
Two Exponential Neighbourhoods for the TSP and
Related Heuristics

Pyramidal and strongly balanced tours – theory and implementation

Bachelorarbeit

Eingereicht für das Bachelorstudium
Technische Mathematik

der Technischen Universität Graz

Vorgelegt von
Maksym Deineko

Betreut durch
Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eranda Dragoti-Cela

September 2016

mailto:deineko@student.tugraz.at
mailto:cela@math.tugraz.at

Abstract

Dynamic programming delivers solutions to many problems in combinatorial opti-
mization; to this the traveling salesman problem and its special cases — where dynamic
programming can often be applied effectively — are no exception.

Herein we describe a general procedure for constructing, given a description of such a
solution, a working implementation thereof as well as of a corresponding iterative heuris-
tic.

We then proceed to provide such implementation for two special cases of TSP — of
which the first one (albeit not its extension to the heuristic method) is well known, while
the other had yet at all to see a working implementation, which can be seen as a major
goal of this effort — and present results thus obtained.

This page would have been intentionally left blank had we not chosen to mention it.

https://en.wikipedia.org/wiki/Recursion

Contents

1 Introduction . 7
1.1 Basic definitions and notation . 7
1.2 Exponential neighbourhoods and local search 10
1.3 Tours and permutations . 11
1.4 Tour sets as neighbourhoods . 13

2 Theory . 14
2.1 Pyramidal tours . 14
2.2 Recursion and complexity . 16
2.3 Strongly balanced tours . 19
2.4 Strongly balanced tours and linear time conjecture 23
2.5 Local search and flowers . 25

3 Implementation . 26
3.1 Key features . 26
3.2 Runtime behaviour . 26
3.3 Tour benchmarks . 28

4 Conclusions . 28
4.1 Areas for further research . 30

Appendix A Sample REPL Session . 31

Appendix B Shared Library Interface . 32

References . 36

This page would have been intentionally left blank had we not chosen to mention it.

https://en.wikipedia.org/wiki/Recursion

1. Introduction
Nothing clears up a case so
much as stating it to another
person.

(Sherlock Holmes, «The Memoirs
of Sherlock Holmes», Arthur

Conan Doyle)

The traveling salesman problem (TSP) can be colloquially stated as follows:

A traveling merchant (or salesman) wishes to visit each city from a given
list exactly once, starting from and returning to any select one of the cities
given. Assuming that distances between the cities are known and not subject
to change, what would be the shortest route for him to take?

This well studied problem in combinatorial optimization is known to be NP-hard [7];
hence, one is interested in efficiently solvable cases as well as useful heuristics, of which
a good number exists.

In this paper we look at two exponential sets of feasible solutions over which the TSP
can be solved in polynomial time as well as at extension of these to iterative heuristics.
For this, we need to establish some basic definitions first.

1.1. Basic definitions and notation

TheTSP, as most mathematical problems, can be modeled in a number of often equivalent
or similar ways, depending onwhat aspects of the problem are relevant to the task at hand
— which, for a problem as extensively studied as this one, results in a great number of
common terms which from author to author can differ ever so slightly.

In what follows, our goal is to establish notation which can be easily interpreted as a
(functional) computer program.

Definition 1.1 (cities, paths and tours). Given 𝑛 ∈ ℕ (𝑛 ≥ 2), let

u�𝑛 ≔ {1, … , 𝑛} .

We will refer to elements of u�𝑛 as cities. A non-empty tuple (𝑝1, 𝑝2, … , 𝑝𝑚) of cities is
called a path (of walking length 𝑚 − 1 over u�𝑛); it is called simple if it contains distinct
entries only, with possible exception of its end points 𝑝1 and 𝑝𝑚, i.e. if

|{𝑝1, 𝑝2, … , 𝑝𝑚−1}| = |{𝑝2, 𝑝3, … , 𝑝𝑚}| = 𝑚 − 1.

We shall refer to a path of non-zero walking length with distinct end points as an open
path, one with equal end points — a closed one, or a cycle. A path of walking length 1 is
also called an edge; a simple cycle of walking length 𝑛 is called a tour. We then denote by
u�𝑛 ≔ ⋃𝑘∈ℕ u� 𝑘

𝑛 the set of all paths and by u�𝑛 — the set of all tours over u�𝑛.

7

We extend the common notion of path concatenation to perform a single reduction,
as well as to allow for convenient notation for images under said map defined as infix
operator:

Definition 1.2 (path operations). Define path concatenation to be the following map:

⊕ ∶ (u�𝑛 ∪ 2u�𝑛)
2

→ u�𝑛 ∪ 2u�𝑛 (infix),

𝑝 ⊕ 𝑞 ≔

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(𝑝1, … , 𝑝𝑚, 𝑞1, … , 𝑞𝑘) , 𝑝 = (𝑝1, … , 𝑝𝑚) ∈ u�𝑛,
𝑞 = (𝑞1, … , 𝑞𝑘) ∈ u�𝑛,
𝑝𝑚 ≠ 𝑞1;

(𝑝1, … , 𝑝𝑚−1, 𝑞1, … , 𝑞𝑘) , 𝑝 = (𝑝1, … , 𝑝𝑚) ∈ u�𝑛,
𝑞 = (𝑞1, … , 𝑞𝑘) ∈ u�𝑛,
𝑝𝑚 = 𝑞1;

{𝑝′ ⊕ 𝑞 | 𝑝′ ∈ 𝑝} , 𝑝 ∉ u�𝑛, 𝑞 ∈ u�𝑛;

{𝑝 ⊕ 𝑞′ | 𝑞′ ∈ 𝑞} , 𝑝 ∈ u�𝑛, 𝑞 ∉ u�𝑛;

{𝑝′ ⊕ 𝑞′ | 𝑝′ ∈ 𝑝, 𝑞′ ∈ 𝑞} , 𝑝 ∉ u�𝑛, 𝑞 ∉ u�𝑛,

path reversal as

rev ∶ u�𝑛 → u�𝑛, (𝑝1, 𝑝2, … , 𝑝𝑚−1, 𝑝𝑚) ↦ (𝑝𝑚, 𝑝𝑚−1, … , 𝑝2, 𝑝1) ,

and path closure as

⋅ ∶ u�𝑛 → u�𝑛, (𝑝1, … , 𝑝𝑚) ↦ (𝑝1, … , 𝑝𝑚) ⊕ (𝑝1) ,

while also allowing for image notation: for 𝑃 ⊆ u�𝑛, let

𝑃 ≔ {𝑝 ∣ 𝑝 ∈ 𝑃 } .

We choose the concatenation operator to take precedence over set union.

Example 1.1. With above definition, following holds for paths over u�𝑛 (for 𝑛 ≥ 3):

(1, 2) ⊕ (3, 2) = (1, 2, 3, 2),
(3, 1) ⊕ (1, 1) = (3, 1, 1),

{(2), (1)} ⊕ (1) = {(2, 1), (1)} ,
{(1)} ⊕ {(1), (2)} ∪ {(3)} = {(1), (1, 2), (3)} .

Remark 1.1. Also note that path closure produces a bijection from the set of all simple
open paths of walking length 𝑛 − 1 over u�𝑛 onto u�𝑛. Further, u�𝑛 = u�𝑛 holds true.

Definition 1.3 (costs and distances). Given a 𝑛 ∈ ℕ (𝑛 ≥ 2) and amatrix𝐶 = (𝑐𝑖,𝑗) ∈ ℝ𝑛×𝑛,
which we shall call cost (or distance) matrix, we will refer to its elements as distances or
weights. Now let

𝜔𝐶 ∶ u�𝑛 → ℝ, (𝑝1, 𝑝2, … , 𝑝𝑚) ↦
𝑚−1

∑
𝑘=1

𝑐𝑝𝑘,𝑝𝑘+1
.

8

For a path 𝑝 over u�𝑛 we then call 𝜔𝐶 (𝑝) cost of 𝑝. An edge’s cost is also called its weight
(which agrees with the definition above).

We would like to stress here that requiring tours to explicitly include a city twice (as
end points) allows us to employ same notion of cost for paths and tours, which, in turn,
will allow for convenient recursive constructions later on.

Definition 1.4 (TSP). Given a 𝑛 ∈ ℕ (𝑛 ≥ 2), 𝑀 ⊆ ℝ𝑛×𝑛 and 𝑇 ⊆ u�𝑛, 𝑇 ≠ ∅, as well as
a total order 𝐿 on u�𝑛, we define traveling salesman problem (over (𝑀, 𝑇), also TSP) to be
the map

tsp𝐿,𝑀,𝑇 ∶ 𝑀 → 𝑇 , 𝐶 ↦ min
𝐿

tsp∗
𝑀,𝑇 (𝐶) ,

and

tsp∗
𝑀,𝑇 ∶ 𝑀 → 2𝑇 , 𝐶 ↦ arg min

𝜏∈𝑇
𝜔𝐶 (𝜏) = (𝜔𝐶 �𝑇)

−1
({min 𝜔𝐶 (𝑇)}) .

We call 𝑛 the TSP’s dimension. If 𝑀 is a subset of symmetric matrices (over ℝ), the TSP
is called symmetric (sTSP), otherwise — asymmetric (aTSP).

