

Evaluation	
 Report	
 	

Physics	
 Lab	
 Booking	
 Project	

Kartik Gupta

Puravin Sivaganam
Christopher Ballouz
 Julio Deak Harada

Mohammad Heydari
Albert Christopher Hyde

Client: Dr Xue (Sue) Yang

Gentlemen, we are going to relentlessly chase perfection,
knowing full well we will not catch it , because nothing is
perfect . But we are going to relentlessly chase it , because in
the process we will catch excellence. I am not remotely
interested in just being good.

-Vince Lombardi

	

Technical Design Document

Table	
 of	
 Contents	

1	
 INTRODUCTION	
 ..	
 1	

1.1	
 Abstract	
 ...	
 1	

1.2	
 Executive	
 Summary	
 ...	
 1	

2	
 Core	
 ...	
 2	

2.1	
 User	
 Stories	
 ..	
 2	

2.2	
 Test	
 Framework	
 ...	
 2	

2.3	
 Acceptance	
 Tests	
 ..	
 3	

2.4	
 Customer	
 interactions	
 ..	
 3	

2.5	
 Group	
 Processes	
 ...	
 6	

2.5.1	
 The	
 Good	
 and	
 The	
 Bad	
 ...	
 7	

3	
 Appendix	
 ...	
 9	

3.1	
 Unit	
 Tests	
 ..	
 9	

3.1.1	
 Confirmation	
 Dialogue	
 Spec	
 ...	
 9	

3.1.2	
 Cancel	
 Booking	
 Spec	
 ..	
 9	

3.1.3	
 Admin	
 Add	
 Student	
 	
 Spec	
 ...	
 10	

3.2	
 Acceptance	
 Tests	
 ..	
 11	

3.3	
 Client’s	
 priority	
 list	
 for	
 requirements	
 ...	
 12	

3.3.1	
 Admin	
 functions	
 ...	
 12	

3.3.2	
 Tutors	
 ...	
 12	

3.3.3	
 Students	
 ...	
 12	

3.4	
 Experiment	
 Data	
 ...	
 14	

Technical Design Document

1 INTRODUCTION

1.1 ABSTRACT

This technical document is an evaluation plan for Sprint 1 for the project: Web-based
Booking System for Senior Physics Laboratory. The purpose of this evaluation plan is to
reflect commitment to the Extreme Programming (XP) methodology. This document will
present our initial testing plan. The plan includes unit testing, acceptance testing and usability
testing. It will also detail the client’s interaction with our team with the involvement they
have had in the process of defining appropriate tests.

1.2 EXECUTIVE SUMMARY

The project our group has been assigned is, "Web-based Booking System for Senior Physics
Laboratory". The purpose of this project is to carry out an evaluation on booking system to
ascertain requirements and help resolve the bugs to make it a viable product.

To verify that the existing system functions as expected, we conduct 3 levels of software
testing, unit tests, integration tests and acceptance tests. First, we test certain functions and
areas with unit testing. This method allows checking whether the function is returning the
proper output with given set of inputs. Normally the set of inputs are declared before going
into implementation so the code won't be biased to be operating in specific way. After the
unit testing, we move to integration test to expose faults in the interaction between integrated
units. Finally, acceptance test takes place determine if the requirements of the function is met.

Since the system is coded with Ruby on Rails, we will use RSpec as our testing framework.
RSpec is testing tool for the Ruby programming language. RSpec supports Behaviour-driven
development, which enables to write the tests for rails models clean and human readable.

Technical Design Document

2 CORE

2.1 USER STORIES

The 6 user stories we have planned:

1. As a student, I want to book experiments based on my credit point requirements.

2. As a student, I can only make one experiment session per day

3. As a student, I want to be shown when days are fully booked

4. As a student, I want to be shown a confirmation when making a booking

5. As a student, I want to be able to cancel a booking a certain number (X) days before
the booked date

6. As an admin, I want to be able to add students with their personal details
.

2.2 TEST FRAMEWORK

RSpec is testing tool for the Ruby programming language. Born under the banner of
Behaviour-Driven Development, it is designed to make Test-Driven Development a
productive and enjoyable experience with features like:

• a rich command line program (the rspec command)

• textual descriptions of examples and groups (rspec-core)

• flexible and customizable reporting

• extensible expectation language (rspec-expectations)

• built-in mocking/stubbing framework (rspec-mocks)

We use Rspec with extra gems, like Capybara, which allows us to simulate a user’s
interaction with the sample application using a natural English-like syntax, together
with Selenium, one of Capybara’s dependencies.

