
ZU064-05-FPR paper 13 January 2015 1:38

Under consideration for publication in J. Functional Programming 1

Structure, Semantics and Speedup:
Reasoning about Structured Parallel Programs

using Dependent Types

David Castro, Kevin Hammond, Edwin Brady and Susmit Sarkar
School of Computer Science, University of St Andrews, St Andrews, UK.

Abstract

Despite the increasing importance of multi-core/many-core computers, much treatment of parallel
programming is still very informal. There is a clear need for a formal, language-level treatment of
parallelism that marries high-level abstractions with strong reasoning. This paper explores the use
of dependent types to capture the structure, semantics and execution costs of structured parallel
programs, so enabling formal reasoning about their behaviour and speedups. We use algorithmic
skeletons to structure parallel programs, lifting the program structure and functionality into a
dependent type. This allows us to reason about the functional equivalence of differently structured
parallel programs at the type level. By providing an operational semantics for skeletal programs, we
can derive a formal cost model for a program. We have proved the soundness of our operational
semantics against the denotational semantics, and that of the cost model against the operational
semantics, implementing the relations and associated proofs in the Idris dependently-typed language.
We have verified the accuracy of the formal cost models against real program executions, showing
that they have good predictive power for our parallel skeleton implementation, despite lacking some
details. We are thus able to reason at the type level about alternative parallel implementations in
terms of their expected execution costs, and therefore to produce provably optimal parallel programs
with respect to the formal cost model, which have good and predictable actual parallel behaviour.

1 Introduction

This paper studies the use of dependent types for reasoning about the performance and
functionality of structured parallel programs. The main advantages of structured parallel
approaches are that: i) they permit “parallelism by construction”, avoiding many problems
associated with typical concurrency mechanisms, such as unmatched communication pairs
(e.g. deadlock, race-conditions, communication failure); ii) they support higher-level (but
still, typically, informal) reasoning; and iii) it is possible to associate (again, usually
informally derived) cost models with specific parallel structures. A classic example of a
structured approach is Google’s map-reduce pattern, where parallel programs are defined
in terms of independent (and so parallelisable) map operations whose results are then
combined (reduced) into simpler forms (also, perhaps, in parallel). In this paper, we will
use nested algorithmic skeletons (Cole, 1989): parametric implementations of common
patterns of parallelism that decouple an algorithm and its parallel structure, and that are
usually described in terms of higher-order functions.

Although structured approaches guide the programming process, it is still often difficult
to choose the right parallel structure, i.e. one that provides reasonable (and preferably
optimal) speedups over the original, sequential program. While algorithmic skeletons allow
us to create reasonably predictable cost models (Pelagatti, 1998; Caromel & Leyton, 2007;



ZU064-05-FPR paper 13 January 2015 1:38

2 David Castro et al.

s !

s !

σ!

CM !

~

·

λ* !s ! s ! ‘

λ* !

C(λ*) !

 ⟦·⟧!
⟦s⟧ !

cost(σ) !

Structured Parallel 
Programs 

Denotational Semantics 

Operational Semantics 

Soundness 

Parallel 
Structure 

Cost Calculus 

Trace Cost 

Structural 
Equivalence 

Cost 
Models 

Labelling/
Erasure 

Labelled State 
Transitions 

fs !

Stateful 
Expressions 

Soundness 

Fig. 1. A Structured Parallel Semantics Approach.

Brown et al., 2013), these cost models are usually derived in a non-rigorous way using
e.g. simple profiling techniques, and so lack reasoning and analytical power. What is
needed is a source-derived, systematic and formally-motivated approach to determining,
a-priori, the execution costs and predicted speedups of structured parallel programs. Given
suitably strong semantic models, we aim for an automated system that can suggest the best
parallelisations for some program, and that can even rewrite it to an equivalent form that
offers the best parallel performance. Our key enabling technology is a dependently-typed
metalanguage that encapsulates a program’s semantics, encoding both correctness and cost
properties directly into our program types. We use Idris (Brady, 2013a), a full-spectrum
dependently-typed programming language that has been previously used to reason about
concurrency, state and other effects (Brady & Hammond, 2012; Brady, 2013b).

Figure 1 provides an overview of the approach that we will adopt in this paper. Structured
parallel programs (s ∈ S) can be given a denotational semantics that describes their result
as a function over a stream of inputs, JSK. They can also be given a trace-based operational

semantics, which we derive in two stages, s ∈ S (stateful expressions) and λ ∗−→ (labelled
state transitions). We prove the soundness of the operational semantics with respect to
the denotational semantics. We can also derive the structure, σ , of the parallel program
from s using the structural equivalence relation, vfs, which exposes the functionality of the
program, fs, as defined by the denotational semantics for fs, JfsK. Using our cost calculus,
cost, we can produce a cost model, CM for s. Finally, we prove the soundness of the cost
models against the operational semantics, so completing the commuting diagram.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 3

1.1 Example: Introducing Parallelism in Image Convolution

Consider a program that computes the convolution of a kernel and a stream of input images.
We break this down into two stages: read and process. The first stage parses the input data
and prepares the image for the second stage, which does the actual image convolution.

imageConv : Par ICstruct Data Img
imageConv = skel [read, process]

read : Data -> Img
read = ...

process : Img -> Img
process = ...

ICstruct : Struct
ICstruct = ...

Here, imageConv is a structured (parallel) program, which is defined as a skeleton over the
read and process operations. Its type describes the parallel structure of the convolution
as a value of type Struct, ICstruct, and gives the types of the input and output values.
The skel function constructs a streaming program from the operations, and ensures that it
complies with the type-level description of the parallel structure, ICStruct.

One of the key elements of our technique is the use of the type-level Struct datatype
to abstract over possible parallelisations. Alternative parallelisations will differ only in the
type-level annotation, i.e. they will conform to a different instance of Struct. By indexing
the type of the structured parallel programs on values of the Struct type, we provide a
way to determine whether any program whose structure is s1 : Struct is convertible to
a functionally equivalent program whose structure is s2 : Struct. Moreover, by enabling
cost models to be formally derived from the operational semantics of the structured parallel
programs, we provide a way to compare any two instances of Struct for any given
architecture. Assuming that the cost model is sufficiently strong, this then allows us to
derive provably optimal parallel programs with respect to that cost model.

For example, given an architectural description of type Arch, we can use Idris to
determine the costs of different parallel structures ICstruct1, ICstruct2 etc.

*ImageConv> cost ICStruct1 uigeadail
2.6497046830091544e-2 : Float

*ImageConv> cost ICStruct2 uigeadail
2.1614735088512402e-2 : Float

We can then determine, at the type level, which parallel structure has the least cost, so
allowing us to reason about the parallel performance of our program through its type.

*ImageConv> cost ICStruct2 uigeadail < cost ICStruct1 uigeadail
True : Bool



ZU064-05-FPR paper 13 January 2015 1:38

4 David Castro et al.

1.2 Novel Contributions

The main novel research contributions of this paper are:

• We derive an operational semantics for fundamental parallel skeletons in terms of
synchronisation and communication primitives over lock-based queues, and prove
the correspondence between our type-level structures and their implementation;
• Based on this operational semantics, we produce a dependently-typed cost model for

these skeletons, and by instantiating this with the execution costs of actual machine
instructions, we encode actual execution costs in the program types; and
• We use type-based reasoning over execution costs to choose the best instantiations

of each skeleton, and so to choose the best overall parallel structure and speedup for
a given program in terms of a specific cost model.

For the first time, we provide a description of the structure of a parallel program in terms
of dependent types. We represent parallelism at the type-level, and we show that this
can be used to capture a typical set of parallel skeletons. Our cost models and semantics
represent the first fully-formal semantics for algorithmic skeletons of which we are aware,
in terms of the low-level constructs that are used to implement them1. Earlier work on
the semantics of skeletons does not capture low-level details about communication and
synchronisation of skeletons. Moreover, unlike much earlier work, we are not restricted
to highly-regular data parallelism, but also consider fundamental task parallel constructs.
Our cost models accurately2 predict a tight upper bound on overall execution time and a
tight lower bound on speedups for a number of example programs. The full source code
of our implementation plus the full proofs described in the paper are available online at
https://bitbucket.org/david_castro/idris_skel.

2 Structure

2.1 Algorithmic Skeletons

Algorithmic skeletons abstract common patterns of parallelism, providing a clear
separation between an algorithm and its parallel structure. Skeletons can be
classified as data-parallel, task-parallel or resolution skeletons, depending on their
functionality (González Vélez & Leyton, 2010). Data-parallel skeletons derive their
parallelism from the structure of the data that they operate over. For example a parallel
map skeleton can apply its function argument in parallel to all elements of a collection
type3. In the best cases, data-parallelism can give rise to massive amounts of easily detected
parallelism. However, data-parallel operations are often quite simple, and it may therefore
be necessary to group multiple data items into a single task, for example, in order to
obtain acceptable performance. Task-parallel skeletons implement less regular patterns of
parallelism, often derived from the structure of the program, rather than from the data. For
example, a parallel pipeline skeleton can be introduced to replace a composition of two
or more functions. Finally, resolution skeletons describe parallelism for a generic family
of problems, such as the divide & conquer skeleton. In this paper, we focus on four basic,
nestable task-parallel skeletons (shown diagrammatically in Figure 2).

1 Here, exemplified by lock-based queues and the associated operations.
2 Though not completely perfectly, as we will see in Section 7.
3 Provided the data structure has already been fully constructed and/or the elements are independent.

In Haskell, for example, this might impose a strictness requirement on the argument list.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 5

f	  …,	  x5,	  x4,	  x3	   f	  x2,	  f	  x1,	  f	  x0	  	  

(a) Func: Atomic Computations

f	   g	  
…	  
x3	  
x2	  

g	  (f	  x1)	  
g	  (f	  x0)	  

(b) Seq: Sequential composition

f	   g	  
…	  
x9	  
x8	  

g	  (f	  x1)	  
g	  (f	  x0)	  

f	  x5	  
f	  x4	  

g (f x2) f x6 

f x3 x7 

(c) Pipe: Parallel Pipeline

f	  

f	  

… 

f	  

…,	  x10,	  x9,	  x8	  

x6 

x7 

x5 

f x3 

f x2 

f x4 

f	  x0,	  f	  x1,	  …	  

(d) Farm: Parallel Task Farm

Fig. 2. The Four Basic Algorithmic Skeletons used in this paper.

a) Func – a wrapper for atomic computations, encapsulated into a streaming skeleton.
Given a function f : A→ B, we can define the skeleton Func f : Stream A → Stream B.

b) Seq – the sequential composition of two skeletons. Given two skeletons, s1 :
Stream A → Stream B and s2 : Stream B → Stream C, wrapping functions f and g,
respectively, the skeleton Seq s1 s2 : Stream A→ Stream C applies g ◦ f to all elements
of the input stream.

c) Pipe – the parallel composition of two skeletons, as a 2-stage pipeline, also computing
g ◦ f , but unlike Seq, Pipe s1 s2 is defined to execute s2 on input i in parallel with s1 on
input i+1.

d) Farm – skeleton replication using a task farm. Given the skeleton s : Stream A →
Stream B, computing f , the skeleton Farmnws : Stream A→ Stream B creates nw instances
of f , running in parallel on separate elements of the shared input stream.