Remark 1.2. Both tsp∗ and tsp are well-defined maps: 1 ≤ |𝑇 | < ∞ holds true above,
hence 𝜔𝐶 assumes a minimum value over 𝑇 and ∅ ∉ tsp∗

𝑀,𝑇 (𝑀).
Remark 1.3. Frequently, the TSP is defined via a map which provides the sets 𝑀 and 𝑇
for every dimension 𝑛. We make no such requirement — however, such an extension
is easily established from context, and throughout the rest of this paper we will usually
assume that some such dimension is given. Further, whenever the sets 𝑀, 𝑇 in above
definition are established elsewhere, they are usually omitted from notation. The pair
(𝑀, 𝑇) is called a class or (special) case of TSP.
Remark 1.4. Also not unusual (and useful in practice) is a variation of TSP which returns
the cost of optimal tour along with such a tour — transition between these definitions is
usually obvious.
Remark 1.5. Often, the convention is to define TSP to be the symmetric version — we
shall make no such assumption without a prior notice. On the other hand, following
convention is useful: observe how it follows from definitions 1.3 and 1.4 that tsp∗

𝑀,𝑇 (𝐶) =
tsp∗

𝑀′,𝑇 (𝐶 + 𝜆𝐽) for all 𝜆 ∈ ℝ and 𝐶 ∈ 𝑀 , where 𝐽 is a matrix of ones (of suitable
dimension), and we have a bijection from 𝑀 onto 𝑀′. Hence we can always assume

𝑐𝑖,𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ u�𝑛

and shall do so henceforth.
Remark 1.6. Cost equality naturally induces a partition of u�𝑛 (or its subset 𝑇 above).
We are not always interested in all elements of tsp∗ (𝐶) or its representative given by a
particular order 𝐿 (as produced by tsp𝐿 (𝐶)) but rather in any such tour. We hence treat
𝐿 as implicit argument to tsp𝐿, omitting it from notation where possible — in practice, it
is often given implicitly by construction, or may depend on even more arguments (such
as some probability distribution) — still, this choice of representative is something we
need to be aware of throughout, as it propagates to any construct using tsp — such as
iterative methods we shall present herein.

9

1.2. Exponential neighbourhoods and local search

Since the TSP in its general form is NP-hard, one is naturally interested in efficiently
solvable cases as well as good heuristics; this leads us to following general definitions.

Definition 1.5 ((exponential) neighbourhood). A neighbourhood (in u�𝑛 or over u�𝑛) is a
map

𝐹 ∶ u�𝑛 → 2u�𝑛 s.t. 𝜏 ∈ 𝐹 (𝜏) ∀𝜏 ∈ u�𝑛.

𝐹 (𝜏) is also called neighbourhood of 𝜏 . Once again, 𝑛 can be seen either as given di-
mension or implicit argument to 𝐹 ; a neighbourhood 𝐹 is called exponential if for some
𝑎 ∈ ℝ, 𝑎 > 1,

|𝐹 (𝜏)| = Ω(𝑎𝑛) ∀𝜏 ∈ u�𝑛.

Definition 1.6 (local search). Given a neighbourhood 𝐹 in u�𝑛 as well as 𝑀 ⊆ ℝ𝑛×𝑛 and
𝐶 ∈ 𝑀 , we define local search (in or over 𝐹) to be the map

𝑙𝐶 ∶ u�𝑛 → u�𝑛, 𝜏 ↦ tsp𝑀,𝐹 (𝜏) (𝐶) .

𝐹 (as well as 𝑙𝐶) is said to be polynomially solvable if 𝑙𝐶′ ∈ 𝖯 ∀𝐶′ ∈ 𝑀 (where time
complexity is measured in relation to 𝑛).

Note how for any tour 𝜏 local search defines a map on 𝑀 via 𝐶′ ↦ 𝑙𝐶′ (𝜏), which can
also be seen as approximation of tsp𝑀,u�𝑛

.
Remark 1.7. Not a universally common requirement, our reason to demand in the defi-
nition above that 𝐹 (𝜏) include 𝜏 is to guarantee that for any tour 𝜏 and any cost matrix
𝐶 ,

𝜔𝐶 (𝑙𝐶 (𝜏)) ≤ 𝜔𝐶 (𝜏) .

This naturally yields an iterative improvement heuristic:

Definition 1.7 (ILS). Given a local search function as above and a starting tour 𝜏∗, we
define iterative or iterated local search (ILS) to be the map assigning to each 𝐶 ∈ 𝑀 the
fixed point of

𝜏 ↦
{

𝜏 if 𝜔𝐶 (𝑙𝐶 (𝜏)) = 𝜔𝐶 (𝜏) ,
𝑙𝐶 (𝜏) otherwise

which is reached by iteration from 𝜏∗. We shall sometimes refer to such a fixed point as
stale iteration.

In practice, termination conditions employed in ILS may vary and commonly include
such parameters as number of iterations performed, time elapsed or some cost improve-
ment metric.
Remark 1.8. There seems to exist no commonly accepted distinction between local search
and iterated local search. Often, the former is not required to solve the problem in 𝐹 (𝜏)
but only in some small subset of it, or to consist of multiple such improvement steps,
which is referred to as anytime heuristic. Thus, depending on the definition of what
constitutes a step, one can potentially be seen as special case of the other.

10

1.3. Tours and permutations

Given the set u�𝑛 of 𝑛 cities, let u�𝑛 denote the symmetric group (on u�𝑛) from now on.

Definition 1.8 (associated permutation). We define 𝜎⋅ (using argument-in-subscript no-
tation) to be the map

𝜎⋅ ∶ u�𝑛 → u�𝑛, 𝜏 = (𝑝1, 𝑝2, … , 𝑝𝑛, 𝑝1) ↦ 𝜎𝜏 ≔
(

1 2 ⋯ 𝑛
𝑝1 𝑝2 ⋯ 𝑝𝑛)

,

and, seeing how this constitutes a bijection, define 𝜋 to be its inverse, while letting 𝜎−1
𝜏

denote permutation inverse to 𝜎𝜏 . We say then that 𝜏 and 𝜎𝜏 are associated with one
another.

Remark 1.9. We note here that function composition is default group operation on u�𝑛
and therefore can be omitted from notation where it is convenient and does not cause
unnecessary ambiguity.

The map 𝜋, being a bijection, conveniently provides a natural extension of cost to u�𝑛
via 𝜔𝐶 ∘ 𝜋:

Definition 1.9 (cost of permutation). For a cost matrix 𝐶 of dimension 𝑛, we shall extend
𝜔𝐶 to u�𝑛 ∪ u�𝑛 by setting, for any 𝜌 ∈ u�𝑛,

𝜔𝐶 (𝜌) ≔ 𝜔𝐶 (𝜋 (𝜌)) .

Similarly, we can use the map 𝜎⋅ for following convenient notation:

Definition 1.10 (action of u�𝑛). For 𝜏 ∈ u�𝑛, 𝜌 ∈ u�𝑛, 𝐶 ∈ 𝑀 ⊆ ℝ𝑛×𝑛, 𝑇 ⊆ u�𝑛, we define

𝜏𝜌 ≔ 𝜎𝜏𝜌,
𝜌 𝜏 ≔ 𝜌 𝜎𝜏 ,

𝜌 𝑇 ≔ 𝜋 ({𝜌 𝜎𝜂 ∣ 𝜂 ∈ 𝑇 }) ,

𝜌 𝐶 ≔ (𝑐𝜌(𝑖),𝜌(𝑗))𝑖,𝑗∈u�𝑛
,

𝜌𝑀 ≔ {𝜌 𝐶 ∣ 𝐶 ∈ 𝑀} .

We can see that 𝜌 𝜏 is associated with the tour 𝜏 over cities reordered by 𝜌, and if
we consider 𝜏𝜌 to be a reordering of the tour 𝜏 , following result becomes intuitively
agreeable:

Proposition 1.1. For any permutation 𝜌 ∈ ⟨(1 2 ⋯ 𝑛)⟩ = {(1 2 ⋯ 𝑛)𝑚 ∣ 𝑚 ∈ ℤ},

𝜔𝐶 (𝜏) = 𝜔𝐶 (𝜏𝜌)

holds true for all 𝜏 ∈ u�𝑛 and all 𝐶 ∈ ℝ𝑛×𝑛.

11

Proof. Consider following natural isomorphism between ℤ/𝑛ℤ and u�𝑛: for 𝑖 ∈ ℤ, let

𝑑 (𝑖) ≔ ((𝑖 − 1) mod 𝑛) + 1.

We have 𝑑 (ℤ) = u�𝑛, and 𝑑 �u�𝑛
= idu�𝑛

is trivially a bijection (as is 𝜌); further,

𝑑 (𝑥 + 𝑦) = 𝑑 (𝑑 (𝑥) + 𝑑 (𝑦)) ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ, (1.1)

and with 𝑑 (𝑛 + 1) = 1 we can now write the cost function from definition 1.3 as

𝜔𝐶 (𝜏) =
𝑛

∑
𝑖=1

𝑐𝜎𝜏(𝑖),𝜎𝜏(𝑑(𝑖+1)). (1.2)

We also note that ∃𝐾 ∈ u�𝑛 s.t. 𝜌 (𝑖) = 𝑑 (𝑖 + 𝐾) ∀𝑖 ∈ u�𝑛, and, using eq. (1.1), obtain

𝜌 (𝑑 (𝑖 + 1)) = 𝑑 (𝑑 (𝑖 + 1) + 𝐾) = 𝑑 (𝑑 (𝑖 + 1) + 𝑑 (𝐾)) = 𝑑 (𝑖 + 1 + 𝐾) =
= 𝑑 (𝑑 (𝑖 + 𝐾) + 𝑑 (1)) = 𝑑 (𝑑 (𝑖 + 𝐾) + 1) = 𝑑 (𝜌 (𝑖) + 1)

(1.3)

for any city 𝑖. It now follows that

𝜔𝐶 (𝜏𝜌) = 𝜔𝐶 (𝜋 (𝜎𝜏 ∘ 𝜌))
(1.2)
=

𝑛

∑
𝑖=1

𝑐𝜎𝜏(𝜌(𝑖)),𝜎𝜏(𝜌(𝑑(𝑖+1)))
=

(1.3)
=

𝑛

∑
𝑘=1

𝑐𝜎𝜏(𝑘),𝜎𝜏(𝑑(𝑘+1))
(1.2)
= 𝜔𝐶 (𝜏) .

