
A Dynamic Multimodal Route 
Planner for Rome

Luca Allulli

Damiano Morosi

Roma Servizi per la Mobilità



Public transport (PT) in Rome

Roma Servizi per la Mobilità: transport agency, in charge of

• Planning (transport network, timetable, PT contructions, etc.)
• Providing information to users (news, real-time info, etc.)

• Other services

Atac: operator of PT lines:

• Most bus lines
• Tram, trolleybus

• Underground
• Urban railways
• Ticket

RomaTPL: operator of PT lines (privately-owned):

• Bus lines



Muoversi a Roma/1

• “Moving in Rome”: service operated 
by the Mobility Center of the Agency

• Website for mobile phones,
since 2007

• Real-time information about
public and private transport in Rome



Muoversi a Roma/2

• Waiting times at bus stops: our killer 
application

• Real-time data from GPS bus trackers
• "This service would be (almost) 

useless in Germany", where buses 
run on schedule

• Fact: PT in Rome is different

– ...what about route planner?



Dijkstra's algorithm on a layered graph

Road network (walking and biking)

Public transport network

• Bus/tram/trolleybus

• Underground

• Urban railways

• Regional railways

Car pooling (experimental)

Every layer is connected to and from road network



Road network (walking and biking)

• Road graphRoad graphRoad graphRoad graph:
– OldOldOldOld: OpenStreetMap with CC-BY-SA license

• But: license changed to ODbL: "If you publicly use [...] 
works produced from an adapted database, you must also 
offer that adapted database under the ODbL"

– NewNewNewNew: TomTom MultiNet (Tele Atlas)
• Cost model for walkingwalkingwalkingwalking:

– OldOldOldOld: walking time
• But: walking is often competitive wrt PT

– NewNewNewNew: unit cost increases as the user gets "tired“ (HowHowHowHow?)
• Cost model for bikingbikingbikingbiking: biking time + number of turns; user-

defined maximum biking distance



Node context

• Each visited node n has a context cn
• cn: dictionary containing additional information about the 

shortest path up to node n; such as:
– walking distance (so far)
– biking distance (so far)
– modal switches (bike left), etc.

• When n is visited, context is «propagated» and updated
from its predecessor pred(n). Let e = (pred(n), n):
– e.update_context(options)



Public Transport - Road connection

..

.
..

.

Bus stop

waiting node

Road edge

Bus waiting edge

Bus ride edge

..

.

..

.

..

.

Road network layer

PT layer

Road-PT connection

Time-dependant model

Bus stop

ride node



Public Transport – Several lines

..

.
..

.

Line 1

Road edge

..

.

..

.

..

.

Road network layer

PT layer

Road-PT connection

Time-dependant model

..

.
..

.

Line 2



Public Transport - Dynamic costs
• Each edge object has a method:

get_cost(time, options)

– time: arrival time at source node (current 
tentative "distance" by Dijkstra's algo)

– options: parameters for the route planner
(e.g., walking speed)

• Cost for bus waiting edges:
– Waiting time for catching first arriving bus,

if real-time data available
– Average waiting time from historic data or 

schedule, otherwise
• Cost for bus ride edges:

– Use traffic speed, if real-time data
– Use historic speed,

otherwise



Bus trackers in Rome (AVM)
• Originally installed to monitor monitor monitor monitor 

operatorsoperatorsoperatorsoperators
• Atac: agency, owner of the system
• Trambus, Roma TPL: operators

• Later, extended to provide waiting waiting waiting waiting 
timestimestimestimes at phisical bus stops
• Black box: only one method:

get_arrivals(stop_id)
• Now:

• RSM is the new agency
• Atac is an operator, but still owns 

the system
• Roma TPL sends data to Atac

AVM

RomaTPL

AVM

Trambus

InfoTP

Atac

AVM

Atac

MaR

(RSM)



Querying last stop to determine bus 
positions 

S1 S2 S3 Sn-1 Sn

Bus 2323: 7 stops, 1500 m, 12’

Bus 2324: 8 stops, 1650 m, 14’

Bus line

What’s next:

