Oracle Coherence
By Mustafa Ahmed




Agenda

VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV v

The Problem

Solution

Data Grids

Replicated Topology
Partitioned Topology
Near Topology

Events

Query

Read Through Caching
Write Through Caching
Write Behind Caching
Coherence Code Examples

Conclusion
- Performance
- Availability
- Scalability




The Problem

» Data

- Extreme increase in Access Volume & Complexity of
Data

» Driving Data Demand

* Virtualization
- Ability to move applications around several machines
- Service Oriented Architecture (SOA)

- Integrated services that can be used in Multiple
business domains

- Relying on other services




Solution - Oracle Coherence

» Provide Reliable, Scalable, Universal Data
Access and Management.
- Performance
- Solves Latency and Bandwidth Problems
- Availability
- Having the data available at all times
- Scalability
- Handle growing demand of Data Efficiently




Data Grids

» Manages Information in a grid environment
- Lots of servers working together
- Servers do not run independently
- Server manages state
- Even server failure occurs.
- Adding more servers
- Concept of scale out

- It will manage more data and can handle more transactions
per second.

» Data as a Service
- Middle Tier
* In App Server

» Data Integration is in Data Service
* Integration can occur in Domain Model




Data Grids

» Combines Data Management with Data

Processing

- Push processing where data is being managed

- Read or Write data across any number of servers
» Single System Image

- No need to show server infrastructure

- Pretend all the information is Local

- Logical view of all data in all the servers




Data Grids

» There are two things you can move in a
Distributed Environment

- State

- Distribution of a state is referred to as replication
- Behavior

- Moving messages

» Data Grids combine these two concepts

* You can either move data or the processing where
data is sitting

* Push all the processes to the Information




Data Grids

» Locality of Data
- Most applications spend most of the time waiting
for data

- If the data is partitioned with non overlapping
regions the behavior can be moved to the server
that owns the data to process

- Results In lower latency




Replicated Topology

» Technology introduced In 2001

» Replicate information among all servers
- Data is replicated to all members in Data Grid

» Problems
> Scalability Problem
- Capacity of
Information Stays
the same




Replicated Topology

» EXpensive
- Update Each Server every time
- Conceptually its expensive
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Partitioned Topology

» Each Information is
spread out across the
servers (Peer to Peer)

» Load Balancer

- Keeps track of the load

- Move from one server
to another

« Sends to the server
which owns the data
» Exactly one server
owns the information

- Has a sync back up for
it
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Partitioned Topology

» Failure Occurs

« The operation still
finishes correctly

* Increase servers from
2 to 2000 servers it
increases scalability

- All servers are

disposable at any
period of time
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Near Topology

» L2 Cache vs. L1 Cache

- Partitioned Topology as L2 Cache
- Near Topology as L1 Cache

» Stores it Locally
- If asks again then gets it locally

» Demand base replicated caching
» Zero Latency access to recently used data
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Near Topology
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Events

» All the dataset
provide events
regardless of
Topology

» Events are
distributed
efficiently to the
interested listeners
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Query

» Parallel Query

* Query performed
parallel across the
data grid using
indexing

- All doing the local
portion of the
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Query

» Continuous Query

- Combines a Query
with Events to
provide a local |
materialized view

Application Application

- Result is up to date

in real time

» Like in near
topology but always
contains the desired
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Read Through Caching

» Finds it in L1 or |
L2 Cache 0

> Otherwise sends o |
a request to the 29/@ : L
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Write Through Caching

» Writes first to the
database and then
commits to the
cache o
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Write Behind Caching

» First writes it to the
cache

o Later commits it to
the database

> This assures the
latest version of the
cache
» Batches all the
writes into one
object

» Geico uses it
> Improved
performance

> 90% reduction in
database usage
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Coherence Code Examples

» Joins an
existing
cluster or
forms a new

one

» Leaves the
current
cluster

Cluster cluster = CacheFactory.ensureCluster ()

CacheFactory.shutdown () ;
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Coherence Code Examples

NamedCache nc = CacheFactory.getCache (“mine”) ;
Object previous = nc.put (“key”, “hello world”);
Object current = nc.get (“key”);

int size = nc.size();

boolean exists = nc.containsKey (“key”);




Coherence Code Examples

» Observe
changes in
real time as
the occur

NamedCache nc = CacheFactory.getCache (“stocks”);

nc.addMapListener (new MapListener () {
public void onInsert (MapEvent mapEvent)

}

public void onUpdate (MapEvent mapEvent)
}

public void onDelete (MapEvent mapEvent)

}
1) ;

{

{

{

23



Conclusion - Performance

» Performance

> Solves Latency Problems And Preserve network
bandwidth

- Cache recently used data
- Ability to execute tasks parallel across the data grid
- Moving the process where the data is
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Conclusion - Availability

» Availability
- Remove all single point of failure
- Added redundancy to improve availability
- Able to Queue updates if database is not available

> Increase availability from 11 days to 2.5 hours per
year
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Conclusion - Scalability

» Scalability
- Scale Out functionality
- Database Sharding
- Coherence eliminates Database Sharding
> Distributed cache
- Updates performed against the cache data
> Scaling both capacity and throughput
- Adding more nodes to the Coherence Cluster
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Any Questions