This shows, in particular, how restricting the tour set in the TSP to a fixed starting city
does not necessarily signify a qualitative restriction of solutions set.

We nowwant to establish a connection between permutations of cities, reordered tours
and solutions to the TSP.

Lemma 1.2. For any 𝜌 ∈ u�𝑛, 𝐶 ∈ ℝ𝑛×𝑛, 𝜏 ∈ u�𝑛,

𝜔𝐶 (𝜌 𝜏) = 𝜔𝜌 𝐶 (𝜏)

holds true.

Proof. Borrowing definition of 𝑑 from the proof of proposition 1.1, and using eq. (1.2)
along with definition 1.10, we obtain

𝜔𝜌 𝐶 (𝜏) =
𝑛

∑
𝑖=1

𝑐𝜌(𝜎𝜏(𝑖)),𝜌(𝜎𝜏(𝑑(𝑖+1)))
= 𝜔𝐶 (𝜌 ∘ 𝜎𝜏) = 𝜔𝐶 (𝜌 𝜏) .

12

Corollary 1.3 (reordered TSP). For any 𝜌 ∈ u�𝑛, 𝐶 ∈ 𝑀 ⊆ ℝ𝑛×𝑛, 𝜏 ∈ u�𝑛,

tsp∗
𝑀,𝜌𝑇 (𝐶) = 𝜌 tsp∗

𝜌𝑀,𝑇 (𝜌 𝐶) ,

tsp𝑀,𝜌𝑇 (𝐶) = 𝜋(𝜌 tsp𝜌𝑀,𝑇 (𝜌 𝐶))
(where latter holds for any pair of linear orders congruent under 𝜌).

Proof. Using lemma 1.2 and definition 1.4, we obtain

tsp∗
{𝜌 𝐶},𝑇 (𝜌 𝐶) = arg min

𝜏∈𝑇
𝜔𝜌 𝐶 (𝜏) = arg min

𝜏∈𝑇
𝜔𝐶 (𝜌 𝜏) =

= 𝜌−1 arg min
𝜌𝜏∈𝜌𝑇

𝜔𝐶 (𝜌 𝜏) = 𝜌−1 tsp∗
{𝐶},𝜌𝑇 (𝐶) ,

from which the rest follows.

1.4. Tour sets as neighbourhoods

Given a non-empty set of tours 𝑇 , we can choose some (any) element 𝜏∗ ∈ 𝑇 and consider
𝑇 to be a set of permutations of 𝜏∗ — its action then defines a neighbourhood in u�𝑛:

Definition 1.11 (induced neighbourhood). Given a set of tours 𝑇 ⊆ u�𝑛 and a tour 𝜏∗ ∈ 𝑇 ,
define 𝐹𝑇 to be the map

𝐹𝑇 ∶ u�𝑛 → 2u�𝑛, 𝜏 ↦ 𝜋 ({𝜎𝜏 ∘ 𝜎−1
𝜏∗ ∘ 𝜎𝜏′ ∣ 𝜏′ ∈ 𝑇 }) = (𝜎𝜏 ∘ 𝜎−1

𝜏∗) 𝑇 .

We call 𝐹𝑇 neighbourhood induced by 𝑇 (centred at or with centre 𝜏∗).

τ
τ∗

T
FT (τ)

Figure 1.1: A non-empty set of tours 𝑇 induces a neighbourhood 𝐹𝑇 .

Remark 1.10. It is quickly verified that 𝜏 ∈ 𝐹𝑇 (𝜏) ∀𝜏 ∈ u�𝑛, i.e. 𝐹𝑇 is in fact a neigh-
bourhood according to our definition. We further have 𝐹𝑇 (𝜏∗) = 𝑇 . We deliberately
omit the choice of centre from notation of induced neighbourhood, treating it as implicit
parameter which is usually to be established along with the set 𝑇 .

If we now can solve the TSP efficiently over a fixed set of tours 𝑇 (for arbitrary cost
matrices), choosing a 𝜏∗ ∈ 𝑇 immediately allows us to construct a local search over 𝐹𝑇 :
applying corollary 1.3 to definition 1.11, we arrive at

𝑙𝐶 (𝜏) = 𝜋 (𝜌 tsp𝜌𝑀,𝑇 (𝜌 𝐶)) , where 𝜌 = 𝜎𝜏𝜎−1
𝜏∗

(which is mirrored in our implementation), and choosing 𝜏∗ to be the starting tour in
definition 1.7 then yields iterated local search.

13

2. Theory
To iterate is human, to recurse
divine.

(L. Peter Deutsch)

Dynamic programming is a fruitful approach to tackling many problems in combina-
torial optimization — this specifically includes traveling salesman problem and a number
of its special cases. Here we want to present two exponential neighbourhoods which are
polynomially solvable via dynamic programming solutions.

While the first one — pyramidal tours — can be considered widely known, less so is its
extension to a viable local search heuristic which we will present herein. The second —
strongly balanced tours — is somewhat more involved in its construction and so had yet
to see an implementation until now.

Solutions as they are presented herein can be taken to reflect inner workings of our
code.

2.1. Pyramidal tours

Pyramidal TSP, as seen in, e.g. [2, 6], yields a classic example of application of dynamic
programming and can be defined as follows:

Definition 2.1 (pyramidal TSP). A simple path

(𝑝1, … , 𝑝𝑘, 𝑞1, … , 𝑞𝑚) s.t.
{

𝑝𝑖 < 𝑝𝑖+1 ∀𝑖 ∈ u�𝑘−1,
𝑞𝑗 > 𝑞𝑗+1 ∀𝑗 ∈ u�𝑚−1,

is called pyramidal. We shall denote by Pyr𝑛 the set of all pyramidal tours in u�𝑛, and call
TSP restricted to Pyr𝑛 pyramidal TSP.

We note here that the setPyr𝑛 induces a neighbourhood in u�𝑛 with centre (1, 2, … , 𝑛, 1).

1

2

4

5

3

1

Figure 2.1: For a pyramidal tour 𝜏 , connected plot of 𝜎𝜏 ’s (function) graph resembles a
pyramid (here: 𝑛 = 5, plot repeated at 1 for cosmetic reasons).

This definition of pyramidal tours, while explaining the name, does not yet offer a new
solution to the corresponding optimization problem. To achieve that, first we observe
that every pyramidal tour necessarily takes the shape

(1, 𝑝1, … , 𝑝𝑘, 𝑛, 𝑞1, … , 𝑞𝑚, 1) with
{

𝑝𝑖 < 𝑝𝑖+1 ∀𝑖 ∈ u�𝑘−1,
𝑞𝑗 > 𝑞𝑗+1 ∀𝑗 ∈ u�𝑚−1,

14

and then notice how for any city between 1 and 𝑛, we can choose it to lie either to the
left or to the right of 𝑛 in the above representation and how that choice then uniquely
defines the city’s position in the tour.

This argument makes |Pyr𝑛| = Θ (2𝑛) evident and following construction transparent:

Proposition 2.1 (recursive structure of Pyr𝑛). For cities 𝑖, 𝑗 in u�𝑛, let 𝑉 (𝑖, 𝑗) denote the
set of all pyramidal paths (𝑖, 𝑝1, … , 𝑝𝑚, 𝑗) in u�𝑛 s.t. {𝑝1, … , 𝑝𝑚} = {𝑘, … , 𝑛} with 𝑘 =
max {𝑖, 𝑗} + 1. Then

𝑉 (𝑖, 𝑗) =
⎧⎪
⎨
⎪⎩

{(𝑖, 𝑗)} , 𝑛 ∈ {𝑖, 𝑗} ,

(𝑖) ⊕ 𝑉 (𝑘, 𝑗) ⋃ 𝑉 (𝑖, 𝑘) ⊕ (𝑗) otherwise (𝑘 as above),
(2.1)

and Pyr𝑛 = 𝑉 (1, 1).

Proof. The second case in eq. (2.1) becomes apparent when, using preceding argument,
we choose each city’s position in the tour one city at a time in increasing order. The rest
follows directly from our definition of 𝑉 .

1
2

4
3

1

5

n

Figure 2.2: A tour in Pyr𝑛 is constructed one city at a time.

This translates directly onto a dynamic programming solution to pyramidal TSP:

Corollary 2.2 (dynamic programming solution to pyramidal TSP). For a suitable path-
valued definition of arg min′, the recurrence relation

Φ𝐶 (𝑖, 𝑗) ≔
⎧⎪
⎨
⎪⎩

(𝑖, 𝑗) , 𝑛 ∈ {𝑖, 𝑗} ,
arg min

𝑇

′𝜔𝐶 otherwise, (2.2)

where 𝑇 ≔ {(𝑖) ⊕ Φ𝐶 (𝑘, 𝑗) , Φ𝐶 (𝑖, 𝑘) ⊕ (𝑗)} ,

𝑘 ≔ max {𝑖, 𝑗} + 1,

produces, for arbitrary cost matrices, a well-defined map Φ𝐶 on u� 2
𝑛 , and via

𝜙 ∶ 𝐶 ↦ Φ𝐶 (1, 1)

a map on ℝ𝑛×𝑛. For latter,
𝜙 ≡ tspℝ𝑛×𝑛,Pyr𝑛

holds true.