ZU064-05-FPR paper 13 January 2015 1:38

6 David Castro et al.

read	  

read	  

process	  

process	  

process	  

Fig. 3. A two-stage pipeline over two task farms.

We have chosen this set because it is sufficient to express a rich variety of parallel patterns,
while still permitting efficient implementations to be produced (Danelutto & Torquati,
2013). Using these skeletons, one possible parallel structure for the image convolution
example is as a pipeline of two task farms (Figure 3), where the first stage comprises a
farm with two read workers, and the second stage comprises a farm with three process

workers. The structure can be described as:

Pipe (Farm 2 (Func read)) (Farm 3 (Func process))

Note that, for efficiency, we will allow Farm results to be returned in an arbitrary order as
they are produced. This will create some complications in the semantics and proofs below,
but allows a more general, and more useful, treatment of task farms.

2.2 Types as (Abstract) Interpretations

In a full-spectrum dependently typed language, such as Idris, types may be predicated
on any value. This allows us to capture, in a formal and machine-checkable way, precise
relationships between values. The approach we will take in this paper is to describe the
program structure in terms of a dependent type, where the type captures the program’s
intended meaning: whether this is denotational, operational, or both. In a sense, the type
gives an abstract interpretation of a program. It follows that we can freely manipulate a
program’s structure, but provided that its type remains the same then we can be confident
that it will have exactly the same semantics. Moreover, if part of the type changes as a result
of a structural alteration, then we can be confident that the new program is equivalent to
the old one under the semantics described by the remainder of the type.

Example: an Expression Language

To illustrate this idea, let us consider a simple expression language with addition,
multiplication and numeric literals, implemented as an ordinary algebraic data type:

data Expr : Type where
Plus : Expr -> Expr -> Expr
Mult : Expr -> Expr -> Expr
Lit : Nat

We write an evaluator for this expression language as follows:

eval : Expr -> Nat
eval (Plus x y) = eval x + eval y
eval (Mult x y) = eval x * eval y
eval (Lit n) = n



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 7

Now, suppose we have some expressions in this data type, computed from some input
value:

exp1, exp2, exp3 : Nat -> Expr
exp1 x = Plus (Plus (Lit x) (Lit x)) Lit x
exp2 x = Plus (Lit x) (Plus (Mult (Lit x) (Lit 2)))
exp3 x = Mult (Lit 3) (Lit x)

Which of these expressions are equivalent? That is, which of them will produce the
same answer for all possible input values x? The answer, as can be seen by writing the
expressions in more conventional notation (x + x + x, x + x * 2 and 3 * x) is all of
them. One way to show this in Idris would be to write proofs of equalities between the
interpretations of each expression by equational reasoning, as follows:

exp_equiv : (x : Nat) -> eval (exp1 x) = eval (exp2 x)
exp_equiv = ...

By post hoc reasoning, therefore, we can show that some expressions are equivalent under
some interpretation. In this paper, however, we prefer to take an alternative approach,
expressing the interpretation of the expression in the type itself. This means that if we
require equivalence of expressions under some interpretation then the necessary proof
obligations arise naturally in type checking and the equivalence of expressions is shown
entirely by construction. To achieve this, we represent Expr instead as a dependent type
that is indexed over its interpretation as a natural number:

data Expr : Nat -> Type where
Plus : Expr x -> Expr y -> Expr (x + y)
Mult : Expr x -> Expr y -> Expr (x * y)
Lit : (x : Nat) -> Expr x

The index of an expression gives the corresponding meaning of that expression in Idris.
For example, consider the following declaration:

three_x : (x : Nat) -> Expr (x + x + x)

The type states that the meaning of three x is x + x + x. All abstract interpretations of
three x will comply with this meaning, all implementations which have this type can be
considered to be equivalent under the semantics of primitive arithmetic. This is ensured
by construction for any type-correct expression. There are several ways to build such an
expression. The most straightforward is to add the inputs directly:

three_x x = Plus (Plus (Lit x) (Lit x)) (Lit x)

Instead of adding the inputs, we may find that 3 * x is a more efficient implementation:
three_x’ : (x : Nat) -> Expr (3 * x)
three_x’ x = Mult (Lit 3) (Lit x)

As it stands, this has a different type to three x, but by using Idris’s rewrite construct,
we can show that three x and three x’ are equivalent. The rewrite construct takes the
following form:

rewrite prf in exp

Here, prf must have a type of the form a = b, where expression a occurs as a sub-
expression in the type of exp. Given a proof that x + x + x = 3 * x, we can rewrite

the type of three x’ and build an alternative implementation of three x as follows:
three_x : (x : Nat) -> Expr (x + x + x)
three_x x = rewrite multThree x in three_x’

where multThree : (x : Nat) -> x + x + x = 3 * x
multThree = ...



ZU064-05-FPR paper 13 January 2015 1:38

8 David Castro et al.

The key idea here, and the essence of our approach, is that we have two different
implementations of three x, but we know that these are semantically equivalent because
they both have the same type. Our strategy is to begin with a direct implementation of
an expression, and then to derive an expression with an equivalent denotational semantics
(i.e., the same abstract interpretation), but with a different operational semantics (for this
paper, that will be an alternative parallelisation). We achieve this by equational reasoning
using rewrite.

2.3 Capturing Functionality through Types

As described above, we can consider the meaning of a program to be defined by its
interpretation as a functional value. For skeletal programs, this will be a function from
some inputs to some outputs. We can represent this functionality using the Function data
type, that lifts the functional interpretation directly from the value level to the type level:

data Function : Type -> Type -> Type where
Nil : Function a a
(::) : (f : a -> b) -> Function b c -> Function a c

An expression of type Function a b stores a function of type a -> b, built by
composing a list of functions. For example,

compose : Function b c -> Function a b -> Function a c
compose f g = g :: f :: Nil

Exploiting Idris’s syntactic sugar for lists, we can write this instead as compose f g = [g

, f]. This definition of Function allows us to reason at the type level about the precise
functionality of a program, while maintaining a direct correspondence with the actual
program. Unlike model checking approaches, for instance, we do not need to convert our
definitions to some simpler form, with the attendant loss of information. The price for this
flexibility is, however, that in some cases we must actually evaluate definitions in order to
determine concrete type information.

2.4 Types for Algorithmic Skeletons

We can now define a data type Skel that is indexed over both its parallel structure (a
Struct) and its functionality (a Function a b), and that describes the skeletal structure
of a program:

data Skel : Struct -> Function a b -> Type where
... −− Skel constructors are defined in Section 4

If we have two definitions, e : Skel p f and e’ : Skel p’ f, we can therefore see
from the type alone that although e and e’ have different parallel structures (p and p’),
they have exactly the same functionality (f). As a concrete example, consider the function
imageConvFun that combines a pair of images.

imageConvFun : Data -> Image
imageConvFun = process . read
where read : Data -> Image

process : Image -> Image

imageConv_1 : Skel (Seq Func Func) [read, process]
imageConv_2 : Skel (Farm 8 (Seq Func Func)) [read, process]



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 9

Both imageConv 1 and imageConv 2 implement imageConvFun. They provide the same
functionality, but have different parallel structures: imageConv 1 composes the two
functions sequentially, where imageConv 2 creates a task farm with 8 workers, each of
which composes the two functions sequentially. We will return to this example in Section 4.
The remainder of this paper will consider in detail how to describe and reason about such
parallel structures using an approach that is informed by a strong semantics basis.

3 Semantics

3.1 Denotational Semantics

Our denotational semantics operates on values in the domain of skeletal expressions, S.
defined below. V is the domain of values (which we will leave partly unspecified), V→ V
represents functions over those values, and V∗ represents sequences of values (including
lists and streams). Σ is the domain of skeleton structures, corresponding to S.

n ∈ N = {0,1, . . .} natural numbers
v,x ∈ V = . . . | F | L values
f ∈ F = V→ V functions
fs ∈ L = V∗ sequences

s ∈ S ::= func f | farm n s | pipe s s | seq s s skeletal expressions
σ ∈ Σ ::= Func | Farm n σ | Pipe σ σ | Seq σ σ skeleton structure

The denotational semantics of a skeletal expression, S is defined by JSK. This yields a
value of type V∗→ V∗, that maps a stream of input values to a stream of results:

JSK : V∗→ V∗

Jfunc f K = map f
Jpipe s1 s2K = Js2K ◦ Js1K
Jseq s1 s2K = Js2K ◦ Js1K
Jfarm n sK = perm◦ JsK

Here, ◦ : (V → V) → (V → V) → V → V denotes the pairwise composition of two
functions, map : (V→ V)→ V∗ → V∗ applies a function to all the elements in a list,
and perm : V∗ → V∗ arbitrarily permutes a list of elements, so allowing farm results to
be returned in an arbitrary order, to allow the option of a more efficient implementation,
as described above. We can now define some auxiliary relations that will allow us to state
strong properties about J K.

Definition 3.1 (Structural Equivalence Relation)
The vfs relation relates values in the domains of S and Σ via the list of functions fs ∈ (V→
V)∗. s vfs σ indicates that s uses the functions fs in order in the structure σ .

func f v〈f 〉 Func

s vfs σ

farm n s vfs Farm n σ

s1 vfs1 σ1 s2 vfs2 σ2

pipe s1 s2 vfs1⊕fs2 Pipe σ1 σ2

s1 vfs1 σ1 s2 vfs2 σ2

seq s1 s2 vfs1⊕fs2 Seq σ1 σ2



ZU064-05-FPR paper 13 January 2015 1:38

10 David Castro et al.

Here, ⊕ denotes the concatenation of two lists. Given s ∈ S, σ ∈ Σ and fs ∈ (V→ V)∗,
such that s vfs σ , fs directly determines the denotational semantics of s, JsK, as shown by
Theorem 3.1.

Definition 3.2 (Reverse Composition)
The reverse composition of a list of functions, © : (V→ V)∗ → V→ V is defined as:
©〈f1, . . . , fn〉= fn ◦ . . .◦ f1

3.1.1 Functional Correctness of the Denotational Semantics.

We are now able to state a key soundness result for the denotational semantics. Theorem 3.1
states that the denotational semantics of any s ∈ S is some valid permutation of the result
of applying the functions that are contained within s. That is, the functionality of s fully
determines its results, but in some arbitrary order. This allows the possibility of using
one or more farms. Given s ∈ S, we define the functions of s, funcs(s) = fs, such that
∃σ ∈ Σ,s vfs σ .

Theorem 3.1
For all s ∈ S, JsK = perm ◦ map (©(funcs(s)).

Proof
By induction on the structure of s. The case where s = func f is trivial. In particular,
the permutation is the identity function. The seq and pipe cases can be easily proved
using fundamental properties of map and perm, viz.: (map f ) ◦ (map g) = map (f ◦ g),
map f ◦ perm = perm ◦ map f and perm ◦ perm = perm. The proof of the farm case
involves introducing a fresh arbitrary permutation and using the property perm ◦ perm =
perm.

Corollary 3.1
For all fs ∈ (V→V)∗, s ∈ S and σ ∈ Σ, such that s vfs σ , JsK = map (©fs) iff s contains
no farm subexpressions (transitively).