Determine «average speed» of each edge

in order to forecast ride duration

and arrivals at bus stops



From AVM samples to edge speed

t

x
P

Bus 1

Bus 2

∆ x
i

∆ t
i

R
i

R
i− 1

t
max

x
max

 − x
max

v̄=
 ∑

r ∈ R
w

i
v

i

 ∑
r ∈ R

w
i

w
i
=1 −

x
i

xmax

 −
t

i

tmax

v
i
=

x
i
 − x

i− 1

ti − ti− 1



Interesting byproducts…

• Development of an internal 
real-time view of PT state

– Recompute waiting times 
(better quality predictions than 
InfoTP) and

– Give them in other forms (such 
as, schedule-like form)

– Provide traffic information
– Collect historical data, 

compute statistics
• Now RomaTPL sends (high 

quality) GPS data directly to 
the Agency



Public Transport – Several cost models
• Bus, tram, trolleybus

– Data from bus trackers
– Statistics (in each time band)
– Frequency from schedule

• Underground, urban railways

– Frequency from schedule
– Journey time from schedule/heuristics

• Regional railways

– “Classic” schedule
• Cost != time

– Penalization for each modal switch
– Smaller cost if user gets on bus at bus 

terminus
– Walking: increasing cost

factor when user is tired



From a Prototype to a Service
• Very small Very small Very small Very small development team

– In charge of several projects
• Solution: incrementalincrementalincrementalincremental approach

– Working prototypeprototypeprototypeprototype
– High-level programming language 

(PythonPythonPythonPython)
– RefactorRefactorRefactorRefactor often, never throw away
– ProfileProfileProfileProfile and Optimize: core of 

Dijkstra’s algorithm in CythonCythonCythonCython
• Python partially compiledcompiledcompiledcompiled in C
• Priority queue Priority queue Priority queue Priority queue completely 

compiled
• Main loopMain loopMain loopMain loop partially compiled
• Cost functionsCost functionsCost functionsCost functions:

Pure Python



Dijkstra’s implementation: tips and tricks/1

• Separate graph representation from 
Dijkstra’s data structures
– Each node has an index i
– Keep variables for Dijkstra’s algorithm 

(tentative distance, predecessor etc.) 
in an array

– Several instances of Dijkstra’s
algorithm running in parallel with small 
memory overhead

– “Emulate” several, connected copies of 
the same graph in a single 
computation (see later)

ni
njeij

i-1 i-1 i+1

……
• predi1

• contexti1
• versioni1

i-1 i-1 i+1

……
• predi2

• contexti2
• versioni2

Array for instance 1

Array for instance 2



Dijkstra’s implementation: tips and tricks/2

• Don’t reset variables attached to nodes
– add an extra variable to each node n: version[n]
– version: global counter of Dijkstra’s computations
– when a node n is reached for the first time during a 

computation, version[n] < version



Car Pooling

• Idea: when a user offersoffersoffersoffers a ride, 
his path is inserted in the graph, 
in the carpooling layer
– Path is computed through an 

(adjustable) private transport private transport private transport private transport 
route plan

• When a user looks for a ride, he 
performs a route planner queryroute planner queryroute planner queryroute planner query. 
Route planner uses all the graph 
layers: walking/biking, car pooling 
and (optionally) public transport 
(intermodal car pooling)



s-t path through a POI

• «I want to buy a CD 
on the way homeon the way homeon the way homeon the way home: find
the most convenient
music store»

• Instead of building 2 
copies of the graph, 
use two PQ’s (and 2 
sets of Dijkstra’s
variables) to keep
track of 

t

s

POI’s

Road +

PT graph

(after

POI visit)

Road +

PT graph

(before

POI visit)



Building output/1
• Several kinds of output: textual

directions, javascript map, etc.
• Build an abstract tree representation of 

the path:
• RootNode

– WalkingNode 1
• WalkingEdgeNode 1
• WalkingEdgeNode 2

– BusNode 1
• BusWaitingNode
• BusRideNode 1
• BusRideNode 2
• …

Path in

graph

Path as

a tree

Javascript

Map

Textual

directions



Building output/2

• From graph to path tree
– Traverse s-t path. Each node and 

each edge provides a method:
build_pathbuild_pathbuild_pathbuild_path((((tree_nodetree_nodetree_nodetree_node, , , , path_optionspath_optionspath_optionspath_options))))

-> tree_node
– Start from RootNode. 

• From path tree to final output
– Register «formatters» for each type of 

tree node (BusNode, WalkingNode
etc.) and kind of output

– Perform a DFS of the tree, invoking
appropriate formatters

Path in

graph

Path as

a tree

Javascript

Map

Textual

directions