15

Proof. Borrowing definition of 𝑉 from proposition 2.1, we first note that, per induction
over (2.1), 𝑉 (𝑖, 𝑗) is never empty and the two sets under union in eq. (2.1) are always
disjoint.

If we now choose arg min′ to select from two equal cost tours in 𝑇 one deterministically
and independently from 𝐶 (say, the first of the two options in definition of 𝑇 above), then
this, per construction, produces a partial order on paths in 𝑉 (u� 2

𝑛) (bar (𝑛, 𝑛)) and a total
order on Pyr𝑛.

We then see per induction over eqs. (2.1) and (2.2) that for all cities 𝑖,𝑗 and cost matrices
𝐶 , Φ𝐶 (𝑖, 𝑗) is the smallest (according to said order) cost minimizing path in 𝑉 (𝑖, 𝑗), from
which the rest follows.

A recurrence relation like the one introduced above can be visualized via so called
recursion tree — a directed graph in which nodes correspond to different arguments to
the relation and edges represent recursive dependence. For pyramidal TSP, fig. 2.3 shows
such a graph.

(1,5)

<1 5>

(1,4)

<1 5 4>

(5,4)

<5 4>

(1,3)

<1 5 4 3>

(4,3)

<4 5 3>

(4,5)

<4 5>

(5,3)

<5 3>

(1,2)

<1 3 4 5 2>

(3,2)

<3 4 5 2>

(3,5)

<3 5>

(3,4)

<3 5 4>

(4,2)

<4 5 2>

(5,2)

<5 2>

(1,1)

<1 3 4 5 2 1>

(2,1)

<2 5 4 3 1>

(2,5)

<2 5>

(2,4)

<2 5 4>

(2,3)

<2 5 4 3>

(3,1)

<3 4 5 1>

(4,1)

<4 5 1>

(5,1)

<5 1>

Figure 2.3: Pyramidal (a)TSP recursion tree along with values of Φ𝐶 from corollary 2.2
for a sample cost matrix 𝐶 (𝑛 = 5).

2.2. Recursion and complexity

While corollary 2.2 offers a solution to the pyramidal TSP, the function as it is presented
in eq. (2.2) does not yet necessarily translate onto an efficient computer program. To this
end, we need to perform the additional step of memoization.

The term, coined in computing (from memo), denotes the technique of evaluating a
function no more than once at any point in its domain, storing evaluation results some-

16

where and retrieving (i.e. substituting) them for subsequent evaluations. Not unnatural
to computations by hand, memoization can formally be seen as evaluating, in place of a
function over some set, said function’s graph over the set. In what now follows, 𝑋 can
thus be seen as some memory holding such evaluation results:

Proposition 2.3 (memoized solution to pyramidal TSP). Given a set of cities u�𝑛, let, for
cities 𝑖, 𝑗, a cost matrix 𝐶 and arbitrary function1 𝑋,

Φ̂𝐶 ((𝑖, 𝑗), 𝑋) ≔

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(𝑣∗, 𝑋) , ((𝑖, 𝑗), 𝑣∗) ∈ 𝑋 for some 𝑣∗,

((𝑖, 𝑗), 𝑋 ∪ {((𝑖, 𝑗), (𝑖, 𝑗))}) otherwise, if 𝑛 ∈ {𝑖, 𝑗} ,

(𝑣, 𝑋′′ ∪ {((𝑖, 𝑗), 𝑣)}) otherwise, where

(2.3)

𝑣 ≔ arg min′𝜔𝐶 over {(𝑖) ⊕ 𝑣′, 𝑣′′ ⊕ (𝑗)},

(𝑣′′, 𝑋′′) ≔ Φ̂𝐶 ((𝑖, 𝑘), 𝑋′) ,

(𝑣′, 𝑋′) ≔ Φ̂𝐶 ((𝑘, 𝑗), 𝑋) ,
𝑘 ≔ max {𝑖, 𝑗} + 1.

Then, borrowing definition of Φ𝐶 from corollary 2.2,

Φ̂𝐶 ((1, 1), ∅) = (Φ𝐶 (1, 1) , 𝐸) ,

where 𝐸 is the graph of Φ𝐶 over u� 2
𝑛 ⧵ {(𝑛, 𝑛)}.

Proof. Comparing the construction of Φ̂𝐶 in eq. (2.3) to that of Φ𝐶 in eq. (2.2), we see
that whenever 𝑋 in (2.3) is a subset of Φ𝐶 ’s graph, so is the second element of the tuple
returned by Φ̂𝐶 , so that evaluation of Φ̂𝐶 via (2.3) represents depth-first search over
recursion tree of Φ𝐶 — and with this the rest follows.

Remark 2.1. This gives us a viable way of computing Φ𝐶 (1, 1) and, by extension, tspPyr𝑛
— in fact, our code, which generated fig. 2.3 as its execution trace, closely mirrors this
exact definition. It is also a reasonably efficient implementation, provided that we are
allowed following assumptions:

(i) arg min′ 𝜔𝐶 in definition of Φ𝐶 above is computable in constant time: this is usually
achieved by returning tour cost along with the tour2;

(ii) tour concatenation in said definition is computable in constant time: in this case,
an obviously reasonable assumption;

1For above construction to yield a well-defined map Φ̂𝐶 , 𝑋 must be a set satisfying at least
(𝑥, 𝑦) ∈ 𝑋 ∧ 𝑥 ∈ u� 2

𝑛 → 𝑧 = 𝑥 ∀(𝑧, 𝑦) ∈ 𝑋.
2It should be noted, without too much detail, that this also spares us the need to construct all but the

optimal tour.

17

(iii) memory access (search for 𝑣∗ in first case of (2.3), and set union in the other two)
can be accomplished in constant time: sometimes overlooked, this is equivalent to
existence of efficient hashing function on the domain of the map which is to be
memoized — in this case, (𝑖, 𝑗) ↦ (𝑛 + 1) × 𝑖 + 𝑗 is one such function.

Note that evaluating Φ̂𝐶 following its definition corresponds to depth-first search over
the recursion tree, size of which is quadratic in number of nodes, as it is in the number
of edges — if we now consider memoization to be what is usually called edge marking in
that it guarantees that every edge is visited no more than once, we intuitively arrive at
following result:

Corollary 2.4. Under assumptions made in remark 2.1, pyramidal TSP is polynomially
solvable.

Proof. Consider the map Φ̂𝐶 as it was defined in proposition 2.3. If, for a bound 𝑀 , we
now rewrite the recurrence relation from said definition of Φ̂𝐶 as

𝑅 ((𝑖, 𝑗), 𝑋) ≔
⎧⎪
⎨
⎪⎩

(𝑀, 𝑋 ∪ {(𝑖, 𝑗)}) (𝑖, 𝑗) ∈ 𝑋 or 𝑛 ∈ {𝑖, 𝑗} ,

(𝑀 + 𝑡, 𝑋′′ ∪ {(𝑖, 𝑗)}) otherwise, where
(2.4)

𝑡 ≔ 𝑡′ + 𝑡′′,

(𝑡′′, 𝑋′′) ≔ 𝑅 ((𝑖, 𝑘), 𝑋′) ,

(𝑡′, 𝑋′) ≔ 𝑅 ((𝑘, 𝑗), 𝑋) ,
𝑘 ≔ max {𝑖, 𝑗} + 1,

and define (over suitable domain) time ≔ (𝑥, 𝑦) ↦ 𝑥, 𝑇 ≔ time ∘𝑅, then for some such
𝑀 the maximum number of steps in which we can compute Φ̂𝐶 ((𝑖, 𝑗), 𝑋) equals to
𝑇 ((𝑖, 𝑗), time (𝑋)) for any pair of cities. We now want to show that

𝑇 ((1, 1), ∅) = u� (𝑛2
) .

Let us expand

𝑇 ((1, 1), ∅) = 𝑀 + 𝑇 ((1, 2), 𝑋1,1
1,2) + 𝑇 ((2, 1), 𝑋1,1

2,1) =

= 𝑀 + 2𝑀 + 𝑇 ((1, 3), 𝑋1,2
1,3) + 𝑇 ((3, 2), 𝑋1,2

3,2) +

+ 𝑇 ((3, 1), 𝑋2,1
3,1) + 𝑇 ((2, 3), 𝑋2,1

2,3) =

= 𝑀 + 2𝑀 + 2𝑀 ⋅ 2+

+ 𝑇 ((1, 4), 𝑋1,3
1,4) + 𝑇 ((4, 3), 𝑋1,3

4,3)

+ 𝑇 ((3, 4), 𝑋3,2
3,4) + 𝑇 ((4, 2), 𝑋3,2

4,2)

+ 𝑇 ((3, 4), 𝑋3,1
3,4) + 𝑇 ((4, 1), 𝑋3,1

4,1)

+ 𝑇 ((2, 4), 𝑋2,3
2,4) + 𝑇 ((4, 3), 𝑋2,3

4,3) = …

18

where the sets 𝑋𝑘,𝑙
𝑖,𝑗 correspond to evaluation of 𝑅 as defined — which still can be seen

as depth-first search over the recursion tree of Φ𝐶 . Here we make a critical observation:
any two nodes in the recursion tree given by eq. (2.2) have a common ancestor, so at any
point in our expansion, given a pair (𝑖, 𝑗), it must (by construction of 𝑅) lie in all but the
very last of 𝑋𝑘,𝑙

𝑖,𝑗 , hence 𝑇 ((𝑖, 𝑗), 𝑋𝑘,𝑙
𝑖,𝑗) = 𝑀 for all but last such contributor to the sum.