Corollary 3.1 follows from the proof of Theorem 3.1, where new permutations are
introduced only in the farm case.

Definition 3.3 (Functional Equivalence)
We say that any two skeletal expressions s1,s2 ∈ S are functionally equivalent iff Js1K =
Js2K.

Using Theorem 3.1, if σ1,σ2 ∈Σ and fs1, fs2 ∈ (V→V)∗ such that s1 vfs1 σ1 and s2 vfs2 σ2,
Js1K = Js2K is equivalent to perm◦map (©fs1) = perm◦map (©fs2). Since perm denotes
any arbitrary permutation, we cannot guarantee that both sides of the equality return the
same output in the same order unless we use Corollary 3.1 and avoid using task farms. We
can, however, weaken this condition by defining equality modulo permutations.

Definition 3.4 (Equality Modulo Permutations)
For all xs,ys ∈ V∗ such that xs = perm(ys), we say that xs =P ys.

It is easy to show that =P is reflexive, symmetric and transitive. We will abuse this notation
slightly and also write f =P g instead of ∀xs∈V∗, f (xs) =P g(xs). This allows us to define
a weaker notion of functional equivalence.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 11

Definition 3.5 (Weak Functional Equivalence)
Any two skeletal expressions s1,s2 ∈ S are weakly functional equivalent iff Js1K =P Js2K.

This definition allows us to determine the (weak) equivalence of two skeletons.

Theorem 3.2 (Weak Functional Equivalence of Skeletons)
For all s1,s2 ∈ S, if funcs(s1) = funcs(s2), then Js1K =P Js2K.

Proof
Also by using Theorem 3.1, and by annotating each perm function with a mapping function
φ , the necessary condition for any two s1,s2 ∈ S is that permφ1

◦map (©(funcs(s1))) =
permφ3

◦ (permφ2
◦map (©(funcs(s2))). Since the φi are bijections, we can see that the

equality is true if φ3 = φ1 ◦φ
−1
2 , since φ3 ◦φ2 = φ1 ◦φ

−1
2 ◦φ2 = φ1. Since the same permφ1

appears on both sides of the equality, it is sufficient to require that map (©(funcs(s1))) =
map (©(funcs(s2))). This is true if funcs(s1) = funcs(s2).

An important remark about Theorem 3.2 is that if funcs(s1) 6= funcs(s2), we cannot claim
anything about the equivalence of s1 and s2, since ©fs1 might be equal to ©fs2 even if
both lists of functions are not (syntactically) equal. It is, however, reasonable to keep the
condition fs1 = fs2 at a syntactic level, since determining the equivalence of two arbitrary
functions is an undecidable problem.

3.2 Operational Semantics

Given some s vfs σ , we would like to: (1) use fs to reason about the functional behaviour
of a skeletal expression; and (2) use σ to reason about its operational behaviour. We have
already demonstrated (1) above, using our denotational semantics, but this is not enough for
(2), and we must therefore also define an operational semantics. Here, we will use a simple
trace semantics to illustrate our approach. Our approach does not, however, depend on this
particular semantics, and it would be possible to replace it with a different operational
semantics, if desired, e.g. one that also considered more detailed cache behaviours. Our
operational semantics is defined as a triple:

〈P,Λ,−→〉

where

P is the set of all valid program states (Def. 3.6);
Λ is a set of labels (Def. 3.9);
−→ is the step state transition relation (Fig. 4), (−→) ∈ P×Λ×P .

A valid program execution is one where p0
λ0−→ p1

λ1−→ . . .
λn−1−−→ pn

λn−→ p, such that
∀i : 0 ≤ i ≤ n, pi ∈ P ∧ λi ∈ Λ, where p0 is an initial state and p ∈P is a final state.
We now provide the definitions that are needed to specify this operational semantics, before
we show the state transition relation, and state the key termination and soundness theorems.
Our first set of definitions relates to the program state. Skeletal computations are defined
operationally in terms of streaming processes that transform input queues of arguments into
output queues of results in accordance with the denotational semantics. These processes are
constructed directly from the structure of a skeletal program, and embed information about
evaluation state and input/output queues.



ZU064-05-FPR paper 13 January 2015 1:38

12 David Castro et al.

Definition 3.6 (Stateful Expressions and Program State)
Let ω ∈ Ω, n ∈ N, x ∈ V, q ∈ V∗ and f ∈ V→ V. We define the syntax of stateful
expressions, i.e. expressions with an embedded evaluation state, to be:

st ∈ ST ::= G | Ex | Px state of func

s ∈ S ::= funcω st f | farm s∗ | pipe q s s | seq q s s stateful expr.

There is a one-to-one correspondence between skeletal expressions and the corresponding
stateful expressions. Function skeletons, func f , are instantiated to a corresponding
process, funcω st f , which is annotated with a location, ω (defined below) and a state,
st. This state may be: G, if the process is idle waiting to read from a queue; Ex, if it is
ready to evaluate the embedded function using x as argument; or Px, if it is ready to put
x in the output queue. The pipe and seq expressions are both instantiated with the state
of the intermediate queue that links their sub-computations, q, and farm expressions are
instantiated with a sequence of workers, < s1, . . . , sn >, which must all have the same
structure and functionality, s, but which will have different internal states, queues, and
locations. A program state is then a triple consisting of a stateful expression together with
a specific input queue and a specific output queue.

p ∈P = 〈q1,s,q2〉 program state

Definition 3.7 (Idle, Initial and Final States)
We say that a stateful expression s is idle, `idle s, if all its intermediate queues are empty
and all the atomic function wrappers are in the idle state (G).

`idle funcω G f

`idle s1 `idle s2

`idle seq 〈〉 s1 s2

`idle s1 `idle s2

`idle pipe 〈〉 s1 s2

`idle s1 . . . `idle sn

`idle farm 〈s1, . . . ,sn〉

A program state, p, is initial if p = 〈qin,s,〈〉〉 ∧ `idle s and a program state, p, is final if
p = 〈〈〉,s,qout〉 ∧ `idle s.

Locations, Labels and Actions

Our next set of definitions relates to identifying workers and the actions that they perform.

Definition 3.8 (Locations)
Locations identify unique workers within a skeletal expression, s.

Ω = Π∗ (locations)
π ∈ Π ::= pl | pr | sl | sr | wn (positions)

Starting at the root of s, each position in the sequence uniquely selects one of the sub-
workers. The pl and pr positions represent the left and right branches of a pipeline; the sl
and sr positions represent the left and right branches of a sequential composition; and the
wn positions represent the nth worker of a farm. When s is a func, the path will be empty,
ε . Locations will be used to label atomic worker functions and to map them to physical
processor cores in some concrete architecture.

Definition 3.9 (Labels)
The set of labels Λ is a set of actions, A, annotated with the worker location that performs
it, Ω:

Λ = AΩ (labels)
α ∈ A ::= gq | e(f ,x) | p(x,q) (actions)



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 13

gq represents the action of dequeuing (getting) an element of q; e(f ,x) is the action of
evaluating function f with x as argument; and p(x,q) is the action of enqueuing (putting)
element x in q.

Definition 3.10 (Labelling and Erasure)
Let ω ∈Ω be the location of a subexpression s ∈ S, we define the translation scheme L as
a function parameterised with ω , that translates s to an idle s with the atomic functions of
s labelled using ω as prefix for their locations. We also define its inverse E , state erasure,
that removes the embedded state and the labels from the atomic function wrappers.

LωJ K : S → S
LωJfunc f K = funcω G f
LωJseq s1 s2K = seq 〈〉 (Lω.slJs1K) (Lω.srJs2K)
LωJpipe s1 s2K = pipe 〈〉 (Lω.plJs1K) (Lω.prJs2K)
LωJfarm n sK = farm〈Lω.w1JsK, . . . ,Lω.wnJsK〉

E J K : S → S
E Jfuncω st f K = func f
E Jseq q s1 s2K = seq (E Js1K) (E Js2K)
E Jpipe q s1 s2K = pipe (E Js1K) (E Js2K)
E Jfarm〈s1, . . . ,sn〉K = farm n s

where ∀i ∈ [1 . . .n],E JsiK = s

When there is no ambiguity, we will write L JsK for LεJsK, and s for E JsK.

Equivalence of Idle States

Lemma 3.1
For all s ∈ S, `idle s iff s = L (s).

This lemma states that all idle s are syntactically equal to L (s). That is, if a s1 has the
same structure and functionality as some other s2, and both are idle, then both are the
same. Moreover, if an s = L (E (s)) then s is idle. The lemma can be easily proved by
induction on the structure of s.

State Transition Relation

Figure 4 describes the state transition relation of the operational semantics. A rule of the

form 〈qin,s,qout〉
αc
−→ 〈q′in,s

′
,q′out〉 states that an action α executing on core c changes the

state of qin to q′in, s to s′ and qout to q′out in a single atomic rewriting step. Since a step
rewrites only the state of one atomic function wrapper at a time, at most one queue at a
time will be rewritten. The GET, PUT and EVAL rules describe the operations of getting an
element from a queue, putting an element into a queue and evaluating a function applied
to an argument, respectively. Note that we can choose between PIPE1 and PIPE2 non-
deterministically, as well as between the different FARMi. The condition on the SEQ2 rule
ensures that the sub-expressions in a seq are never run in parallel. We will see in Sec. 5
how to use these sequences of labelled actions to reason about the costs of different traces.



ZU064-05-FPR paper 13 January 2015 1:38

14 David Castro et al.

GET
|qin|> 0 (x,q′in) = dequeue(qin)

〈qin, funcω G f ,qout〉
gω qin−−−→ 〈q′in, funcω Ex f ,qout〉

EVAL
f (x) ⇓ y

〈qin, funcω Ex f ,qout〉
eω (f ,x)−−−−→ 〈qin, funcω Py f ,qout〉

PUT
q′out = enqueue(y,qout)

〈qin, funcω Py f ,qout〉
pω (y,qout)−−−−−−→ 〈qin, funcω G f ,q′out〉

PIPE1
〈qin,s1,q〉

λ−→ 〈q′in,s
′
1,q
′〉

〈qin,pipe q s1 s2,qout〉
λ−→ 〈q′in,pipe q′ s′1 s2,qout〉

PIPE2
〈q,s2,qout〉

λ−→ 〈q′,s′2,q′out〉

〈qin,pipe q s1 s2,qout〉
λ−→ 〈qin,pipe q′ s1 s′2,q

′
out〉

SEQ1
〈qin,s1,q〉

λ−→ 〈q′in,s
′
1,q
′〉

〈qin,seq q s1 s2,q2〉
λ−→ 〈q′in,seq q′ s′1 s2,q2〉

SEQ2
`idle s1 〈q,s2,qout〉

λ−→ 〈q′,s′2,q′out〉

〈〈〉,seq q s1 s2,qout〉
λ−→ 〈〈〉,seq q′ s1 s′2,q

′
out〉

FARMi
〈qin,si,qout〉

λ−→ 〈q′in,s
′
i,q
′
out〉

〈qin, farm〈. . .si . . .〉,qout〉
λ−→ 〈q′in, farm〈. . .s′i . . .〉,q′out〉

Fig. 4. State Transition Relation.

Termination and Soundness Results

We are now in a position to state the main termination and soundness results.

