A Dynamic Multimodal Route
Planner for Rome

Luca Allulli
Damiano Morosi

Roma Servizi per la Mobilita

ROMA [3] mobilita

Public transport (PT) in Rome

mobilita Roma Servizi per la Mobilita: transport agency, in charge of

 Planning (transport network, timetable, PT contructions, etc.)
 Providing information to users (news, real-time info, etc.)
 Other services

Atac: operator of PT lines:

* Most bus lines

» Tram, trolleybus
» Underground

» Urban railways
* Ticket

RomaTPL: operator of PT lines (privately-owned):

Muoversi a Roma/i

muoversiaroma.it

 “Moving in Rome”: service operated
by the Mobility Center of the Agency

« Website for mobile phones,
since 2007

* Real-time information about
public and private transport in Rome

Muoversi a Roma/2

muoversiaroma.it

27/06/132 16:43

Overview: first arrivals by line

34: Not monitored
(T): 7 Bus stops (13")

Find a route from here to:

Waiting times at bus stops: our killer
application

Real-time data from GPS bus trackers

"This service would be (almost)
useless in Germany", where buses
run on schedule

Fact: PT in Rome is different

— ...what about route planner?

Dijkstra's algorithm on a layered graph

Car pooling (experimental)

Public transport network
» Bus/tram/trolleybus

s « Underground
 Urban railways
y, * Regional railways

Road network (walking and biking)

Every layer is connected to and from road network

H

Road network (walking and biking)

* Road graph:
p — Old: OpenStreetMap with CC-BY-SA license

« But: license changed to ODbL.: "If you publicly use [...]
works produced from an adapted database, you must also
offer that adapted database under the ODbL"

i — New: TomTom MultiNet (Tele Atlas)
« Cost model for walking:
@ — 0Old: walking time
_ « But: walking is often competitive wrt PT
— New: unit cost increases as the user gets "tired” (How?)

ﬁ - Cost model for biking: biking time + number of turns; user-
defined maximum biking distance

H

Node context

» Each visited node 7 has a context ¢,

» ¢, dictionary containing additional information about the
shortest path up to node 7, such as:
— walking distance (so far)
— biking distance (so far)
— modal switches (bike left), etc.

 When nis visited, context is «propagated» and updated
from its predecessor pred(n). Let e = (pred(n), n):

— e.update_context(options)

H

Public Transport - Road connection

Time-dependant model

Bus stop
ride node
PT layer
Bus ride edge y
Bus waiting edge Road-PT connection

Bus stop
waiting node

Road edge Road network layer

Public Transport — Several lines

Time-dependant model

PT layer

Road-PT connection

Road edge Road network layer

Public T(anspgrt - Dynamic costs

4 N .* [Each edge object has a method:

e
G ¢ get_cost(time, options)
E — time: arrival time at source node (current
] Veteolo 7548 T— tentative "distance"” by Dijkstra's algo)
¥ 17:46: Nemorense/Acilia
Bk bas s ‘ — options: parameters for the route planner

17:50: Vescovio

(e.g., walking speed)
. » Cost for bus waiting edges:

£ I% — Waiting time for catching first arriving bus,
i;% vigiiano <® 2 If real-time data available
5 — Average waiting time from historic data or
schedule, otherwise

« Cost for bus ride edges:

f”
58

Bed and Breakfasts,
A Casadi Tiziana

Via Risagng
@?'I,E,'ﬂl-"l"ut’ ':‘:'.:9 . . .
T %y — Use traffic speed, if real-time data
S o . :
& 3 F g y — Use historic speed,
SN e - otherwise

Bus trackers in Rome (AVM)

« Originally installed to monitor

operators
- - E & & « Atac: agency, owner of the system
L L N Trambus, Roma TPL.: operators
Ro'ro‘nval\#PL AVM } » Later, extended to provide waiting
Atac times at phisical bus stops

« Black box: only one method:
get_arrivals(stop_.id)

I + Now:
« RSM is the new agency

« Atac is an operator, but still owns
the system

« Roma TPL sends data to Atac

Querying last stop to determine bus
positions

Bus 2323: 7 stops, 1500 m, 12
Bus 2324: 8 stops, 1650 m, 14’

@ QO—E-O @ *—>

S, S, S, S S, Bus line

What's next:
Determine «average speed» of each edge
In order to forecast ride duration
and arrivals at bus stops

H

From AVM samples to edge speed

Interesting byproducts...