We thus arrive at

𝑇 ((1, 1), ∅) ≤ 𝑀 + 2𝑀 (1 + 2 + ⋯ + (𝑛 − 3)) + 2𝑀 (1 + 2 + ⋯ + (𝑛 − 2)) +

+
𝑛−1

∑
𝑖=1

(𝑇 ((𝑖, 𝑛), 𝑋′
𝑖,𝑛) + 𝑇 ((𝑛, 𝑖), 𝑋′

𝑛,𝑖)) = u� (𝑛2
)

per 𝑇 ((𝑛, 𝑖), .) = 𝑇 ((𝑖, 𝑛), .) = 𝑀 ∀𝑖 via first case in (2.4).

This illustrates how, given a recurrence relation, under certain circumstances (effi-
ciently computable edges) memoization technique can be used to achieve time complex-
ity which is asymptotically no worse than size of the recursion tree — which we think
can be seen as key concept behind dynamic programming.

In computing, memoization can be applied to any function values ofwhich depend only
on its arguments — such a function is also said to be referentially transparent (in mathe-
matics, every well-defined map is referentially transparent; in computing, depending on
programming language, the concept of function may allow for implicit dependency on
environment — i.e. some mutable state).
Remark 2.2. The solution presented in proposition 2.3 incurs quadratic space overhead.
We would like to mention here that linear space complexity is achievable if we rewrite
said solution as a so called tail-recursive function. We shall leave out the details at this
point, only noting that this is equivalent to breadth-first search over the recursion tree.

It should also be noted that the tree size can be halved (as shown in fig. 2.4) if we
restrict ourselves to symmetric matrices in pyramidal TSP.

Remark 2.3. While determining if a given TSP instance is pyramidal is NP-hard, a number
of polynomially testable classes which possess pyramidal solutions exists [1].

Before we turn our attention to the next neighbourhood, there is one last point that
we feel needs to be addressed: while we have discussed depth-first search and mentioned
breadth-first search computation over the recursion tree, we have not yet considered the
bottom-up approach often used in imperative programming.

While its merits and caveats are manifold, there is one important requirement said
technique impedes on the problem: for it to work, terminal nodes (or leafs) of the re-
cursion tree must be feasibly computable beforehand. While this presents no problem
for pyramidal TSP, it is much less the case for the neighbourhood we are about to see —
which made bottom-up approach ultimately unsuitable for this project.

2.3. Strongly balanced tours

Throughout remainder of this section we shall restrict our considerations, unless noted
otherwise, to symmetric TSP only — in particular, we can consider paths to be equivalent

19

(1,5)

<1 5>

(1,4)

<1 5 4>

(4,5)

<4 5>

(1,3)

<1 5 4 3>

(3,4)

<3 5 4>

(3,5)

<3 5>

(1,2)

<2 5 4 3 1>

(2,3)

<2 5 4 3>

(2,5)

<2 5>

(2,4)

<2 5 4>

(1,1)

<1 2 5 4 3 1>

Figure 2.4: A sample trace of our implementation of pyramidal sTSP (𝑛 = 5).

whenever they are equal under path reversal.

Definition 2.2 (strongly balanced tours). Given a set of cities u�𝑛, we define, inductively,
for every 𝑚 ∈ u�𝑛,

ℬ1 ≔ {{(1)}} ,

ℬ𝑚 ≔ ⋃
𝜏∈ℬ𝑚−1

(add (𝜏, 𝑚) ∪ append (𝜏, 𝑚) ∪ merge (𝜏, 𝑚)) ,

where for 𝜏 = {𝜋1, 𝜋2, …} with 𝜋𝑖 = (𝑚𝑖, … , 𝑚′
𝑖) , 𝑚𝑖 ≤ 𝑚′

𝑖 ∀𝑖, and 𝑚1 < 𝑚2 < … ,
we define the three operations above as

add (𝜏, 𝑚) ≔ 𝜏 ∪ {(𝑚)} ,

append (𝜏, 𝑚) ≔ (𝜏 ⧵ 𝜋1) ∪ {rev (𝜋1) ⊕ (𝑚)} ,

merge (𝜏, 𝑚) ≔
⎧⎪
⎨
⎪⎩

∅, |𝜏| < 2,

(𝜏 ⧵ {𝜋1, 𝜋2}) ∪ {rev (𝜋1) ⊕ (𝑚) ⊕ 𝜋2} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

For a 𝜏 ∈ ℬ𝑛 with |𝜏| = 1, we then call closure of its single element a strongly balanced
tour.

Above construction is best visualized per analogy to argument which led us to propo-
sition 2.1: while in latter, we were appending city at a time to a partially constructed
tour which consisted of two (or one, if we joined them at city 1) paths, here such a

20

partially constructed tour (such as 𝜏 ∈ ℬ𝑚−1 above) can consist of multiple paths, and
for each city 𝑚 we can choose from two to three placement possibilities (according to
add, append, merge) as illustrated in fig. 2.5.

We can also now see that per above definition, every element of ℬ𝑚 contains simple
disjoint paths over u�𝑚 which together contain all cities in u�𝑚 (and 𝑚𝑖 = 𝑚′

𝑖 above is only
possible where 𝜋𝑖 = (𝑚𝑖)), thus making following evident:

Remark 2.4. Strongly balanced tours, as introduced in definition 2.2, are in fact elements
of u�𝑛.

m1

m

m2

m3 . . .

Figure 2.5: Placement options for a city 𝑚 during construction of a strongly balanced
tour: we can choose 𝑚 to be adjacent to 𝑚1 (via append), both 𝑚1 and 𝑚2 (via
merge), or none of the two (add).

Though the above construction may seem somewhat contrived, elements thereby cre-
ated have roots in combinatorial optimization — they represent a variation on so called
balanced tours, which contain a solution to (shown to be NP-hard) Relaxed Supnick TSP
(RS-TSP) (see [5, 4]). And while strongly balanced tours may lack a nice visual description
comparable to that of pyramidal tours, the neighbourhood they represent is certainly no
less interesting.

Definition 2.3. For 𝑀 ∈ ℕ, we define SBal𝑀𝑛 to be the set of all strongly balanced
tours obtained by restricting each ℬ𝑚 in definition 2.2 to contain only elements of size
no higher than 𝑀 . We shall call the TSP restricted to said set strongly balanced TSP (with
maximum node size 𝑀).

Remark 2.5. For any 𝑀 ≥ 2, at any step of city-at-a-time construction of a strongly
balanced tour we have a choice between at least two of the three placement options
shown above, which all yield essentially different tours (recall fig. 2.5). This shows that

|SBal𝑀𝑛 | = Ω (2𝑛) .

Also, with 𝑀 ≥ 1 the append option is always available, hence for every 𝑀 SBal𝑀𝑛
induces a neighbourhood in u�𝑛 with centre (… , 5, 3, 1, 2, 4, …).

Recall how we could uniquely identify a partially constructed pyramidal tour using
only a pair of cities (𝑖, 𝑗) — which we then used to describe, in proposition 2.1, elements
which would complete such partially constructed tours to elements of u�𝑛.

Equivalently, a partially constructed strongly balanced tour (i.e. element of ℬ𝑚) can
be described by the end points of its elements and the set of cities it contains (which is
necessarily {1, … , 𝑚}).

21

Proposition 2.5 (recursive structure of SBal𝑀𝑛). Given 𝑛 ∈ ℕ, 𝑚 ∈ u�𝑛, 𝑀 ∈ u�𝑛 and

𝑁 = {{𝑎𝑖, 𝑏𝑖} ∣ 𝑖 = 1, … , 𝑘} , 𝑘 ∈ u�𝑀 ∪ {0} ,

with 𝑎1 < 𝑎2 < … < 𝑎𝑘, 𝑎𝑖 ≤ 𝑏𝑖 ∀𝑖 = 1, … , 𝑘, define 𝑊 (𝑚, 𝑁) to be the set of all
sets (none higher than 𝑀 in size) of simple paths through all of the cities {𝑚 + 1, … , 𝑛} as
well as all cities contained in (elements of) 𝑁 , which per path concatenation (as defined in
definition 1.2) complement the set of non-singleton elements of 𝑁 seen as paths (𝑎𝑖, 𝑏𝑖) to a
single cycle, therefore also complementing corresponding (to 𝑁) element of ℬ𝑚 to a strongly
balanced tour. Then

SBal𝑀𝑛 = 𝑊 (0, ∅) = 𝑊 (1, {1})
(as quotients under rotation equivalence shown in proposition 1.1) and

𝑊 (𝑚, 𝑁) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

{(𝑎1, 𝑏1)} , 𝑚 = 𝑛, 𝑘 = 1,
∅, 𝑚 = 𝑛, 𝑘 ≠ 1
𝑊 (𝑚 + 1, add′ (𝑁, 𝑚 + 1)) ∪

∪ 𝑊 (𝑚 + 1, append′ (𝑁, 𝑚 + 1)) ∪
∪ 𝑊 (𝑚 + 1, merge′ (𝑁, 𝑚 + 1)) otherwise,

(2.5)

where

add′ (𝑁, 𝑚) ≔ 𝑁 ∪ {𝑚} (or ∅ for |𝑁| ≥ 𝑀),

append′ (𝑁, 𝑚) ≔ (𝑁 ⧵ {{𝑎1, 𝑏1}}) ∪ {{𝑚, 𝑏1}} (or ∅ for 𝑁 = ∅),

merge′ (𝑁, 𝑚) ≔ (𝑁 ⧵ {{𝑎1, 𝑏1} , {𝑎2, 𝑏2}}) ∪ {{𝑏1, 𝑏2}} (or ∅ for |𝑁| < 2).