Theorem 3.3 (Termination)
For all p∈P with a finite number of elements inside atomic function wrappers and queues,
there exists no infinite trace λ1,λ2, . . . ∈ Λ∗.

Proof
By induction on the structure of the operational semantics, we can prove that no rule places
an element in a previous queue, and that with a finite number of elements it is impossible
to ignore an atomic function worker indefinitely.

In order to prove that the output queue of a skeleton in an idle state contains a valid
output with respect to the denotational semantics of the skeletons, we must show that each
step of the operational semantics preserves a permutation of the input elements. Since
the intermediate and output queues will contain elements that have been operated on, we
cannot relate them directly to the original inputs. Our solution is to define a semantic
function OJpK that maps the remaining unapplied functions to the elements that are still in
the input queue. The idea is to use this definition to reason about the expected output of a
program in any particular state of the execution.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 15

Definition 3.11 (Expected Output)
The function Of JsK denotes the expected output of a stateful skeletal subexpression, where
f is the function computed by the subsequent subexpressions.

Of J K : S → V∗
Of Jfuncω G gK = 〈〉
Of Jfuncω Ex gK = 〈(f ◦ g)(x)〉
Of Jfuncω Px gK = 〈f (x)〉
Of Jpipe q s1 s2K = Of Js2K⊕map (f ◦ f2) q⊕Of◦f2Js1K
Of Jseq q s1 s2K = Of Js2K⊕map (f ◦ f2) q⊕Of◦f2Js1K

where fi =©fsi and si vfsi σi
Of Jfarm 〈s1, . . . ,sn〉K = Of Js1K⊕ . . .⊕Of JsnK

We extend this to define the expected output for programs p ∈P . Let s ∈ S such that
s vfs Σ and g =©fs, then Of J〈q1,s,q2〉K = map f q2⊕Of JsK⊕map (f ◦g) q1 . We
will write OJpK instead of OidJpK, since id◦ f = f ◦ id = f .

Lemma 3.2
For all p,p′ ∈P , if p λ−→ p′ then OJp′K = perm(OJpK).

Proof
We prove this lemma by induction on the structure of the step relation. We need only the
associativity of ⊕, properties of the map function and two properties of the permutations:
if xs = perm(ys) implies that cs⊕ xs = perm(cs⊕ ys) and xs⊕ ys = perm(ys⊕ xs).

Finally, the main soundness result for the operational semantics relates a valid sequence
of transitions from some initial state to some final state to the corresponding denotational
semantics value.

Theorem 3.4 (Soundness)

For all s ∈ S, xs,ys ∈ V∗, and traces λ1, . . . ,λn such that 〈xs,L JsK,〈〉〉 λ1,...,λn−−−−→
〈〈〉,L JsK,ys〉, ys = JsK(xs).

Proof
We can apply Lemma 3.2 to the different steps of the trace to conclude that
OJ〈〈〉,L JsK,ys〉K = perm(OJ〈xs,L JsK,〈〉〉K). Then unfolding the definition of OJK,
and proving that if `idle s, then OJsK = 〈〉, we prove that OJ〈〈〉,L JsK,ys〉K = ys and
perm(OJ〈xs,L JsK,〈〉〉K) = perm(map f xs) = (perm ◦map f )(xs), where f =©fs and
s vfs σ . We can finish the proof using Theorem 3.1 to conclude that (perm◦map f )(xs) =
JsK(xs).

4 Representation and Proof in IDRIS

This section describes how to represent algorithmic skeletons, program states and other
key entities, including our key proofs and lemmas, in IDRIS. Skeletal expressions are
represented using two key datatypes: Function (Section 2.4), a list of functions that
determines the functional behaviour; and SkelTy (Fig. 5a), the structure of the skeletal
expressions. The Skel datatype (Fig. 5b) then combines values of type SkelTy and
type Function to give a structural representation of a skeleton instance, together with a
representation of its functionality, including timing information for Funcs. Finally, the Par
datatype (Fig. 5c) is a convenience type, defined as a dependent pair of a Function and
a SkelTy, that lifts the functional behaviour from the skeleton instance. We can now, for



ZU064-05-FPR paper 13 January 2015 1:38

16 David Castro et al.

data SkelTy : Type where
Func : {default 0 ti:Timing} -> SkelTy
Seq : SkelTy -> SkelTy -> SkelTy
Pipe : SkelTy -> SkelTy -> SkelTy
Farm : {default (S Z) w:Nat} -> SkelTy -> SkelTy

(a) Structure.

using ( f1 : Function a b, f2 : Function b c)
data Skel : SkelTy -> Function a b -> Type where
func : {ti : Timing} -> (f : a -> b) -> Skel (Func {ti}) [f]
seq : Skel p1 f1 -> Skel p2 f2 -> Skel (Seq p1 p2) (f1 ++ f2)
pipe : Skel p1 f1 -> Skel p2 f2 -> Skel (Pipe p1 p2) (f1 ++ f2)
farm : {n : Nat} -> Skel p1 f1 -> Skel (Farm {w=S n} p1) f1

(b) Skeletal Expressions.

Par : SkelTy -> Type -> Type -> Type
Par p a b = (f : Function a b ** Skel p f)

(c) Par Datatype.
Fig. 5. IDRIS data types for representing skeletons.

example, describe imageMerge 1 and imageMerge 2 as values of type Par, whose types
capture both the parallel structure of the program and its functionality. imageMerge 1

simply composes the worker functions markPixels and replacePixels sequentially,
while imageMerge 1 introduces a parallel task farm with 8 workers.

imageMerge_1 : Par (Seq Func Func) (Image,Image) Image
imageMerge_1 = skel [markPixels, replacePixels]

imageMerge_2 : Par (Farm {w=8} (Seq Func Func)) (Image, Image) Image
imageMerge_2 = skel [markPixels, replacePixels]

In both cases, we use the auxiliary function skel, which will be defined in Section 6, to
automatically generate the value corresponding to the given type. As we will see in the rest
of this section, different parallel versions of the imageMerge will vary only in the type-
level structure. Farms can be freely nested inside other skeleton instances, including other
task farms, e.g. as shown below.

ImFarms : SkelTy
ImFarms = Farm (Seq (Farm Func) Func)

imageMergeFarms : Par ImFarms (Image,Image) Image
imageMergeFarms = skel [markPixels, replacePixels]

Here, ImFarms abstracts the skeleton structure. We have deliberately used the default
number of workers (one) for both farms. This improves abstraction, and will allow the
number of workers to be automatically instantiated, as described later. These are not the
only possible structures. For example, an alternative parallelisation of imageMerge is
possible using a parallel pipeline (Fig. 2c) to execute replacePixels and markPixels

in parallel within the outer task farm.

ImFarmPipe : SkelTy
ImFarmPipe = Farm (Pipe Func Func)

imageMerge_3 : Par ImFarmPipe (Image,Image) Image
imageMerge_3 = skel [markPixels, replacePixels]



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 17

data FSt : Type -> Type -> Type where
R : FSt a b
X : a -> FSt a b
W : b -> FSt a b

using ( f1 : Function a b, f2 : Function b c )
mutual
data AnnS : SkelTy -> Function a b -> Type where
AFunc : Timing -> (f : a -> b) -> FSt a b

-> AnnS Func [f]
AFarm : (n : Nat) -> Workers (S n) s f1

-> AnnS (Farm {w=S n} s) f1
ASeq : AnnS s1 f1 -> Queue n b -> AnnS s2 f2

-> AnnS (Seq s1 s2) (f1 ++ f2)
APipe : AnnS s1 f1 -> Queue n b -> AnnS s2 f2

-> AnnS (Pipe s1 s2) (f1 ++ f2)

data Workers : Nat -> SkelTy -> Function a b -> Type where
Nil : Workers Z s f1
(::) : AnnS s f1 -> Workers w s f1 -> Workers (S w) s f1

data State : SkelTy -> Function a b -> Type where
St : Queue n a -> AnnS s f1 -> Queue m b -> State s f1

Fig. 6. Program States.

4.1 Representing the Operational Semantics in IDRIS

We have used IDRIS to both yield an implementation of our operational semantics and to
automate the associated soundness proofs. Our IDRIS implementation of the operational
semantics of Fig. 4 requires the definition of i) queues, ii) program states, iii) queue
operations, and iv) the step transition relation from Section 3.

Queues

We have chosen to represent queues as sequences of elements parameterised by the number
of elements in the sequence, providing two operations enqueue and dequeue:

enqueue : a -> Queue n a -> Queue (n+1) a
dequeue : Queue (S n) a -> (a, Queue n a)

Program States

The AnnS datatype is the type of the labelled stateful skeletal expressions S that we defined
in Section 3. As we would expect, constructors of AnnS closely resemble those of Skel,
but also including intermediate queues, the state of the Func atomic function wrappers
and labels. The reason for using a mutually recursive datatype is to define the AFarm

constructor. Using our own definition instead of e.g. a vector of skeletons simplifies the
task of the IDRIS totality checker. The State datatype wraps a stateful skeleton inside a
state, i.e. an input queue with n elements and an output queue that contains m elements. We
define two auxiliary functions, skelToAnnS that converts a value of type Skel to one of
type AnnS, and its inverse annSToSkel. These functions correspond to the labelling (L )
and erasure (E ) functions defined in Section 3.

skelToAnnS : Skel s f1 -> AnnS s f1
annSToSkel : AnnS s f1 -> Skel s f1



ZU064-05-FPR paper 13 January 2015 1:38

18 David Castro et al.

Encoding the Operational Semantics Rules

We represent the step state transition relation in IDRIS using the Step datatype, whose
constructors each correspond to one of the rules in Fig. 4.

data Step : State k f1 -> State k f1 -> Type where
E_Write : Step (St q1 (AFunc ti f (W x)) qs2)

(St q1 (AFunc ti f R ) (enqueue x qs2))
...
E_Pipe2 : Step (St q2 s2 q3) (St q2’ s2’ q3’) ->

Step (St q1 (APipe s1 q2 s2 ) q3)
(St q1 (APipe s1 q2’ s2’) q3’)

...
R_Seq2 : Idle s1 -> Step (St q2 s2 q3) (St q2’ s2’ q3’) ->

Step (St qZ (ASeq s1 q2 s2 ) q3 )
(St qZ (ASeq s1 q2’ s2’) q3’)

...

