The Coherence Incubator

The Coherence Incubator hosts a repository of

projects providing example implementations for

commonly used design patterns, system integration

solutions, distributed computing concepts and other

artifacts designed to enable rapid delivery of solutions

to potentially complex business challenges built

using or based on Oracle Coherence.

The Coherence Incubator:

The Command Pattern

Distributed implementation of the classic Command

Pattern

• Useful alternative to EntryProcessors with the

advantage that Commands are executed

asynchronously.

• Provides essential infrastructure for several other

Incubator projects to permit guaranteed, in-order,

asynchronous processing of Commands.

The Coherence Incubator:

The Command Pattern

The Coherence Incubator:

The Functor Pattern

• This is an example implementation of Function

Objects (Wikipedia) or as it is also known, the Functor

Pattern, built with Coherence.

• The Functor Pattern is an extension to the Command

Pattern. In fact the semantics are identical with the

exception that the Functor Pattern additionally

provides a mechanism to return values (or re-throw

exceptions) to the Submitter (using Java 5+ Futures)

where as the Command Pattern does not provide

such capabilities.

http://en.wikipedia.org/wiki/Function_object
http://en.wikipedia.org/wiki/Function_object
http://coherence.oracle.com/display/INCUBATOR/Command+Pattern
http://coherence.oracle.com/display/INCUBATOR/Command+Pattern
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Future.html
http://coherence.oracle.com/display/INCUBATOR/Command+Pattern

Functor Pattern: Quick Overview Of Auction App

• Goal Demonstrate the Grid Differentation in WLS

Suite

• Show a close to real life application

• Coherence

– Coherence Patterns

• Grid Messaging

– Shows WLS JMS and AQ integration

• Eclipse JPA

– Best of breed JPA implementation

• Integration Check points

– Coherence Web

• Administrative

– WLST and Domain templates

What Happens when you create an Auction

• Uses EclipseLink JPA to store in Oracle RDBMS

• Registers the Auction in Coherence

• Enqueues a message to be Delivered in the FUTURE

What happens during bidding?

• A submit bid goes to coherence context registered

– Request gets co-located and queued

– WLS Returns

• On Coherence

– Each bid is processed in order

– Rules are checked

– Price is updated

– Stored in Oracle in RDBMS

How do Auctions Close?

• MDB listens for a dequeue….

• If reserve has been meet move to settlement

• If not mark as closed

• Auction is removed from the bidding engine

The Coherence Incubator

http://coherence.oracle.com/display/INCUBATOR/

http://coherence.oracle.com/display/INCUBATOR/

For More Information

©2009 Oracle Corporation 56

search.oracle.com

Oracle coherence

or

oracle.com

For More Information

• Visit the Oracle Fusion Middleware 11g

web site at

http://www.oracle.com/fusionmiddleware1

1g

• Oracle WebLogic Server on oracle.com

http://www.oracle.com/appserver

• Oracle Application Grid on oracle.com

http://ww.oracle.com/goto/applicationgrid

• Oracle Fusion Middleware on OTN

http://otn.oracle.com/middleware

Get Started

 • App Grid Blog

http://blogs.oracle.com/applicationgrid

• For WebLogic Server technical

information:

http://www.oracle.com/technology/product

s/weblogic/

• For Application Grid technical information

http://www.oracle.com/technology/tech/gri

d/

Resources

http://www.oracle.com/fusionmiddleware11g
http://www.oracle.com/fusionmiddleware11g
http://www.oracle.com/appserver
http://ww.oracle.com/goto/applicationgrid
http://otn.oracle.com/middleware
http://blogs.oracle.com/applicationgrid
http://www.oracle.com/technology/products/weblogic/
http://www.oracle.com/technology/products/weblogic/
http://www.oracle.com/technology/tech/grid/
http://www.oracle.com/technology/tech/grid/