Proof. Follows from definition 2.2 per construction.

This defines a recurrence relation towhichwe can apply samememoized graph travers-
ing technique we demonstrated on pyramidal TSP (in fact, apart from description of re-
cursion tree, counting tour reconstruction rules, our implementation uses same code for
both) and compute, for each node (𝑚, 𝑁), a minimum total cost element in 𝑊 (𝑚, 𝑁) —
and thus a minimum cost tour in SBal𝑀𝑛 . Sample trace of such computation can be seen
in fig. 2.6. Exact tour reconstruction rules can be deduced directly from above relation
and are left as exercise for the reader (they amount to inserting into the solution, with
possible reversal and joining, paths (𝑚, 𝑎1) or (𝑎1, 𝑚, 𝑎2)).
Example 2.1. The construction above is best illustrated by example: shown in table 2.1 is
one path taken from the root of the recursion tree, along with the strongly balanced tour
corresponding to said path as well as sample optimal solution from 𝑊 (𝑚, 𝑁) as it would
be constructed returning along the path.

Regarding time complexity, we need to address concerns similar to those raised in
remark 2.1:

22

𝜏 ∈ ℬ𝑚 ∼ (𝑚, 𝑁) 𝑚 𝑁 optimum in 𝑊 (𝑚, 𝑁) path from parent

{(1)} 1 {{1}} {(1, 4, 6, 2, 5, 7, 3, 1)}
{(1), (2)} 2 {{1}, {2}} {(1, 4, 6, 2, 5, 7, 3, 1)} add′

{(1, 3), (2)} 3 {{1, 3}, {2}} {(1, 4, 6, 2, 5, 7, 3)} append′

{(2), (3, 1, 4)} 4 {{2}, {3, 4}} {(3, 7, 5, 2, 6, 4)} append′

{(2, 5), (3, 1, 4)} 5 {{2, 5}, {3, 4}} {(3, 7, 5), (2, 6, 4)} append′

{(3, 1, 4), (5, 2, 6)} 6 {{3, 4}, {5, 6}} {(3, 7, 5), (4, 6)} append′

{(4, 1, 3, 7, 5, 2, 6)} 7 {{4, 6}} {(4, 6)} merge′

Table 2.1: Sample path taken in the strongly balanced recursion tree (𝑛 = 7, 𝑀 ≥ 2) along
with accordingly computed optimum tour. Elements of ℬ𝑚 corresponding to
the nodes are given for illustration purposes.

(i) ad tour reconstruction: even if we assume |𝑁| ≤ 𝑀 = u� (1), potentially reversing
and joining paths in this step cannot be considered a constant time operation, but
still can reasonably be assumed to contribute to time complexity a polynomial factor
only (note that we only need to reconstruct the optimal tour);

(ii) ad memory access: while enumeration of node types (introduced below) yields a
polynomial time collision-free solution to this, in practice we were able to achieve
best results with polynomial hash functions such as

(𝑚, 𝑁) ↦𝑚𝑋2𝑘+1 +
𝑘

∑
𝑖=1

((𝑚 − 𝑎𝑖)𝑋2𝑘−2𝑖+1 + (𝑚 − 𝑏𝑖)𝑋2𝑘−2𝑖
) ,

𝑋 = ⌈log2 𝑛⌉ (𝑁 as above).

Corollary 2.6. Strongly balanced TSP (with maximum node size 𝑀) is polynomially solv-
able.

Proof. Note that with |𝑁| ≤ 𝑀 , each of add′, append′, merge′ can be considered constant
time operation. Seeing how size of recursion tree corresponding to eq. (2.5) necessarily
lies in u� (𝑛2𝑀+1

), memoized computation technique as seen in proof of corollary 2.4
then yields the result.

2.4. Strongly balanced tours and linear time conjecture

It is not impossible that strongly balanced recursion tree as presented here grows in
size only linearly with 𝑛 — which, not counting tour reconstruction, would make time
complexity of our solution to strongly balanced TSP linear as well.

To elaborate on this, we consider the map

𝜒 ∶ (𝑚, 𝑁) ↦ {{𝑚 − 𝑎𝑖, 𝑚 − 𝑏𝑖} ∣ 𝑖 = 1, … , 𝑘} ,

23

8: (6,7)

<6 7>

7: (4,7) (5,6)

<4 8 5> + <6 7>

6: (3,4) (5,6)

<4 8 5> + <6 7 3>

7: (4,6)

<6 8 4>

8: (6,8)

<6 8>

5: (2,5) (3,4)

<2 6 7 3> + <4 8 5>

6: (4,5)

<5 7 8 4>

8: (5,7)

<5 7>

7: (4,5) (7)

<5 7 8 4>

7: (5,7)

<7 8 5>

8: (7,8)

<7 8>

4: (2) (3,4)

<4 8 5 2 6 7 3>

5: (2,4)

<2 6 7 8 4>

7: (4,7) (6)

<4 8 6 7>

6: (2,4) (6)

<4 8 6 7 2>

6: (4,6)

<6 7 8 4>

7: (4,6) (7)

<6 7 8 4>

7: (6,7)

<7 8 6>

3: (1,3) (2)

<3 7 8 5 6 2 4 1>

4: (2,3)

<3 7 8 5 6 2>

7: (5) (6,7)

<6 8 5 7>

6: (3,6) (5)

<6 8 5 7 3>

7: (5,6)

<6 8 5>

5: (2,3) (5)

<3 7 8 5 6 2>

6: (3,5)

<3 7 8 5>

7: (3,5) (7)

<5 7 8 3>

5: (3,5)

<5 8 6 7 3>

7: (5,7) (6)

<5 8 6 7>

6: (3,5) (6)

<5 8 6 7 3>

6: (5,6)

<6 7 8 5>

7: (5,6) (7)

<6 7 8 5>

2: (1) (2)

<1 3 2 6 5 7 8 4 1>

3: (1,2)
<2 6 5 7 8 4 1>

6: (4) (5,6)

<6 7 4 8 5>

5: (2,5) (4)

<2 6 7 4 8 5>

4: (1,2) (4)

<2 6 7 4 8 5 1>

4: (2,4)

<2 6 5 7 8 4>

6: (4,6) (5)

<6 8 5 7 4>

5: (2,4) (5)

<2 6 5 7 8 4>

5: (4,5)

<5 8 6 7 4>

6: (4,5) (6)

<5 8 6 7 4>

1: (1)

<2 1 4 3 7 8 5 6 2>

2: (1,2)

<1 4 3 7 8 5 6 2>

7: (4,5) (6,7)

<4 8 6> + <5 7>

6: (3,6) (4,5)

<4 8 6> + <5 7 3>

5: (3) (4,5)

<4 8 6 3 7 5>

4: (2,4) (3)

<4 8 6 3 7 5 2>

5: (3,4)

<4 8 6 7 3>

6: (3,4) (6)

<4 8 6 7 3>

3: (1,2) (3)

<1 4 3 7 8 5 6 2>

3: (2,3)

<3 6 5 7 8 4 2>

5: (3,5) (4)

<3 6 7 4 8 5>

4: (2,3) (4)

<3 6 7 4 8 5 2>

4: (3,4)

<3 6 5 7 8 4>

5: (3,4) (5)

<3 6 5 7 8 4>

0:

<2 1 4 3 7 8 5 6 2>

Figure 2.6: Strongly balanced TSP recursion tree (𝑀 = 2, 𝑛 = 8).

where (𝑚, 𝑁) is a node of the recursion tree as defined in proposition 2.5 (for such a node,
we call 𝜒 (𝑚, 𝑁) its type). We then recognize following crucial points:

• the correspondence between (𝑚, 𝑁) and (𝑚, 𝜒 (𝑚, 𝑁)) is trivial; hence, if the num-
ber of different node types in the above recursion tree happens to be bounded from
above by some constant K, then total number of nodes in the tree is bounded by
𝑛𝐾 = u� (𝑛);

• while descending the recursion tree, we are adding cities in increasing order; there-
fore (as is quickly verified) each of 𝜒 ∘ add′, 𝜒 ∘ append′, 𝜒 ∘ merge′, evaluated at
(𝑁, 𝑚), can be written in terms of 𝜒 (𝑁) only and hence does not depend on 𝑚;

• ergo, if, for some node size bound 𝑀 , after adding next city in the construction
of the tree in question, the number of different node types did not increase, then
the set of node types has reached a fixed point relative to expansion through all of
add′, append′, merge′, i.e. above conjecture holds true for given 𝑀 .

While we are not aware of a general proof thereof, we have been able to confirm said
conjecture (having computed the number of different node types, shown in table 2.2) for
values of 𝑀 up to 6 — and while this confirms linear tree size for given values of 𝑀 , the
growth behaviour of the constant factor does seem intimidating, reflecting the runtime
behaviour we encountered in practice.