4.2 Properties of the Operational Semantics

The permutation relation =P is defined in IDRIS as IsPerm. This is a datatype indexed by
vectors that are equal modulo permutations.

data IsPerm : Vect n a -> Vect m a -> Type where
PNil : IsPerm [] []
PCons : IsPerm xs ys -> IsPerm (x:xs) (x:ys)

PSwap : IsPerm (x:y:xs) (y:x:xs)
PTrans : IsPerm xs ys -> IsPerm ys zs -> IsPerm xs zs

Using this, we can prove the properties that we need for our soundness proof:

sym : IsPerm xs ys -> IsPerm ys xs
refl : IsPerm xs xs
comm : IsPerm (xs ++ ys) (ys ++ xs)
const : IsPerm xs ys -> IsPerm (cs ++ xs) (cs ++ ys)

We are now ready to prove the main theorem:

soundness :
(s : SkelTy) -> (fs : Function a b)
-> (sk : Skel s fs) -> (xs : Vect n a) -> (ys : Vect n b)
-> (trc : Trace (St (toQueue xs) (idleSkel sk) emptyQueue )

(St emptyQueue (idleSkel sk) (toQueue ys))
-> IsPerm ys (map (compose fs) xs)

The termination proof simply involves showing that for a given program state, the length
of all traces is finite. We achieve this using the Nat type.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 19

5 Cost Models

In this section, we define a cost calculus for Σ that allows us to reason about the run-time
behaviour of any s ∈ S such that s vfs σ , by applying it to this structure σ ∈ Σ. As we have
seen in Section 4, skeletal expressions are represented using a dependent type indexed
by its structure σ , which allows us to apply this cost calculus at the type level. We start
by defining the cost model of the different parallel skeletons. In this paper, we will only
describe a simple cost calculus for a parallel skeleton that has the following assumptions:

1. All workers of a skeletal expression can be mapped to different cores.
2. All the tasks have the same granularity (i.e. take the same time to execute).
3. All the input tasks are independent (the only dependencies are the ones imposed by

the structure and the trace).

Our queue operations use a simple concurrent lock-based queue implementation, whose
costs can be derived formally (Sarkar et al., 2014) from lower (assembly) level semantics.
Our technique can easily be adapted for different implementations or cost models,
including e.g. lock-free ones. The parameters of our cost models depend on the parallel
architecture we are using, A , i.e.

C : A →T

For our cost models, we just need the number of cores plus profiling information about the
costs of read (tread), write (twrite) and exchange (txchg) operations. Intuitively, the queue get
operation needs to acquire the lock, read the queue head, and release the lock, while both
the acquire and release must write to the lock location. Similarly, the queue put operation
needs to acquire the lock, and write to the queue head, and release the lock. The lock
acquire is also subject to contention and scales linearly. Assuming the parameters as before,
with n being the number of threads, our cost model (derived from (Sarkar et al., 2014)) is:

tget, tput : N→ C
tget(n)(a) = n∗ txchg(a)+ tread(a)+2∗ twrite(a)
tput(n)(a) = n∗ txchg(a)+2∗ twrite(a)

In Section 3, we showed that a trace according to the operational semantics is a sequence
of actions (gω q, eω(f ,x) and pω(x,q)) that are determined by the transitive closure of the
step state transition relation. Since we need to reason about the actions that happen in
parallel, we need to map locations to actual cores in an architecture. Given a set of cores C,
we map all locations in a trace to the corresponding core, Ω→ C. This way, whenever we
have an action αω , we will convert it into the corresponding αc, given a c ∈ C. That alone
is not enough to reason about the run-time behaviour, since some interleavings describe
unrealistic scenarios. For example, suppose we have two disjoint sets of cores C1 and C2
and a pipeline in a state 〈q1,pipe q s1 s2,q2〉 such that all pl . . . are mapped to cores in C1,
and pr . . . to C2. Let c1i ∈ C1 and c2 j ∈ C2. From the operational semantics alone, a trace
reaching a final state with the shape:

α
c1i1α

c1i2 . . . ,αc1in α
c2 j1α

c2 j2 . . .αc2 jm

is a valid trace, although it does not describe any realistic scenario under our assumptions,
since a worker in s2 will be able to execute a gc2 j q in parallel immediately after any action
pc1i(x,q). In order to avoid such situations, we need to add a validity condition to the traces.



ZU064-05-FPR paper 13 January 2015 1:38

20 David Castro et al.

Definition 5.1 (Valid Trace Condition)
We define a trace for 〈q1,s,qn〉 ∈ P to be valid, if for all subexpressions s′ of s:

1. s′ = pipe q s1 s2, then after any pq there is either another pq or a gq; and
2. s′ = farms sn, then all possible actions αci from the workers in the same branch

(if any) of a seq subexpression occur with the same frequency in the trace (i.e. no
worker is ignored and we step in all of them at the same pace).

It is safe to ask for the second condition only under assumptions 2 and 3 above, that state
that all the input tasks are independent and of the same granularity. Using this definition,
we can calculate the cost of a valid trace. Provided that we parameterise the queues with
the contending workers, and the atomic functions with their profiling information, we know
how to calculate the cost of the individual actions from a trace. We now need to define the
dependencies of an action to calculate the cost of a trace.

Definition 5.2 (Core Dependency)
The dependency of a core, dep(c,αc1

1 . . .) = α
c1
1 . . .αci

i , is the minimum trace that precedes
all the actions in core c. For the valid traces, it is the trace until an element is placed in the
queue that is read by the first action on core c.

We calculate the cost of a trace as the maximum of the cost of the actions per core, plus
the cost of the dependencies of each core.

C (αci
1 . . .α

c j
n ) = MAX (C (dep(c1,α

ci
1 . . .α

c j
n )+C (αc1

k1)+C (αc1
k1+1)+ . . .),

C (dep(c2,α
ci
1 . . .α

c j
n )+C (αc2

k2)+C (αc2
k2+1)+ . . .), . . .)

Although this definition is accurate, it can only be applied to full traces. In the more
general situation where we want to estimate the cost of a skeleton with no information
about the number of inputs, we instead assume that we know the cost of the different
atomic functions for the inputs. We then define the cost of a program in a steady state,
where a program is a in steady state when all input, output and intermediate queues in its
skeleton have enough elements for all the workers. The cost of a program in a steady state
is defined as the cost of producing an output divided by the number of outputs produced.

cost(〈〈x〉⊕q1, funcω G f ,q2〉) = C (gµ(ω)〈x〉⊕q1)+C (eµ(ω)(f ,x))+C (pµ(ω)(f (x),q2)

cost(〈q1,pipe q s1 s2,q2〉) = MAX(C (αc1i
11 . . .α

c1 j
1n ),C (αc2i

21 . . .α
c2 j
2m )),

where α
c1i
11 . . .α

c1 j
1n is a trace that produces an output in q,

and α
c2i
21 . . .α

c2 j
2m is a trace that produces an output in q2

cost(〈q1,seq q s1 s2,q2〉) = (C (αc1i
11 . . .α

c1 j
1n )+C (αc2i

21 . . .α
c2 j
2m ))/nt,

where α
c1i
11 . . .α

c1 j
1n is a trace that produces all nt outputs in q,

and α
c2i
21 . . . ,α

c2 j
2m is a trace that produces all nt outputs in q2,

and nt is the number of inputs in q1

cost(〈q1, farms〈s1 . . .sw〉,q2〉) = MAX(C (αc1i
11 . . .α

c1 j
1n ), . . . ,C (αcwi

w1 . . .α
cw j
wm ))/w,

where α
c1i
11 . . .α

c1 j
1n is a trace for s1 that produces an output in q2,

and α
cwi
w1 . . .α

cw j
wm is a trace for sw that produces an output in q2

We can simplify this by considering valid traces only. Since a seq skeleton needs its first
stage to complete the work before we can apply the rule SEQ2, we need to make the whole
program complete the work, and then divide by the total number of elements. But given
our definition of cost, we can approximate this by the cost of producing an output for each



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 21

of the stages.

cost(〈q1,seq q s1 s2,q2〉) = C (αc1i
11 . . .α

c1 j
1n )+C (αc2i

21 . . .α
c2 j
2m ),

where α
c1i
11 . . .α

c1 j
1n is a trace that produces ONE output in q ,

and α
c2i
21 . . . ,α

c2 j
2m is a trace that produces ONE output in q2

Note, however, that this is now only an approximation of the cost, since there is no valid
interleaving of α

c1i
11 . . .α

c1 j
1n and α

c2i
21 . . . ,α

c2 j
2m , because the first queue must be left empty and

the first skeleton must be idle before a step is done in the second stage of the composition.
The second simplification that we can do is that given that we assume tasks of the same
granularity, we can assume that all costs in the MAX expression of the task farm are the
same. This assumption allows us to approximate the result of the MAX with the cost of
any trace:

cost(〈q1, farms〈s1 . . .sw〉,q2〉) = C (αc1i
11 . . .α

c1 j
1n )/w,

where α
c1i
11 . . .α

c1 j
1n is a trace for s1 that produces an output in q2

We would like, however, to reason about these costs in terms of the structure. Since we
are already using the structure to define the traces for a program in a steady state, and then
calculate the cost of these traces, we can skip a step and reason directly about costs using
the structure. We define a cost calculus for Σ with this idea, parameterising the structure
with profiling information for all the atomic functions:

σ ::= Funct | Farm n σ | Pipe σ σ | Seq σ σ parameterised structure

We can then define the cost in terms of the structure as follows:

costc1,c2(Funct)(a) = tget(c1)(a)+ t+ tput(c2)(a)
costc1,c2(Pipe σ1 σ2)(a) = MAX(costc1,ct(σ1)(a),costct,c2(σ2)(a))

where ct = contending(σ1,σ2)
costc1,c2(Seq σ1 σ2)(a) = costc1,right(σ1)(σ1)(a)+ costleft(σ2),c2(σ2)(a)
costc1,c2(Farm n σ)(a) = costc1∗n,c2∗n(σ)(a)/n

Theorem 5.1
Let steady : S→ P be a function that produces a program state in steady state from
a skeletal expression. Let s ∈ S, σ ∈ Σ and fs ∈ (V→ V)∗ such that s vfs σ and σ is
parameterised by the profiling information of s. Then cost(steady(s)) = cost(σ).

Proof
By induction on the structure of s. We see that for the base case, func, in both expressions
the result is the time of a get, the time of computing the embedded function and the time
of a put operation. The pipe case can be solved by applying the induction hypotheses. The
farm case can be proved using the assumption that all tasks are of the same granularity,
and the condition that all the workers produce a step with the same frequency, i.e. all the
traces of the MAX expression are of the same length and consist of sequences of the same
operations done in different cores. For the seq case, we need to prove that the simplification
shown above actually produces the same result than the function cost, in order to be able to
apply the induction hypothesis. In the above definition of the cost of the traces of skeletons
in steady state, we observe that if nt is sufficiently large, then both results are equal. We
can define the function steady to specify a sufficiently large number of inputs so that this
equality holds.



ZU064-05-FPR paper 13 January 2015 1:38

22 David Castro et al.

6 Rewriting Skeletal Expressions

Any tree of algorithmic skeletons can be rewritten into an alternative parallel structure,
provided that it preserves its denotational semantics, i.e. it is possible to use any two s1,s2 ∈
S interchangeably, provided that Js1K = Js2K. Theorem 3.2 guarantees that whenever the fs
are the same, the functional behaviour will be the same (modulo permutations). However,
it would be more useful to define an equivalence relation, structure convertibility4, ≡Cnv∈
Σ×Σ, that defines families of (weakly) functionally equivalent skeletal expressions.