: _ Development of an internal
Select a bus stop or a vechicle. i i
. Termini (MA-MB-FS) real-time view of PT state

:-- —- Volturno/Cernaia

713PM Porta Pia — Recompute waiting times

7:18 PM Nomentana/Regina Margherita : T
722 PM Nomentana/ Trieste (better quality predictions than

7:23 PM Nomentana/Villa Torlonia InfoTP) and
7:24 PM Nomentana/Gorizia

7:25 PM Nomentana/XXI Aprile — Give them in other forms (such
7:26 PM Nomentana/S. Agnese :
7:28 PM Nomentana/Asmara as, SChedUIG-Ilke form)

7:30 PM Batteria Nomentana

7:31 PM Nomentana/Val D'aosta — Provide traffic information

tana/Val D'ossola

7:33 PM Sempione — Collect historical data,

7:37 PM Adriatico/Lampedusa ‘oti
7:38 PM Vigne Nuove/Monte Gennaro COmpUte StﬁtlSthS

7:41 PM Isole C E .
e e « Now RomaTPL sends (high

alto/Bonomi

7:46 PM Vime teneo Salesiano quality) GPS data directly to

7:51 PM Talli/Benti Bulgarelli
7:55 PM Labia the Agency

Public Transport — Several cost models

o3 Yoo - Bus, tram, trolleybus
= o2 . ;
< ge1 G093 £ — Data from bus trackers
E — Statistics (in each time band)
Veicolo 7546
L Ico cheryg;, - F f h d I
9 17:46: Nemorense/Acilia requency rom schedule

17:49: Priscilla
17:50: Vescovio

* Underground, urban railways
— Frequency from schedule

® s — Journey time from schedule/heuristics
& @@? e . .
“iig g %« Regional railways
%] 11 . b2
& % — “Classic” schedule
g s ¢ Cost !=time
m Via Bisagro — Penalization for each modal switch
gne,'j-‘u b , .
i & Y — Smaller cost if user gets on bus at bus
A AN e terminus
4‘5“ e N
L. 0% AN 3 — Walking: increasing cost

factor when user is tired

From a Prototype to a Service

muoversiaroma.it

* Very small development team
L — In charge of several projects

From Piazzale Aldo Moro (Roma) to Stazione Termini (Roma
« Solution: incremental approach
Rt;.;l time ti};;ctions _ Worklng prOtOtype
IR oz o wore — High-level programming language

:39 pM [CEDICTTD)

walk (Python)
wam 320 meters (5 minutes)
- : — Refactor often, never throw away
(B.l;: Et?ﬁn:l:;:srﬂtﬂfﬂlnﬂeronﬂutlca(ifﬂﬁg?)] o
s — Profile and Optimize: core of

= Line 310 dest. Termini (MA-MB-FS) (Exclude)

<. Arriving after less than 1 minute Dljkstra’s algorlthm In Cython

For 4 stops (8 minutes)

Bus stop MB-FS) (82134) » Python partially compiled in C

%y X | (Map) (I'm here

walk * Priority queue completely

ve map

wam 120 meters (2 minutes) com pi | e d
Fﬂq azione Termini . . .
oW et « Main loop partially compiled

};ﬁ{;ﬁl time: 15 minﬂtﬁs e Cost functions:
TR ' Pure Python

Dijkstra’s implementation: tips and tricks/1

no e 2/ Separate graph representation from
Dijkstra’s data structures

. — Each node has an index /
Array for instance 1

. pred, — Keep variables for Dijkstra’s algorithm
* contexty (tentative distance, predecessor etc.)
* version, :

: in an array

— Several instances of Dijkstra’s
algorithm running in parallel with small
memory overhead

-1 AT

Array for instance 2

* pred, “ ” .
. contéxt,-z — “Emulate” several, connected copies of
© YePTe the same graph in a single

-1 -1 +1 computation (see later) r

Dijkstra’s implementation: tips and tricks/2

 Don’t reset variables attached to nodes
— add an extra variable to each node r7. version[n]
— version: global counter of Dijkstra’s computations

— when a node nis reached for the first time during a
computation, version[s] < version

H

Car Pooling

» |dea: when a user offers a ride,
his path is inserted in the graph,

Da ogaqgi il . .
W cerca percorso In the carpooling layer
=——l € anche a misura _
di car pooling — Path is computed through an
(adjustable) private transport
mobilita_ i route plan

oma F carpooling

 When a user looks for a ride, he
performs a route planner query.
Route planner uses all the graph
layers: walking/biking, car pooling
and (optionally) public transport
(intermodal car pooling)

IIIIIIIIIIIIIIIIIIIIIIIIIIII:IIHII...I

s-t path through a POI

Road+ ¢ «l wantto buya CD
(F;tgrraph on the way home: find
POlvisity the most convenient

music store»
 Instead of building 2

\] copies of the graph,
POI
/ s = / > use two PQ’s (and 2

sets of Dijkstra’s

t

Road + variables) to keep
PT graph track of

(before rack o

POl visit)

I

Building output/1

Several kinds of output: textual

{ Path in 1 directions, javascript map, etc.
graph « Build an abstract tree representation of
the path:
 RootNode
{ Path as } — WalkingNode 1
a tree .
« WalkingEdgeNode 1
« WalkingEdgeNode 2
— BusNode 1
Javascript Textual * BusWaitingNode
Map directions « BusRideNode 1

 BusRideNode 2

Building output/2

Path in * From graph to path tree
{ graph } — Traverse s-t path. Each node and
each edge provides a method:
build_path(tree_node, path_options)
S -> tree_node
ath as
{ 4 tree } — Start from RootNode.

* From path tree to final output
— Register «formatters» for each type of
tree node (BusNode, WalkingNode
[Javascrith { Textual J etc.) and kind of output

Map diréctions — Perform a DFS of the tree, invoking
appropriate formatters

H