24

𝑀 number of node types 𝑚

1 3 2

2 16 7

3 121 13

4 1074 20

5 10 387 28

6 107 176 37

Table 2.2: Computed maximum number of node types for values of node size limit 𝑀 up
to 6, along with the number of cities 𝑚 at which the fixed point was reached.

2.5. Local search and flowers

To conclude the discussion of theory behind our implementation, it should be noted that
none of the two neighbourhoods as presented above achieve appreciable results as local
search heuristic — to improve on that, we introduce the simple concept of flowers:

Definition 2.4. For 𝑇 ⊆ u�𝑛, 𝑆 ⊆ u�𝑛 define flower over 𝑇 by 𝑆 to be

ℱ (𝑆, 𝑇) ≔ {𝑠𝜏 ∣ 𝑠 ∈ 𝑆, 𝜏 ∈ 𝑇 } ∪ 𝑇

(compare this to definition 1.10).

TSP over such set is then computable via choosing best from no more than |𝑆| + 1
local search results. Also note that whenever 𝑇 induces a neighbourhood, flower over 𝑇
induces one with same centre.

While, as seen in [3], a good extension of pyramidal local search can be achieved via

ℱ (⟨(1 2 ⋯ 𝑛)⟩ , Pyr𝑛) ,

for strongly balanced tours such an extension is not so easy to find, and is left to be seen
as an open question — in our tests, we have not been able to significantly improve on1

ℱ (𝜇 ⟨(1 2 ⋯ 𝑛)⟩ 𝜇−1, SBalMn) with 𝜇 = (… , 5, 3, 1, 2, 4, …)

in this regard.
In our implementation we also refer to permutations from the set 𝑆 above as rotations

of 𝑇 . We also define therein a version of iterated local search which we call adaptive,
wherein we increase the number of considered rotations whenever a stale iteration is
reached.

Now we can turn our attention to technical details of our implementation as well as
practical test results.

1In our tests, we used 𝜇 alongside an ”interleaved” version thereof — see our code for exact rotations
set.

25

3. Implementation
You’re bound to be unhappy if
you optimize everything.

(Donald Knuth)

3.1. Key features

Our choice of programming language fell on Standard ML, which we feel strikes the right
(for this project) balance between expressiveness and convenience and, while being not
too low level a language, can still offer effective execution speed.

The core functionality contained in about 3000 lines of code requires only a Stan-
dard ML environment which implements the smlnj-lib (as provided by the widely
available MLton compiler or SML/NJ) to work1 and can be used

• as standalone executable (compiles via MLton or Poly/ML);

• from a REPL environment (such as SML/NJ or Poly/ML) as shown in Appendix A;

• via shared library interface (built via MLton) as shown in Appendix B.

All code written for this project (along with precompiled MinGW/x86 build) is com-
prehensively documented and available, along with latest version of this document, from
https://bitbucket.org/mad_hatter/rstsp/. Bug reports and pull requests are
welcome.

3.2. Runtime behaviour

Measured single local search running times, shown in fig. 3.1, further confirm our expec-
tations:

• for a fixed maximum node size, strongly balanced search yields runtime behaviour
which looks pronouncedly linear, with a heavy constant factor which increases
approximately tenfold along with by-one increase in node size limit (see figs. 3.1a
to 3.1c);

• pyramidal search, as can be expected of its quadratic complexity nature, exhibits a
decidedly lower growth rate initially, but eventually falls behind strongly balanced
local search — as can be seen in figs. 3.1d and 3.1e.

We would expect breadth-first search or dedicated (possibly machine-generated) im-
plementations of above heuristics to bring notable improvement in this regard.

We did not systematically measure memory consumption behaviour, as running time
was the bottleneck factor in our tests.

1The housekeeping environment – i.e. build, testing, benchmarking and plotting scripts – uses a wider
set of tools all of which are easily obtainable in common GNU/Linux distributions today.

26

https://bitbucket.org/mad_hatter/rstsp/

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40

ti
m

e
 n

e
e
d
e
d
 (

se
co

n
d
s)

problem size

s.b., M = 6
s.b., M = 5
s.b., M = 4

(a) strongly balanced, 𝑀 = 4, 5, 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 n

e
e
d
e
d
 (

se
co

n
d
s)

problem size

s.b., M = 4
s.b., M = 3
s.b., M = 2

(b) strongly balanced, 𝑀 = 2, 3, 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 n

e
e
d

e
d

 (
se

co
n
d

s)

problem size

s.b., M = 3
s.b., M = 2
pyramidal

(c) pyramidal and str. balanced with 𝑀 = 2, 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1000 1500 2000 2500 3000

ti
m

e
 n

e
e
d
e
d
 (

se
co

n
d
s)

problem size

s.b., M = 3
s.b., M = 2
pyramidal

(d) pyramidal falls behind str. balanced (𝑀 = 3)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 6000 6200 6400 6600 6800 7000 7200 7400 7600

ti
m

e
 n

e
e
d
e
d
 (

se
co

n
d
s)

problem size

s.b., M = 4
s.b., M = 3
pyramidal

(e) pyramidal falls behind str. balanced (𝑀 = 4)

Figure 3.1: Measured local search running time. Results presented here have been pro-
duced on a machine running Linux 3.10.17 (x86_64) @ i5-2520M and 8GB of
RAM.

27

Another point we feel needs to be mentioned is that for now, we do not compute
rotations as a set, rather simply iterating given enumerating map — which we have to
consider when evaluating running time measurements in ILS.

3.3. Tour benchmarks

Finally, we present, in fig. 3.2,

• computed tour cost over randomly generated symmetric instances where each ma-
trix entry is sampled independently from (pseudorandom) uniform distribution on
same fixed interval;

• computed tour cost (as quotient to optimum, named tour quality below) and run-
ning time (number of iterations as well as real time needed) of ILS over a set of
TSPLIB instances (sample size 28, instance size under 130, many of them euclidean).

From what little testing this represents, we can reasonably conclude that

• prior to flower extension, none of the two neighbourhoods deliver interesting re-
sults in general case;

• pyramidal tours, thus extended, yield a viable local search heuristic for the TSP;

• strongly balanced tours not so readily do so; it remains to be seen if a good ex-
tension (e.g. via a flower) or a special case where this neighbourhood yields better
results exist.

4. Conclusions
Enough research will tend to
support your conclusions.

(Arthur Bloch)

Having described extension of dynamic programming solutions to special cases of trav-
eling salesman problem from neighbourhoods to iterative heuristics, we have provided
for two such neighbourhoods a working implementation which is general enough to be
readily extendible to other solutions and efficient enough for study of such solutions or
combinations1 of corresponding heuristics.

For the exponential neighbourhood of strongly balanced tours this represents first
practical results; in the process of implementing the solution, we have further confirmed
the linear time conjecture for select few node size limits.

1Also possible with the standalone executable, which provides the option of choosing the starting tour
(which is automatically mapped to given neighbourhood’s centre).

28

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40 45

to
u
r

co
st

problem size

pyramidal (i=1,r=0)
s.b. (M=3,i=1,r=0)

s.b. (M=3, i=200, r=0)
pyramidal (i=200, r=0)
s.b. (M=3, i=200, r=all)
pyramidal (i=200, r=all)

(a) tour cost comparison over random instances: here, 𝑟 denotes max-
imum number of rotations considered, 𝑖 — maximum number of
iterations in ILS

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18
tour quality

pyr. rotated

s.b. (M=2) rotated

s.b. (M=3) rotated

(b) ILS over 28 TSPLIB instances: achieved tour quality

10-3 10-2 10-1 100 101 102 103

time needed

pyr. rotated

s.b. (M=2) rotated

s.b. (M=3) rotated

(c) TSPLIB instances: measured runtime

0 10 20 30 40 50 60
iterations needed

pyr. rotated

s.b. (M=2) rotated

s.b. (M=3) rotated

(d) TSPLIB instances: convergence speed

Figure 3.2: Benchmark results.

4.1. Areas for further research

We shall wrap up our discussion by identifying here briefly just some of tasks and areas
which one could, given time, explore in more detail:

• precompute flowers as sets to guarantee rotations’ uniqueness;

• implement breadth-first search over recursion tree;

• study more flowers (e.g. dependent on node size limit) over strongly balanced
tours;

• implement the interface to and test our neighbourhoods on further metrics and
TSP instances — such as asymmetric ones for pyramidal search;

• generate and benchmark RS-TSP instances;

• benchmark higher node size limits (in strongly balanced search) as well as higher
sized instances;

• study in more detail observed convergence behaviour of ILS heuristics;

• provide for possibility of branch cutting in local search;

• design and implement dedicated bottom-up code generation for s.b. search;

• explore concurrent computation models such as tuple spaces or lightweight (a)syn-
chronous message passing frameworks and their applicability to local search as
seen here — naïve parallelization does not seem to apply well to the recursion trees
we presented;

• …

This concludes our report.

30

Appendices
Appendix A Sample REPL Session

Listing 1: Sample SML code as it could be used in a REPL session.

(**

* Under SML/NJ, issue

* use ”./rstsp/rstsp−smlnj.sml”;
* first.

* Under Poly/ML:

* use ”./rstsp/rstsp−polyml.sml”;
* .