Definition 6.1 (Convertibility Relation)

REFL
σ ≡Cnv σ

SYM
σ1 ≡Cnv σ2

σ2 ≡Cnv σ1
TRANS

σ1 ≡Cnv σ2 σ2 ≡Cnv σ3

σ1 ≡Cnv σ3

SEQASSOC
Seq(Seq σ1 σ2) σ3 ≡Cnv Seq σ1 (Seq σ2 σ3)

PIPEINTRO
Seq σ1 σ2 ≡Cnv Pipe σ1 σ2

RSEQ
σ1 ≡Cnv σ3 σ2 ≡Cnv σ4

Seq σ1 σ2 ≡Cnv Seq σ3 σ4

FARMINTRO
n1 ∈ N

σ ≡Cnv Farm n1 σ

We define a normalisation function norm : Σ → Σ such that for all σ ∈ Σ, norm(σ)
contains no parallel structure and all the occurrences of Seq are right-associative. This
function can be defined as the composition of two other functions norm = flatten◦ rmpar,
where:

rmpar : Σ→ Σ

rmpar(Func) = Func
rmpar(Seq σ1 σ2) = Seq (rmpar(σ1)) (rmpar(σ2))
rmpar(Pipe σ1 σ2) = Seq (rmpar(σ1)) (rmpar(σ2))
rmpar(Farm n σ) = rmpar(σ1)

flatten : Σ→ Σ

flatten(Seq (Seq σ1 σ2) σ3) = flatten(Seq σ1 (Seq σ2 σ3))
flatten(Seq σ1 σ2) = Seq σ1 (flatten(σ2))
flatten(σ1) = σ1

Lemma 6.1
For all σ ∈ Σ, σ ≡Cnv norm(σ).

Proof
We prove that for all σ ∈ Σ, σ ≡Cnv rmpar(σ), by applying rules SYM, FARMINTRO and
PIPEINTRO to remove the pipelines and farms. Then, we prove that σ ≡Cnv flatten(σ) by
induction on the number of nested Seq nodes in the leftmost branch. We conclude that
σ ≡Cnv flatten(rmpar(σ)) by using the transitivity rule TRANS.

4 This is derived from a set of rules that are well-known in the parallel programming literature as
“structural equivalences” (Aldinucci et al., 1998; Aldinucci, 2002; Brown et al., 2013). We prefer
the term “convertibility” here, since the relation determines whether we can convert a skeletal
expression that has one structure into a functionally equivalent one that has a different structure.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 23

Lemma 6.2
For all σ1,σ2 ∈ Σ, σ1 ≡Cnv σ2 ⇐⇒ norm(σ1) = norm(σ2).

Proof

Case⇒. By induction on the ≡Cnv relation, we can apply the rules of the ≡Cnv relation to
σ1 and σ2 to change their structure towards a σ such that σ = norm(σ). Then, it becomes
obvious that this σ = norm(σ) = norm(σ1) = norm(σ2).
Case ⇐. Since by Lemma 6.1, σ ≡Cnv norm(σ), and if σ1 = σ2 then σ1 ≡Cnv σ2 by
rule REFL, using the transitivity and symmetry of ≡Cnv we can prove that σ1 ≡Cnv

norm(σ1)≡Cnv norm(σ2)≡Cnv σ2.

Theorem 6.1
For all s1 ∈S and σ1,σ2 ∈Σ such that s1 vfs σ1, σ1≡Cnv σ2⇐⇒∃s2 ∈S such that s2 vfs σ2.

Proof

⇐. In this case, we have to prove that whenever we have a s2 vfs σ2, then σ1 ≡Cnv σ2.
By normalising σ1 and σ2, we can see that if both si,σi are related under the same vfs,
then norm(σ1) = norm(σ2). It is easy to prove this by induction on the structure of the vfs
relation. Then, since norm(σ1)= norm(σ2), by using Lemma 6.2, we conclude σ1≡Cnv σ2.
⇒. By induction on the structure of the ≡Cnv relation, we show how to rewrite the s1 into
an equivalent s2 with the same functionality but with structure σ2. That is, we first prove
that if σ1 ≡Cnv σ2, then there exists a rewriting from a s1, such that s1 vfs σ1, to a s2, such
that s2 vfs σ2. This rewriting is obtained by lifting the≡Cnv relation to S×S. Then, proving
that a s2 exists is trivially achieved by applying this rewriting.

6.1 Equivalence and Convertibility in IDRIS

The IDRIS datatype Cnv captures the convertibility of structures, so providing a machine-
checkable proof of the ≡Cnv property:

data Cnv : SkelTy -> SkelTy -> Type where
...

We define a normalisation function as described above. In our implementation, norm will
return a normalised skeleton and a proof of convertibility:

norm : (s1 : SkelTy) -> (s2 : SkelTy ** Cnv s1 s2)
normStr : SkelTy -> SkelTy

Using Lemma 6.2, we can define the equivalence of two structures as the equality of their
normalised structures. The function equivCnv is a proof of the ⇒ case of Lemma 6.2.
This is convenient when automating proofs of equivalence of any two structures, as we
will observe in the definition of the cast function.

Equiv : SkelTy -> SkelTy -> Type
Equiv s1 s2 = normStr s1 = normStr s2

equivCnv : {s1 : SkelTy} -> {s2 : SkelTy} -> Equiv s1 s2 -> Cnv s1 s2

The function rwSkel lifts proofs of functional equivalence to rewritings, and it is used
in the proof of Theorem 6.1. The function rwSkelR returns a rewriting that interprets the
≡Cnv relation from left to right, and a rwSkelL from right to left.

rwSkel : Cnv s1 s2 -> Skel s1 fs -> Skel s2 fs
rwSkel = ...



ZU064-05-FPR paper 13 January 2015 1:38

24 David Castro et al.

Using these definitions, we can implement a function that automatically rewrites a skeletal
expression into a functionally equivalent one. The type-checker ensures that the result is
indeed a weakly functionally equivalent expression. We provide this rewriting as a type
cast. The auto keyword states that whenever there is no value of type Equiv s1 s2 in
the context, the type checker will automatically use the decidable equality relations for
skeletons to prove it.

cast : {fs : Function a b}
-> {s1 : SkelTy} -> {s2 : SkelTy}
-> {auto prf : Equiv s1 s2}
-> Skel s1 fs -> Skel s2 fs

cast {prf} s = rwSkel (equivCnv prf) s

Using a function nfStruct that returns the normal form structure of the family of
functionally equivalent structures, a predicate on lists of functions NotEmpty, and a
function nfSkel defined in a similar way to nfStruct but for values of type Skel, we
can define the function skel:

skel : {s1 : SkelTy} -> (fs : Function a b)
-> {auto pr1 : NotEmpty fs}
-> {auto pr2 : Equiv (nfStruct fs) s1}
-> Par s1 a b

6.2 Automatic Rewriting of Skeleton Instances

We can use the cost models from Section 5 to generate a skeleton instance that minimises
the execution cost, given a suitable model of the target architecture. The algorithm for
finding the best structure involves three steps:

1. Generate all possible parallel structures for a skeleton, plus relevant convertibility
proofs up to certain depth;

2. Determine the best instantiation of each skeleton;
3. Choose the skeleton instantiation with the least cost.

Step 1: Generate Parallel Structures. We begin by normalising the source skeleton. We
then generate all possible combinations of the skeleton that can be obtained by applying
associativity and pipe- and farm-introduction rules, but without introducing directly nested
farms. This condition ensures termination.

mkSkels : (s1 : SkelTy) -> List (s2 : SkelTy ** Cnv s1 s2)

Step 2: Determine Best Instantiation. For each possible rewriting, we determine the best
possible instantiation by calculating the minimum number of worker threads that are
necessary for the skeleton. We use a recursive tiling algorithm, starting at the outermost
farm instances, and recursively instantiating each sub-skeleton. In each case, we record
only the instantiation that minimises the cost using the lowest number of cores.

bestInst : Arch -> (s1 : SkelTy) -> (Timing, Vect (countFarms s1) Nat)

Step 3: Select Best Skeleton. The third and final step simply selects the skeleton instance
with the least cost, as determined in step 2.

bestSkelTy : Arch -> (s1 : SkelTy) -> (s2 : SkelTy ** Cnv s1 s2)
bestOf : Arch -> SkelTy -> SkelTy

Using the type-level structure to reason about cost and functional equivalence is very
powerful since it allows type-level specifications such as:



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 25

Auto : Arch -> Type -> Type
Auto arch a b =

(fs : Function a b ** Skel (bestOf arch (seqStruct fs)) fs)

bestSkel : (fs : Function a b) -> Auto arch a b
bestSkel fs = (fs ** cast (seqSkel fs))

skelProg : Auto titanic Img Img
skelProg = bestSkel [markPixels, replacePixels]

7 Speedup

This section shows examples of structured programs in IDRIS, and gives the results of
using our techniques on three different benchmarks. We first describe the parallel structure
of each benchmark, and show how this is captured in IDRIS. We then show how our types
predict the optimal choice of skeleton for our examples given the cost models above, and
compare the predictions given by our cost models against actual parallel execution times
on two different real multicores: titanic, a 800MHz 24-core, AMD Opteron 6176, running
Centos Linux 2.6.18-274.e15; using gcc 4.4.6; and lovelace, a 1.4GHz 64-core, AMD
Opteron 6376, running GNU/Linux 2.6.32-279.22.1.e16. All speedups shown here were
calculated as the mean of ten executions. Note that the output of the IDRIS interpreter has
been edited slightly to improve readability.

7.1 Matrix Multiplication

We implement matrix multiplication using a task farm, whose worker function, multRow,
receives a Matrix and a Row of another matrix, and multiplies the row by the matrix to
produce one row of the output. The farm iterates over the rows of the second matrix as its
input stream.

tmult : Timing
multRow : Matrix -> Row -> Row
MM : SkelTy
MM = autoInst titanic (Farm (Func {ti=tmult}))

matmult : Matrix -> Par MM Row Row
matmult m = skel [mm]

where mm : Row -> Row
mm = multRow m

The output of the function skel is, as expected, a task farm with the atomic function mm as
worker.

*Results> matmult m
MkSigma [mm] (farm (func mm)) : (f ** Skel (Farm Func) f)

The function autoInst automatically instantiates the farm using the result of bestInst

(Sec. 6). IDRIS can then automatically determine the best type, or we can manually apply
the cost models to our types. Based on the output given by the cost models, we can decide
what the type annotation of matmult should be.

*Results> cost (Farm {w=20} (Func {ti=tmult})) titanic
1.9597235e-3 : Float

*Results> bestInst titanic (Farm (Func {ti=tmult}))



ZU064-05-FPR paper 13 January 2015 1:38

26 David Castro et al.

1 2 4 6 8 10 12 14 16 18 20 22

1
2

4

6

8

10

12

14

16

18

n Workers

Sp
ee

du
p

Farm n Func

N = 1024
N = 2048

Fig. 7. Speedup (solid lines) vs prediction (dashed lines). Matrix Multiplication of matrices of sizes
N×N (titanic).

(1.8080821739130434e-3, [23]) : (Float, Vect 1 Nat)

*Results> convert (Farm {w=23} (Func {ti=tmult})) matmult
([multRow] ** farm (func multRow)) : (f ** Skel (Farm Func) f)

Figure 7 compares the speedups predicted by our cost models with the actual speedups for
a farm with a varying number of workers for two different sizes of matrix (N = 1024 and
N = 2048). Predictions are shown as dashed lines, and the actual speedup is shown by the
solid lines. It is clear that the cost models give good predictions of the actual speedups for
all cases, and do not over-predict the speedup. Moreover, our type system determines that
for this example we need to instantiate the Farm with 23 workers. We obtain speedups of
up to 15.90 on 24 cores.

