Evaluation Report

Physics Lab Booking Project

Kartik Gupta

Puravin Sivaganam
Christopher Ballouz
Julio Deak Harada
Mohammad Heydari

Albert Christopher Hyde

Client: Dr Xue (Sue) Yang

(jentfemen, we are going to re[entfess[y chase yerfection,
Enowingfu[[well we will not catch it, because notﬁing is
'perfect. But we are going to refentfessfy chase it, because in
the process we will catch excellence. 1 am not remote[y

interested injust Eeing gooof.

-Vince Lombardi

Technical Design Document

Table of Contents

1

3

INTRODUCTION ...ocoiciismssmssnsssssssssmsssassnssnssnssassns 1
T T 11 7 U 1
1.2 EXeCUtiVe SUIMIMATY cioeiieisnismsmssmsnssassmssnssesssssssssssssssssssssssssnssssssssssssssssssssessesssssssnssnssnssnssnssnssessessenses 1

080) o 2
20 TR T3 g () (= 2
20720 X1 o 30 @ 1 00T 00) . 2
2 T oo 0] 4 (o AT 3
2.4 CuStomer iNtEraCtiONS ... 3
2.5 GroUP PIrOCESSES ..cviimirsmismsissmssismssissssissnsssssssssssassssasssssnssssnnssssnnssnnsas 6

2.5.1 The G00d and The Bad ... ssns 7

2] 0153 1 L 9
100 O 1 L T 9

3.1.1 Confirmation DialogUe SPEC......uininiinenssssssessssssssssssssssssssssesssns 9

3.1.2 Cancel BOOKING SPEC.. i ssnns 9

3.1.3 Admin Add StUAENT SPEC .t st sssssssssssssssssssssssssssssns 10
R Xt o =3 01 0 0 L T 11
3.3 Client’s priority list for reqUIremMents.........cumsmmsmmsmsmms s ————————— 12

3.3.1 AdMIN FUNCHONS coottreret s s s s b s s s an s 12

3.3.2 TULOTS et r s st s s R AR AR R R 12

3.3.3 STUAENTS ottt sss s ss s bbb s b b R s 12

3.4 Experiment Data......mmnssssssssesssssnss s s 14

Technical Design Document

1 INTRODUCTION

1.1 ABSTRACT

This technical document is an evaluation plan for Sprint 1 for the project: Web-based
Booking System for Senior Physics Laboratory. The purpose of this evaluation plan is to
reflect commitment to the Extreme Programming (XP) methodology. This document will
present our initial testing plan. The plan includes unit testing, acceptance testing and usability
testing. It will also detail the client’s interaction with our team with the involvement they
have had in the process of defining appropriate tests.

1.2 EXECUTIVE SUMMARY

The project our group has been assigned is, "Web-based Booking System for Senior Physics
Laboratory". The purpose of this project is to carry out an evaluation on booking system to
ascertain requirements and help resolve the bugs to make it a viable product.

To verify that the existing system functions as expected, we conduct 3 levels of software
testing, unit tests, integration tests and acceptance tests. First, we test certain functions and
areas with unit testing. This method allows checking whether the function is returning the
proper output with given set of inputs. Normally the set of inputs are declared before going
into implementation so the code won't be biased to be operating in specific way. After the
unit testing, we move to integration test to expose faults in the interaction between integrated
units. Finally, acceptance test takes place determine if the requirements of the function is met.

Since the system is coded with Ruby on Rails, we will use RSpec as our testing framework.
RSpec is testing tool for the Ruby programming language. RSpec supports Behaviour-driven
development, which enables to write the tests for rails models clean and human readable.

Technical Design Document

2 CORE

21 USER STORIES

The 6 user stories we have planned:
1. As astudent, I want to book experiments based on my credit point requirements.
2. As astudent, I can only make one experiment session per day
3. As astudent, [want to be shown when days are fully booked
4. As astudent, [want to be shown a confirmation when making a booking
5

. As a student, I want to be able to cancel a booking a certain number (X) days before
the booked date

6. As an admin, I want to be able to add students with their personal details

2.2 TEST FRAMEWORK

RSpec is testing tool for the Ruby programming language. Born under the banner of
Behaviour-Driven Development, it is designed to make Test-Driven Development a
productive and enjoyable experience with features like:

* arich command line program (the rspec command)

* textual descriptions of examples and groups (rspec-core)
* flexible and customizable reporting

* extensible expectation language (rspec-expectations)

* built-in mocking/stubbing framework (rspec-mocks)

We use Rspec with extra gems, like Capybara, which allows us to simulate a user’s
interaction with the sample application using a natural English-like syntax, together
with Selenium, one of Capybara’s dependencies.

To write unit tests, the entire group gets together and has a brain storming session. At this
point tests are written in simple English. They are later translated to Rspec before coding can
begin. Rspec makes it easier to translate tests written in simple English to Ruby. An example
of a Rspec test is:

describe MovieList do
context "when first created" do
it "is empty" do
movie_ list = MovieList.new
movie_list.should be empty

Technical Design Document

end
end
end

The it() method creates an example of the behavior of a MovieList, with the context
being that the MovieList was just created. The expression movie_list.should be empty is self-
explanatory.

Running this code in a shell with the rspec command yields the following
specification:

MovieList when first created is empty

Add some more contexts and examples, and the resulting output looks even
more like a specification for a MovieList object.

MovieList when first created is empty
MovieList with 1 item is not empty includes that item

This example is taken from the RSpec Book, Behaviour Driven Development with RSpec,
Cucumber and Friends by David Chelimsky (et. all), Oreilly Publishing, 2014

2.3 ACCEPTANCE TESTS

Acceptance tests are created from user stories which are selected during each iteration of
planning. They are then given and shown to the customer/client to ensure if the user story has
been correctly implemented. Each test represents a result from the system in which the
customer/client is responsible for verifying the correctedness of the acceptance test.