*)

open Utils

structure NSrch : SEARCHES = DefaultSearches(IntNum)

datatype tsplib_inst = datatype TsplibReader.tsplib_inst

val node_size = SOME 0w3

val iter_limit = SOME (IntInf.fromInt 10)

val stale_thresh = SOME (IntInf.fromInt 2)

val rotations = SOME 0w24

val max_flips = SOME (IntInf.fromInt 20)

val options = (max_flips,

SOME (IntInf.fromInt 1),

(iter_limit, stale_thresh, ()),

(iter_limit, stale_thresh, 0w0, rotations, node_size))

structure Search = NSrch.FlipFlopSearch

structure Dist = NatDist

val inst = TsplibReader.readTSPFile ”../../test/data/tsplib/gr17.tsp”

val data = case inst of

EXPLICIT_INSTANCE v => v

| EUCLIDEAN_2D_INSTANCE (xs,ys) => raise Fail ”not here”

| EUCLIDEAN_2D_CEIL_INSTANCE (xs,ys) => raise Fail ”not here”

structure CostCheck = TSPCostFn(Dist)

fun main () =

let

val dist = Dist.getDist data

val size = Dist.getDim data

val search = Search.search size dist NONE true options

val (sol’, stats) = search ()

val (sol_len, sol_fn) = valOf sol’

val sol = sol_fn ()

val _ = print (”*********************************\n”)

val _ = print (” Solution: ” ^ (Search.tourToString sol) ^ ”\n”)

val _ = case stats of

NONE => ()

| SOME (nn, nk, hs) => (

31

print (” Node Types: ” ^ (wordToString nk) ^ ”\n”);

print (” Store size: ” ^ (wordToString nn) ^ ”\n”);

print (”Node hashes: ” ^ (wordToString hs) ^ ”\n”)

)

val _ =

let

val sol_vec = Search.tourToVector sol

val len_val = Dist.Num.compare(sol_len, CostCheck.tourCost data sol_vec) =

EQUAL

val sol_val = TSPUtils.validTour size sol_vec

in

print (” Solution valid: ” ^ (if sol_val andalso len_val then ”yes” else

”NO!”) ^ ”\n”)

end

val _ = print (” Tour cost: ” ^ (Dist.Num.toString sol_len) ^ ”\n”)

val _ = print (”*********************************\n”)

in

()

end

val _ = TextIO.print;

val _ = main ()

Appendix B Shared Library Interface

Listing 2: Shown here is code using our implementation via shared library interface — which can be used
to access its functionality from any programming environment equipped with a foreign function
interface.

#include <stdlib.h>

#include <stdio.h>

#include <inttypes.h>

#include ”rstsp.h”

#ifndef PRIu32

define PRIu32 ”u”

#endif

#ifndef PRIi64

if __WORDSIZE == 64

define PRIi64 ”li”

else

define PRIi64 ”lli”

endif

#endif

int64_t dst(uint32_t i, uint32_t j) {

return i+j;

}

void print_tour(uint32_t *tour, uint32_t size) {

32

int i;

for(i=0; i<size+1; i++) {

printf(”%” PRIu32, tour[i]+1);

if(i<size) printf(” ”);

}

printf(”\n”);

}

int main(int argc, const char **argv) {

/**

* Yes, this is important.

*/

rstsp_open(argc, argv);

uint32_t prob_size = 10;

/**

* We do not want want to deal with structure alignment for different

* platforms, hence a call to search function shall yield:

* − a pointer to tour cost (int64);

* − a pointer to tour array (zero−based, closed cycle, word32)

* all packed in a pointer array.

*/

Pointer *result;

/**

* We also want to avoid having to manually manage memory, therefore only

* basic searches −− not their combinators −− are exposed through the library.

*

* This computes optimal pyramidal tour, writing a dot trace if so desired.

*/

char *dotfilename = NULL;

int64_t *cost;

uint32_t *tour;

result = (Pointer *)rstsp_pyr_search(prob_size, *dst, dotfilename);

if(result) {

cost = (int64_t *)result[0];

tour = (uint32_t *)result[1];

printf(” > Pyramidal tour: ”);

print_tour(tour, prob_size);

printf(” > Tour cost: %” PRIi64 ”\n”, *cost);

free(tour);

free(cost);

free(result);

}

/**

* Optimal strongly balanced tour; max_width : node size limit.

*/

uint32_t max_width = 3;

result = (Pointer *)rstsp_sb_search(prob_size, *dst, max_width, dotfilename);

if(result) {

cost = (int64_t *)result[0];

33

tour = (uint32_t *)result[1];

printf(” > SB tour: ”);

print_tour(tour, prob_size);

printf(” > Tour cost: %” PRIi64 ”\n”, *cost);

free(tour);

free(cost);

free(result);

}

/**

* Iterative pyramidal search which considers up to ((n+1) div 2) rotations in each

* iteration.

*/

uint32_t max_iters = 10;

uint32_t stale_iters = 3;

uint32_t max_rots = prob_size−1;
result = (Pointer *)rstsp_iter_pyr_search(prob_size, *dst, max_iters, stale_iters,

max_rots);

if(result) {

cost = (int64_t *)result[0];

tour = (uint32_t *)result[1];

printf(” > Pyramidal/iter/rot tour: ”);

print_tour(tour, prob_size);

printf(” > Tour cost: %” PRIi64 ”\n”, *cost);

free(tour);

free(cost);

free(result);

}

/**

* Iterative strongly balanced search, flower size 2*((n+1) div 2).

*/

max_rots = 2*prob_size;

result = (Pointer *)rstsp_iter_sb_search(prob_size, *dst, max_width, max_iters,

stale_iters, max_rots);

if(result) {

cost = (int64_t *)result[0];

tour = (uint32_t *)result[1];

printf(” > SB/iter/rot tour: ”);

print_tour(tour, prob_size);

printf(” > Tour cost: %” PRIi64 ”\n”, *cost);

free(tour);

free(cost);

free(result);

}

/**

* A variation of the above where number of considered rotations grows at

* stale iterations (which we call adaptive).

*/

uint32_t min_rots = 0;

result = (Pointer *)rstsp_ad_sb_search(prob_size, *dst, max_width, max_iters,

stale_iters, min_rots, max_rots);

if(result) {

34

cost = (int64_t *)result[0];

tour = (uint32_t *)result[1];

printf(” > SB/adaptive tour: ”);

print_tour(tour, prob_size);

printf(” > Tour cost: %” PRIi64 ”\n”, *cost);

free(tour);

free(cost);

free(result);

}

/**

* A variant combining, in alternating, or flipflop, manner, adaptive s.b. &

* iterative pyramidal searches.

*/

uint32_t max_flips = 0;

result = (Pointer *)rstsp_ff_search(prob_size, *dst, max_width, max_iters,

stale_iters, min_rots, max_rots, max_flips);

if(result) {

cost = (int64_t *)result[0];

tour = (uint32_t *)result[1];

printf(” > SB/flipflop tour: ”);

print_tour(tour, prob_size);

printf(” > Tour cost: %” PRIi64 ”\n”, *cost);

free(tour);

free(cost);

free(result);

}

/**

* Since SML offers garbage collection, the library should be clean from leaks in

* userspace. Please note that valgrind has issues with mlton’s memory management

* and reports lots of invalid memory accesses. These messages should be harmless

−−
* we might one day also supply a valgrind whitelist.

*/

rstsp_close();

return 0;

}

35

References

[1] Fazle Baki and Santosh N. Kabadi. «Pyramidal traveling salesman problem». In:
Computers & Operations Research 26.4 (1999), pp. 353–369.

[2] Rainer E. Burkard et al. «Well-Solvable Special Cases of the Traveling Salesman
Problem: A Survey». In: SIAM Rev. 40.3 (Sept. 1998), pp. 496–546. issn: 0036-1445.
doi: 10.1137/S0036144596297514. url: http://dx.doi.org/10.1137/
S0036144596297514.

[3] J. Carlier and P. Villon. «A New Heuristic for the Traveling Salesman Problem». In:
Revue française d’automatique, d’informatique et de recherche opérationnelle (1990).
url: http://www.numdam.org/item?id=RO_1990__24_3_245_0.

[4] Vladimir G. Deineko, Bettina Klinz, and Gerhard J. Woeginger. «Four Point Condi-
tions and Exponential Neighborhoods for Symmetric TSP». In: SODA (2006), pp. 544–
553.

[5] Vladimir G. Deineko et al. «Four-point conditions for the TSP: The complete com-
plexity classification». In: Discrete Optimization 14 (2014), pp. 147–159.

[6] P. C. Gilmore, Eugene L. Lawler, and D. B. Shmoys. Well-solved Special Cases of the
Traveling Salesman Problem. Tech. rep. UCB/CSD-84-208. EECS Department, Uni-
versity of California, Berkeley, 1984. url: http://www.eecs.berkeley.edu/
Pubs/TechRpts/1984/5922.html.

[7] Richard M. Karp. «Reducibility among combinatorial problems». In: Complexity of
Computer Computations. Ed. by R. E. Miller and J. W. Thatcher. Plenum Press, 1972,
pp. 85–104.

36

http://dx.doi.org/10.1137/S0036144596297514
http://dx.doi.org/10.1137/S0036144596297514
http://dx.doi.org/10.1137/S0036144596297514
http://www.numdam.org/item?id=RO_1990__24_3_245_0
http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5922.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5922.html

	Introduction
	Basic definitions and notation
	Exponential neighbourhoods and local search
	Tours and permutations
	Tour sets as neighbourhoods

	Theory
	Pyramidal tours
	Recursion and complexity
	Strongly balanced tours
	Strongly balanced tours and linear time conjecture
	Local search and flowers

	Implementation
	Key features
	Runtime behaviour
	Tour benchmarks

	Conclusions
	Areas for further research

	Appendix Sample REPL Session
	Appendix Shared Library Interface
	References