7.2 Image Merge

Our second example processes a stream of pairs of images and returns a stream of merged
images, using replacePixels . markPixels. The parallel structure, IM, is a farm of a 2-
stage pipeline.

tmark, treplace : Timing
markPixels : (Img, Img) -> (Img, Img)
replacePixels : (Img, Img) -> Img
IM : SkelTy
IM = autoInst titanic (Farm (Pipe (Func {ti=tmark})

(Func {ti=treplace})))

imageMerge : Par IM (Img,Img) Img
imageMerge = skel [markPixels, replacePixels]

*Results> imageMerge
MkSigma
[markPixels, replacePixels]



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 27

1 2 3 4 5 6 7 8 9 10 11 12

2

3

4

5

6

n Workers

Sp
ee

du
p

Farm n (Pipe Func Func)

Fig. 8. Speedup (solid lines) vs prediction (dashed lines). Image Merge, 500 input tasks (titanic).

1 2 4 6 8 10 12 14 16 18 20 22

1
2

4

6

8

10

12

14

16

18

20

n2 Workers

Sp
ee

du
p

Pipe (Farm n1 Func) (Farm n2 Func)

n1 = 1
n1 = 2
n1 = 4
n1 = 6
n1 = 8

Fig. 9. Speedup (solid lines) vs prediction (dashed lines). Image Convolution, 500 input tasks
(titanic).

(farm
(pipe
(func markPixels)
(func replacePixels))) : (f ** Skel (Farm (Pipe Func Func)) f)

The corresponding predicted and actual speedups are shown in Figure 8. Although the
absolute speedup is not as good as for the matrix multiplication (6.14 on 23 cores), once
again our models are a good lower-bound predictor of the actual speedup. We can again
determine the best instantiation for the farm workers:



ZU064-05-FPR paper 13 January 2015 1:38

28 David Castro et al.

1 2 4 6 8 10 12 14 16 18 20 22

1
2
4
6
8

10
12
14
16
18
20
22

Cores

Sp
ee

du
p

Farm (Seq Func Func)

Farm (Pipe Func Func)

Pipe (Farm 6 Func) (Farm Func)

Fig. 10. Speedup (solid lines) vs predicted (dashed lines). Different Parallel Structures for Image
Convolution, 500 Images 1024 * 1024: titanic

1 4 8 16 24 32 40 48 56 64

1
4
8

12
16
20
24
28
32
36
40
44
48
52
56

Cores

Sp
ee

du
p

Farm (Seq Func Func)

Farm (Pipe Func (Farm 4 Func)

Farm (Pipe Func Func)

Pipe (Farm 12 Func) (Farm Func)

Fig. 11. Speedup (solid lines) vs predicted (dashed lines). Different Parallel Structures for Image
Convolution, 500 Images 1024 * 1024: lovelace.

*Results> bestInst titanic IM
(1.1532345454545454e-3, [11]) : (Float, Vect 1 Nat)

7.3 Image convolution

Image convolution is widely used in image processing applications. We express a
convolution algorithm as the composition of two functions, read and process. The read

function receives the data corresponding to an image, parses it, and prepares it for the
next step, process, that returns the actual convolution of the image. In this case, the best
structure is not a pipeline. We provide two alternative structures: a) the best instantiation for
the parameters of a two-stage pipeline, where both stages are task farms (imageConv1);



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 29

and b) the best structure with respect to the cost models for the titanic and lovelace

architectures (imageConv2 and imageConv3).

tread, tproc : Arch -> Timing
IC, BIC : SkelTy
IC = Pipe

(Farm (Func {ti=tread titanic}))
(Farm (Func {ti=tproc titanic}))

BIC = bestInst titanic IC

imageConv1 : Par BIC Data Img
imageConv1 = skel [readI, processI]

imageConv2 : Auto titanic Data Img
imageConv2 = bestSkel [readI, processI] [tread, tproc]

imageConv3 : Auto lovelace Data Img
imageConv3 = bestSkel [readI, processI] [tread, tproc]

Figure 9 compares predicted vs actual speedups for IC with specific numbers of workers
in the first stage of the pipeline against a varying number of workers in the second stage
on titanic. Once again, the cost models are an excellent predictor of the actual speedup,
providing tight lower bounds on speedup. In the best case, we achieve a speedup of 19.81
on 23 cores. Figures 10 and 11 compare predicted vs actual speedups of the best predicted
structures on titanic and lovelace respectively. The actual speedup closely corresponds
to that predicted in most cases, though the prediction is not always a lower bound in this
case. In the best case, we achieve a speedup of 44.29 on 63 cores for lovelace and 21.08
on 23 cores for titanic. As with the previous examples, we can use the cost models directly
to obtain cost estimations for our problem and to compare different parallel structures and
instantiations. In this case, we can create a function that returns a list of structures sorted
by their predicted cost.

*Results> compareStructs titanic IM

[(1.5157752173913045e-2, (Farm (Seq Func Func) ** [23])),
(1.6327986470588234e-2, (Pipe (Farm Func) (Farm Func) ** [6, 17])),
(1.794705333333333e-2, (Farm (Pipe Func (Farm Func)) ** [5, 3])),
(2.425585272727273e-2, (Farm (Pipe Func Func) ** [11])),
(7.862535999999999e-2, (Pipe Func (Farm Func) ** [4])),
(0.26282868000000004, (Pipe Func Func ** [])),
(0.2665590982608696, (Seq (Farm Func) Func ** [23])),
(0.26694033913043486, (Seq (Farm Func) (Farm Func) ** [23, 23])),
(0.33985976000000007, (Seq Func Func ** [])),
(0.34862830000000006, (Seq Func (Farm Func) ** [23]))]

: List (Float, (s ** Vect (countFarms s) Nat))

All these structures are convertible, under the convertibility relation (Section 6).



ZU064-05-FPR paper 13 January 2015 1:38

30 David Castro et al.

Consider the structures Farm (Pipe Func (Farm Func)) and Pipe (Farm Func) (Farm

Func). IDRIS can determine the convertibility proof that can be used internally to rewrite
from one to the other.

*Results> cnv (Farm (Pipe Func (Farm Func)))
(Pipe (Farm Func) (Farm Func))

Trans
(Trans (Rewrite (Sym FarmIE))

(Trans (Rewrite (Sym PipeIE))
(RwComp SERefl (Rewrite (Sym FarmIE)))))

(Trans (Trans (RwComp SERefl (Rewrite FarmIE))
(RwComp (Rewrite FarmIE) SERefl))

(Rewrite PipeIE)) : Cnv (Farm (Pipe Func (Farm Func)))
(Pipe (Farm Func) (Farm Func))

Convertibility between both structures can be obtained since the normalised form of both
structures is the same. The first part of the proof removes farms and pipelines in order
to rewrite the structure into the normalised skeleton. The second part of the proof applies
symmetry to the proof of convertibility between the target structure and the normalised
skeleton, so that the pipeline and the farms in both stages are introduced.

8 Related Work

8.1 Skeleton Semantics

There are a few formal descriptions of skeleton semantics. For example, Aldinucci and
Danelutto propose an operational semantics schema that can be used to describe both
functional and parallel behaviour of skeletal programs in a uniform way (Aldinucci &
Danelutto, 2004; Aldinucci & Danelutto, 2007). Their semantics enables several interesting
analyses of Lithium (Danelutto & Teti, 2002) programs, including comparing the
performance and resource usage of functionally equivalent programs and determining the
maximum parallelism achievable with infinite or finite resources. Falcou and Sérot show
how generative and metaprogramming techniques can be applied to the implementation
of a skeleton-based parallel programming library, Quaff (Falcou & Sérot, 2008). This
implementation is derived directly from a set of explicit production rules, in a semantics-
oriented style, and is therefore formally sound. None of the previous work attempts to
integrate that formal reasoning about skeleton semantics in the program as part of the type
system, however, as we have done. We believe that this forms a very powerful tool, since
it allows the integration of any semantics-derived analysis. Moreover, previous work on
semantics does not consider the low level components that are used to communicate and
synchronise the skeleton, as we have done here.

8.2 Cost Models

There has been extensive work into performance prediction of parallel programs. The
PRAM model (Fortune & Wyllie, 1978) is widely used as a standard theoretical model of a
parallel machine, and it can be used to derive a standard measure of the parallel complexity
of a program. Several other models of computations provide reasonably accurate cost
models, such as the bulk-synchronous parallel model (Valiant, 1990) and for the LogP
model (Culler et al., 1993). Gustavsson et al. (2012) describe an algorithm for static
timing analysis of parallel software implemented using shared-memory concurrency, using
abstract interpretation.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 31

Lobachev and Loogen (2010; 2013) describe the cost of parallel skeletons in terms of
the sequential parts and the parallel penalty. They use many methods to obtain this parallel
penalty, such as profiling and machine learning techniques. Benoit et al. (2004) evaluate
the performance of skeleton-based parallel programs by modelling the parallel skeletons
in PEPA (Performance Evaluation Process Algebra). Hayashi and Cole (2002) describe the
first completely static system that takes into account both computation and communication
for predicting the run time of skeletal parallel programs. Much of the previous work on
performance prediction provides reasonable accuracy in different contexts. Although the
work we describe in this paper provides comparable accuracy for some problems, the main
difference lies not in the predictive power. Our cost models are formally derived from the
operational semantics of the parallel programs and can be used as type-level annotations
integrated with a rewriting system, thus providing more reasoning power (e.g. allowing to
specify constraints on the cost of a parallel program, or using the cost models to drive the
rewriting system).

8.3 Types and Parallelism

Types have been used to determine some other parallelism properties. For example, Peña
and Segura use sized types to reason about the termination and productivity of Eden
skeletons. (Peña & Segura, 2005) (Peña & Segura, 2001). However, they do not provide
cost models or provide type-level mechanisms to reason about the equivalence of skeletal
expressions as we have done. Types have also been used to ensure deterministic evaluation
of concurrent/parallel programs. For example, Kawaguchi et al (Kawaguchi et al., 2012)
use a type-and-effect system based on refinement types to guarantee that a fine-grained,
low-level, shared-memory multithreading program is deterministic and LVars support
deterministic-by-construction parallel programming (Kuper & Newton, 2013). Bocchino
et al (Bocchino Jr et al., 2009; Bocchino Jr et al., 2011) present a language with a type and
effect system that supports nondeterministic computations with a deterministic by default
guarantee. Finally, Dodds et al. (Dodds et al., 2011) use concurrent abstract predicates,
based on separation logic, for the formal specification and verification of barrier constructs
that are used to introduce deterministic parallelism.

Finally, dependent types have previously been used in some more limited parallel
settings. For example, Lippmeier et al (Lippmeier et al., 2012) describe an extensible
parallel Repa-style array fusion using indexed types to specify the internal representation
of each array, and Thiemann and Chakravarty (Thiemann & Chakravarty, 2013) use fully-
fledged dependent types to create an Agda frontend to Accelerate, a Haskell-embedded
language for data parallel programming aimed at GPUs. This front-end takes advantage of
dependent types to ensure certain static guarantees. However, their type system does not
allow reasoning about the equivalence or cost of parallel programs, and they only consider
data-parallelism, where our approach is fully general.