To write unit tests, the entire group gets together and has a brain storming session. At this
point tests are written in simple English. They are later translated to Rspec before coding can
begin. Rspec makes it easier to translate tests written in simple English to Ruby. An example
of a Rspec test is:

describe MovieList do
 context "when first created" do
 it "is empty" do
 movie_list = MovieList.new
 movie_list.should be_empty

Technical Design Document

 end
 end
end

The it() method creates an example of the behavior of a MovieList, with the context
being that the MovieList was just created. The expression movie_list.should be_empty is self-
explanatory.

Running this code in a shell with the rspec command yields the following
specification:

 MovieList when first created is empty

Add some more contexts and examples, and the resulting output looks even
more like a specification for a MovieList object.

 MovieList when first created is empty

 MovieList with 1 item is not empty includes that item

This example is taken from the RSpec Book, Behaviour Driven Development with RSpec,
Cucumber and Friends by David Chelimsky (et. all), Oreilly Publishing, 2014

2.3 ACCEPTANCE TESTS

Acceptance tests are created from user stories which are selected during each iteration of
planning. They are then given and shown to the customer/client to ensure if the user story has
been correctly implemented. Each test represents a result from the system in which the
customer/client is responsible for verifying the correctedness of the acceptance test.

These user stories where then transformed into acceptance tests. With these acceptance tests,
our Client Liaison Puravin Sivaganam contacted and emailed our client Dr. Sue about
whether or not she wanted these tests to be implemented into the system or whether they were
on track to what she hoped to be in the system. The full table is shown in the appendix(2.1.2).

2.4 CUSTOMER INTERACTIONS

The communication methods that we use to interact with our customer/client are emails and
face-to-face meetings. The emails are extensive and could be viewed via our bit-bucket site
under 'Client Communication'. The face-to-face meetings however are brief and straight to
the point.

Our client, Dr. Xue (Sue) Yang, works with the Scientific Computational Office in the
School of Physics here at Sydney University. Dr. Xue is looking on improving the current
physics booking system that the School of Physics uses for booking experiments.

Technical Design Document

The project began two years ago when Dr. Xue worked with a group of COMP3615 students
to develop the booking system. The current system was developed using Ruby on Rails and
our client has requested us to maintain the current programming standard.

Dr. Sue has given us a document form of all the priority list of requirements that we
deconstructed into a tabular form (2.1.3), including experiment data which we can use for
testing the web based scheduler (2.1.4).

Below are the client meeting notes that were made from our meeting with the client during
Week 2 and Week 4 respectively.

Technical Design Document

In the email above, Dr Sue highlights the need for us to review the system thoroughly and
extensively to test and identify any bugs that the system currently has. With this in hand we
as a group were able to send back a list of all the new bugs which we found as well as the
features that she wanted to be implemented to the system.

In the email below, Dr Sue attached the acceptance tests and was pleased with the
development we were making with a few tips and instructions.

Technical Design Document

2.5 GROUP PROCESSES

The major roles within the scope of the project are:

1. Manager and Tracker

2. Integration Tester

3. Usability Tester

4. Client Liaison

5. eXtreme Programming Expert

6. Mercurial Expert

7. Bitbucket Expert

8. Programmers

Keeping within the boundaries of the Agile framework we will follow the reverse pyramid
structure with the Programmers and Testers at the top and the Manager at the bottom
representing a style of management where the manager supports the team. This way the team
is able to choose tasks freely knowing that the manager will deal with any roadblocks.