8.4 Session Types

Session types describe the communication structure of a concurrent system passing
messages across communication channels. They support static guarantees that a message-
passing program follows a particular communication protocol. Recently, the relationship
between session types and linear logic has been shown (Takeuchi et al., 1994; Caires
& Pfenning, 2010; Wadler, 2012). Behavioral types based on process algebras have
been introduced with the aim of characterising the interface of a process not just as a
specification of the static type of exchanged messages, but also as specification of its



ZU064-05-FPR paper 13 January 2015 1:38

32 David Castro et al.

dynamic behaviour. Caires and Seco introduce the concept of Behavioral Separation as
a general principle by dealing with interference in higher-order imperative concurrent
programs and present a type-based approach that develops the concept in a concurrent
ML-like language (Caires & Seco, 2013). While session types do not deal directly with
parallelism, but with concurrency and communication, the properties that they capture can
be used for reasoning about parallel computing (Ng et al., 2014). However, it is not clear
how to use session types for performance prediction, since details about the computation
structure are needed. We aim to provide the corresponding type-level description of the
computation structure of a program.

9 Conclusions

This paper has described a new dependently-typed approach to understanding and
reasoning about structured parallel programs, based on strong semantic models of
parallelism. The type-level description that we have used allows a clear separation of the
functionality of the program from its parallel structure: in particular, the parallel structure
(and so performance) of a program can be altered simply by changing its type, with the type
system ensuring and verifying that its functionality is unaltered. Moreover, by embedding
a formal cost model into the type system, we are able to reason about the performance and
potential speedup of parallel programs at the type level. This allows type-level decisions to
be taken about possible parallelisations, including automatically determining both the best
parallel structure, and the best values for key performance-affecting parameters. This could
be exploited, for example, as part of an automatic rewriting system to transform sequential
programs into provably optimal parallelisations with respect to the specified operational
semantics.

9.1 Further work

In order to achieve the result described in this paper, we have made a number of
assumptions and simplifications. The first is in restricting to a very simple, but still usable,
set of basic skeletons. Danelutto et al. (Danelutto & Torquati, 2013) have shown that many
other skeletons can, in fact, be transformed into combinations of pipelines and farms.
However, this may affect timing properties, and some important parallel structures (e.g.
ones involving feedback) cannot be captured in this way. In future, we intend to study
these more complex skeleton forms, with the aim of extending the applicability of the
work reported here.

Secondly, while providing a contribution that we believe is valuable in its own right,
the operational semantics that we have given here is primarily intended to describe a
sample, formally verifiable, parallel implementation that allows us to reason about the
correctness of the underlying program functionality. There are many ways in which it could
be improved. In particular, for simplicity, we have used an unbounded queue structure.
Restricting to a bounded queue would be an interesting future extension, but would require
us to deal with some complex issues, including back-pressure on streams5.

Thirdly, since we are interested mainly in improved speedup, we have only considered
upper bounds on costs. This is potentially useful also for a real-time (parallel) setting,
where we need to ensure that deadlines are met. However, small changes to the operational
semantics and to the corresponding types should also allow us to determine lower-bound

5 This is especially problematic when combined with skeletons that include feedback.



ZU064-05-FPR paper 13 January 2015 1:38

Structure, Semantics and Speedup 33

costs. This would allow us not only to reason about the best speedup, but also to provide
guarantees about the minimum speedup that will be achieved by any parallelisation, giving
limits on best and worst speedup for any given choice.

Finally, the system of skeletons that we have used appears to have interesting algebraic
properties. In this paper, we have captured these rules in the form of a simple convertibility
equivalence between alternative parallel forms, but there may be a deeper and more
interesting algebraic formulation that gives greater reasoning power.

References
Aldinucci, Marco. (2002). Automatic program transformation: The Meta tool for skeleton-based

languages. Constructive methods for parallel programming, advances in computation: Theory
and practice, 59–78.

Aldinucci, Marco, & Danelutto, Marco. (2004). An operational semantics for skeletons. Advances
in parallel computing, 13, 63–70.

Aldinucci, Marco, & Danelutto, Marco. (2007). Skeleton-based parallel programming: Functional
and parallel semantics in a single shot. Computer languages, systems & structures, 33(3), 179–
192.

Aldinucci, Marco, Coppola, Massimo, & Danelutto, Marco. (1998). Rewriting skeleton programs:
How to evaluate the data-parallel stream-parallel tradeoff. Proc. of international workshop on
constructive methods for parallel programming. Technical report MIP-9805. University of Passau.
Passau.

Benoit, Anne, Cole, Murray, Gilmore, Stephen, & Hillston, Jane. (2004). Evaluating the performance
of skeleton-based high level parallel programs. Pages 289–296 of: Computational science-ICCS
2004. Springer.

Bocchino Jr, Robert L, Adve, Vikram S, Dig, Danny, Adve, Sarita V, Heumann, Stephen,
Komuravelli, Rakesh, Overbey, Jeffrey, Simmons, Patrick, Sung, Hyojin, & Vakilian, Mohsen.
(2009). A type and effect system for deterministic parallel Java. Pages 97–116 of: Proc. of the
24th conf. on object oriented programming systems languages and applications. ACM.

Bocchino Jr, Robert L, Heumann, Stephen, Honarmand, Nima, Adve, Sarita V, Adve, Vikram S,
Welc, Adam, & Shpeisman, Tatiana. (2011). Safe nondeterminism in a deterministic-by-default
parallel language. Pages 535–548 of: Proc. of the 38th symp. on principles of programming
languages. ACM.

Brady, Edwin. (2013a). Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of functional programming, 23(9), 552–593.

Brady, Edwin. (2013b). Programming and reasoning with algebraic effects and dependent types.
Pages 133–144 of: Proc. of the 18th international conference on functional programming. ACM.

Brady, Edwin, & Hammond, Kevin. (2012). Resource-safe systems programming with embedded
domain specific languages. Pages 242–257 of: Proc. of practical aspects of declarative languages.
Springer Berlin Heidelberg.

Brown, Christopher, Danelutto, Marco, Hammond, Kevin, Kilpatrick, Peter, & Elliott, Archibald.
(2013). Cost-directed refactoring for parallel Erlang programs. International journal of parallel
programming, 42(4), 1–19.

Caires, Luı́s, & Pfenning, Frank. (2010). Session types as intuitionistic linear propositions. Pages
222–236 of: Concur 2010-concurrency theory. Springer.

Caires, Luı́s, & Seco, Joao C. (2013). The type discipline of behavioral separation. Pages 275–286
of: Proc. of the 40th symp. on principles of programming languages, vol. 48. ACM.

Caromel, Denis, & Leyton, Mario. (2007). Fine tuning algorithmic skeletons. Pages 72–81 of:
Euro-par 2007. Springer.

Cole, Murray I. (1989). Algorithmic skeletons: structured management of parallel computation.
Pitman London.

Culler, David, Karp, Richard, Patterson, David, Sahay, Abhijit, Schauser, Klaus Erik, Santos, Eunice,
Subramonian, Ramesh, & Von Eicken, Thorsten. (1993). Logp: Towards a realistic model of
parallel computation. Vol. 28. ACM.



ZU064-05-FPR paper 13 January 2015 1:38

34 David Castro et al.

Danelutto, M., & Torquati, M. (2013). A RISC building block set for structured parallel
programming. Pages 46–50 of: 21st euromicro international conference on parallel, distributed,
and network-based processing (PDP ’13).

Danelutto, Marco, & Teti, Paolo. (2002). Lithium: A structured parallel programming environment
in Java. Pages 844–853 of: Computational science—ICCS 2002. Springer.

Dodds, Mike, Jagannathan, Suresh, & Parkinson, Matthew J. (2011). Modular reasoning for
deterministic parallelism. Pages 259–270 of: Proc. popl’11. ACM.

Falcou, Joel, & Sérot, Jocelyn. (2008). Formal semantics applied to the implementation of a skeleton-
based parallel programming library. Pages 243–252 of: Proc. of parallel computing: Architectures,
algorithms and applications, vol. 38.

Fortune, Steven, & Wyllie, James. (1978). Parallelism in random access machines. Pages 114–118
of: Proc. of the 10th symp. on theory of computing. STOC ’78. New York, NY, USA: ACM.

González Vélez, Horacio, & Leyton, Mario. (2010). A survey of algorithmic skeleton frameworks:
high-level structured parallel programming enablers. Software: Practice and experience, 40(12),
1135–1160.

Gustavsson, Andreas, Gustafsson, Jan, & Lisper, Björn. (2012). Toward static timing analysis of
parallel software. Oasics-openaccess series in informatics, vol. 23. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Hayashi, Yasushi, & Cole, Murray. (2002). Static performance prediction of skeletal parallel
programs. Parallel algorithms and applications, 17(1), 59–84.

Kawaguchi, Ming, Rondon, Patrick, Bakst, Alexander, & Jhala, Ranjit. (2012). Deterministic
parallelism via Liquid Effects. Pages 45–54 of: Proc. of the 33rd conf. on programming language
design and implementation. ACM.

Kuper, Lindsey, & Newton, Ryan R. (2013). LVars: lattice-based data structures for deterministic
parallelism. Pages 71–84 of: Proc. of the 2nd workshop on functional high-performance
computing. ACM.

Lippmeier, Ben, Chakravarty, Manuel, Keller, Gabriele, & Peyton Jones, Simon. (2012). Guiding
parallel array fusion with indexed types. Pages 25–36 of: Proc. of the 2012 haskell symposium.
ACM.

Lobachev, Oleg, & Loogen, Rita. (2010). Estimating parallel performance, a skeleton-based
approach. Pages 25–34 of: Proceedings of the fourth international workshop on high-level parallel
programming and applications. ACM.

Lobachev, Oleg, Guthe, Michael, & Loogen, Rita. (2013). Estimating parallel performance. Journal
of parallel and distributed computing, 73(6), 876–887.

Ng, Nicholas, Yoshida, Nobuko, & Luk, Wayne. (2014). Scalable session programming for
heterogeneous high-performance systems. Pages 82–98 of: Software engineering and formal
methods. Springer.

Peña, Ricardo, & Segura, Clara. (2001). Sized types for typing Eden skeletons. Pages 1–17 of: Proc.
of implementation of functional languages. Springer.

Peña, Ricardo, & Segura, Clara Marıa. (2005). Reasoning about skeletons in Eden. Parallel
computing: Current & future issues of high-end computing.

Pelagatti, Susanna. (1998). Structured development of parallel programs. Vol. 102. Taylor & Francis
Abington.

Sarkar, Susmit, Hammond, Kevin, & Brown, Chris. (2014). Timing properties and correctness for
structured parallel programs on x86-64 multicores. Under submission.

Takeuchi, Kaku, Honda, Kohei, & Kubo, Makoto. (1994). An interaction-based language and its
typing system. Pages 398–413 of: Parallel architectures and languages europe. Springer.

Thiemann, Peter, & Chakravarty, Manuel MT. (2013). Agda meets Accelerate. Pages 174–189 of:
Implementation and application of functional languages. Springer.

Valiant, Leslie G. (1990). A bridging model for parallel computation. Communications of the acm,
33(8), 103–111.

Wadler, Philip. (2012). Propositions as sessions. Pages 273–286 of: Proc. of the 17th international
conference on functional programming, vol. 47. ACM.