Technical Design Document

The programming methodology being followed is Extreme Programming, which has a great
emphasis on testing. The group processes have also been set up to reflect the same. Before,
any programming begins; the group gets together and thinks about unit tests for each of the
user stories. This session of brain storming helps identify any cases that might be missed by
an individual. It also provides an estimate of how complex a user story is from start to finish
which helps during The Planning Game.

During the Planning Game, Issues are created for each user story on Bitbucket. Each team
member is free to choose the user story they wish to work on in that sprint. They then assign,
on a scale of 0 to 2, a level of complexity, priority and difficulty, to the user story. The unit
tests are first converted to Rspec and then the user stories are then developed through Test
Driven Development. Alongside development, the programmer also comes up with
acceptance tests, which he/she thinks satisfies the need of the client. Alongside, the Client
Liaison these acceptance tests are passed to the client for approval.

After passing all the unit tests, the Integration Tester checks the compatibility of the user
story developed with existing code. A method of Continuous Integration is followed where
the code before the development of the new user story and after development is checked.

This is then passed to the Usability Tester to check the view and single out any anomalies
that may arise from the use of the functionality. Both the “happy case” and extreme case is
checked for how the user may navigate through the system. Use cases diagrams are created
and need to be approved by the client if they differ from the acceptance test.

Finally, before resolving the issue on Bitbucket the acceptance test criteria is checked and if it
is met, only then the issue is marked as resolved.

2.5.1 The Good and The Bad

 This section identifies the strengths and weaknesses of the group from the standpoint
of XP and the Big 5 terms. These characteristics have been developed based on the
observations from the first sprint.

Manager and Tracker – Being responsible for supporting the group, keeping tasks on time
and being agile are all part of the successes of the manger. Meeting agendas are made on time
and are uploaded to the Bitbucket wiki page for everyone to see beforehand.

Trusting other group members to complete the task on their own is where the tracker and
manager can improve.

Integration Tester - Responsible for ensuring various modules (user stories) work well
together after being developed. This comes after unit testing but before acceptance testing.
The Integration Tester is also responsible for developing the rspec framework that we will be
using to do TDD as well as to train fellow team mates for the same.

Areas for improvement include, mutual performance monitoring, so that he can adjust along
with the demand and supply of the work being completed. Sometimes the tester will have a
lot to test in one sprint and maybe in one he will have less. He also needs to set the testing
standard and set up continuous testing to counter this.

Technical Design Document

Usability Tester – Responsible for evaluating product by testing the User Interface. He is
also involved in the prototyping phase in case new view is being created. A survey after a
user story has finished and is ready to be marked resolved a survey should be done of the new
functionality.

The usability tester needs to be adaptable, have back up behaviour in case of quick changes
and needs to have continuous testing.

Client Liaison – is adaptive, on time with client communication and up to date with the
happenings of the group.

In case of a short notice the client liaison needs to be able to act quick. Hence needs to have
back up behaviour and avoid falling into the vicious cycle of closed loop communication.

Experts – Great with technical jargon and can simplify it for group members. He sets
procedures for the rest of the group to follow and make the most of the technologies and tools
we are allowed to use such as Bitbucket and mercurial. The experts need to be adaptable and
roles need to be assigned to different people (which is not the case right now). If the roles are
diversified this will create a system of checks and balances between the team as well as
between the tracker and manager.

Technical Design Document

3 APPENDIX

3.1 UNIT TESTS

3.1.1 Confirmation Dialogue Spec

3.1.2 Cancel Booking Spec

Technical Design Document

3.1.3 Admin Add Student Spec

3.1.4 Book an Experiment

Technical Design Document

3.2 ACCEPTANCE TESTS

These acceptance tests have been approved by the client and has feedback attached.

User Task Acceptance Test Client Feedback (confirm

accuracy of tests)
As a student, I want to book
experiments, based on my credit
point requirements

Given I am a student,
When I have credit points of 2
Then 3 experiments will be available for
me to book.
When I have credit points of 4
Then 5 experiments will be available for
me to book.
When I have credit points of 6
Then 8 experiments will be available for
me to book.
When I have credit points of 8
Then 10 experiments will be available for
me to book.

When booking, I choose one from
the list of experiments. With 2
cps, I can only book 6 sessions;
for example, 2 sessions for one

experiment or 4 sessions for one
experiment as required.

As a student, I can only make one
experiment session per day

Given I am a student,
When I book an experiment on any
particular day that the lab is open
Then the day becomes occupied and I
cannot book another session for an
experiment on that day

ok

As a student, I want to be shown
when days are fully booked

Given I am a student,
When I proceed to make a booking
Then the fully booked days appears
occupied (white cell) so I cannot select
them.

ok

As a student, I want to be shown
a confirmation when making a
booking

Given I am a student,
When I have selected the day(s) to make a
booking for an experiment
Then a confirmation box pops up with the
options OK and Cancel.
When OK is selected the booking will be
processed.
Otherwise booking will be cancelled.

after OK selected, the program
should check the table and make

final sure the day is not booked by
other students

As a student, I want to be able to
cancel a booking a certain
number(X) days before the
booked date

Given I am a student,
When I select a booking made and proceed
to cancel that booking and I am X days
before the experiment's booked date
Then I can cancel the booking.
Otherwise it will not let me to select an
option to cancel the booking.

ok

As an admin, I want to be able to
add students with their personal
details

Given I am an admin,
When I select to create a student, there will
be fields to input their first name, last
name, SID (username), email, number of
credit points, phone number, comments,

This may be a small bug.
Although there is an error

message, a new student has
actually been added. admin
doesn’t need confirmation

Technical Design Document

and a password and once I select to create
a student
Then there will be a confirmation to notify
that the student’s details have been
accepted.

because he can edit/change the
student’s details when needed.

Could you fix the bug in import
student list as well?

3.3 CLIENT’S PRIORITY LIST FOR REQUIREMENTS

The list below mentions Admin functions, Tutor functions and Student functions and is the
basis for our User Stories.

3.3.1 Admin functions
Requirement Priority Additional Description
Setup dates for available
experiments in current
semester.

1st Different experiments may have different
calendars (different days). In current system, all
experiments use the same calendar
View -- list of experiments and a calendar.
Select experiments and days to set up calendar
for specific experiments

Fix the bug in adding new
student

1st

Fix the bug in import student
list

1st

Admin is able to make/delete
any bookings at any time and
send emails to affected
students for notification of the
changes.

2nd The same booking rules (see students section
below) apply. The emails sent out will have a
backup in the system and be viewed as required.
It displays what experiments have been booked
and done so far for each student.

View the booking summary 3rd Bookings Summary also provides information
about total free sessions, total required sessions,
and total booked sessions

Fix the bug in downloading
student’s report

3rd

In Experiments, venue should
be included in the table and
displayed in the relevant
pages, such as booking
summary of student’s login.

4th

3.3.2 Tutors
Requirement Priority Additional Description
Fix the bug in Download
student’s report

3rd Similar to admin

View bookings summary 4th Similar to admin

3.3.3 Students
Requirement Priority Additional Description
Make online bookings for the
experiments, based on their
required CPs.

1st

Each student can only do
single experiment session at a
time

1st In booking calendar for each experiment, the
days should be white, which are already booked
by others for the same experiment and which are

Technical Design Document

already booked by this student for other
experiments

Student booking should be
made evenly across the
semester.

1st Students are not allowed to over-book sessions
(eg. With 4cps, students cannot book over 10
sessions).

There should be a
confirmation window to make
sure they want to book on
these days before further
action.

1st

Students should be allowed to
cancel the booking they made,
but only eg. more than X
(2/3/4?) days before the
booked dates.

1st

Admin is able to define
parameters X. or not allowed
to cancel the booking
(cancellation must be done via
admin).

1st

There is a bug in
make_booking of current
system.

1st

In ‘Bookings Summary’,
display course requirements
for the student

4th CPs, total number of experiments required,
number of sessions already booked, and number
of sessions to be booked

In ‘My Marks’, display
paperwork to be examined

4th number of logbooks, report, poster, talk and
assignment

Technical Design Document

3.4 EXPERIMENT DATA

This data was given to us by the client to do initial testing with. This can be useful for
integration testing to see what the system’s response should be in reaction to a user input.
	