These user stories where then transformed into acceptance tests. With these acceptance tests,
our Client Liaison Puravin Sivaganam contacted and emailed our client Dr. Sue about
whether or not she wanted these tests to be implemented into the system or whether they were
on track to what she hoped to be in the system. The full table is shown in the appendix(2.1.2).

2.4 CUSTOMER INTERACTIONS

The communication methods that we use to interact with our customer/client are emails and
face-to-face meetings. The emails are extensive and could be viewed via our bit-bucket site
under 'Client Communication'. The face-to-face meetings however are brief and straight to
the point.

Our client, Dr. Xue (Sue) Yang, works with the Scientific Computational Office in the
School of Physics here at Sydney University. Dr. Xue is looking on improving the current
physics booking system that the School of Physics uses for booking experiments.

Technical Design Document

The project began two years ago when Dr. Xue worked with a group of COMP3615 students
to develop the booking system. The current system was developed using Ruby on Rails and
our client has requested us to maintain the current programming standard.

Dr. Sue has given us a document form of all the priority list of requirements that we
deconstructed into a tabular form (2.1.3), including experiment data which we can use for
testing the web based scheduler (2.1.4).

Below are the client meeting notes that were made from our meeting with the client during
Week 2 and Week 4 respectively.

Week 2

Tuesday 5/8/2014 1:00 PM to 2:00 PM

Every team member present and Client

Meeting Notes

Week 3

client has the source code , which she shown to us. Experiment are set by the staff in the beginning of each semester

client gave us the description of the system they need and they expect us to deliver that

website is not under use by any users at the moments. They use another website

admin, tutor, students are the roles.

Log on page are the same for everybody

some problems with database schema: there are some non required tables, more refinements on the database..probably design new
database from scratch the document is based on previous project

there is no usage for booking status table, for example

one of the field in the table when it gets updated, it doesn't get reflected on the system...semester_start

they want to deploy on Linux server

they don't want students to book first few weeks of the semester. they want to spread the load of student booking across the semester.
Like if a student has 5 experiments they need to be spread across the semester

each experiments need 2 sessions

lab opening days and running week across semester are defined by the admin. Admin makes changes at the beginning of the semester,
and one during the semester.

currently, all experiments are available on all days of the week, they want to have the experiments to be available in different weeks.
for example, experiment1 is available on Monday, and Tuesday , and experiment2 are available on next 2 days.

Experiments can be available on certain weeks too.

currently it's been developed using Rails 4, ruby 1.9.3

client gave us the source code, project specification and description and user document.

No meeting scheduled

Technical Design Document

Week 4

Tuesday 19/8/2014 2:00 PM to 3:00PM

Puravin and Client

Meeting Minutes

. Discussed Progress of the Team

. Discussed the issues related to the system

. Clarified certain requirements that required further understanding of the client's expecations
. Client suggested issues in the database

. Client suggested to email a copy of her schema to the team

. Client showed a refiend document with the requirements and detailed explanations

. Suggested to client that it would be useful to have the requirements listed with their respective priority
. Client agreed to email the document

. Cleared up the expectations of the team and explained how the tasks will be carried out

. Proposed to the client the option of being part of the bitbucket page

. Agreed to add the client to the bitbucket page

- O W 00 ~NO O b WN =

-

Meeting Notes

« Booking Experiment: Time (defined to be 2pm to 6pm) of day is not required, just selecting the day only
« Booking Experiment Bug: Admin selects the tool to Book an Experiment for a student

o Calender does not provide the checkbox necessary to select the days to be booked

o Problem selecting availability of experiments
« Booking Availability: Add functionality to allow Admin to select the days for each experiment (Flexible Dates)

o Experiments should be listed on the calendars page, next to the calender itself

= Admin is able to select the experiment then choose the specific days that it will be available on the calender

« Database:

o Uneccessary attribute -> details_id (table: users)

o Uneccessary tables -> booking_stats, experiments_availability

Wednesday 13/8/2014 11:17 AM

Client to Puravin

Hi Puravin and others,
Good to hear from you. Ok, we won't meet this week. However | would like to stress these points for you to do before the first demos in week 5,

1. Testing every function available in the system | gave you. Identify bugs (I know there are a few) . fixing these bugs will also be part of the
project you are doing.

2. review the database schema in the system. Propose changes which would make it more effective and which are required for the new
functionality, which was highlighted in read in the document, system specifications.

I would like you to show me the work as mentioned above before the first demos. With these work done, you will have sufficient contents to say
at the first demonstration.

The attached file is mhtml document.
Regards,

Dr. Xue (Sue) Yang Scientific Computational Officer School of Physics, University of Sydney Ph: 02 9351 6081 Email:
Xue.yang@sydney.edu.au

In the email above, Dr Sue highlights the need for us to review the system thoroughly and
extensively to test and identify any bugs that the system currently has. With this in hand we
as a group were able to send back a list of all the new bugs which we found as well as the
features that she wanted to be implemented to the system.

In the email below, Dr Sue attached the acceptance tests and was pleased with the
development we were making with a few tips and instructions.

Technical Design Document

Hi Puravin and others,
Thanks. Glad to see you are getting on track.

| suggest that you take this semester as an example for experiment calendar setup (see the attachment:
calendar.docx) before doing the tasks.
Current system uses the calendar that all experiments are available on Mondays, Tuesdays and Fridays except

semester break. Lab days open for experiments will be blue as you can see.

Each student’s bookings must be evenly across the semester (rules should be defined). For example, student A is not

allowed to book all his sessions in weeks of first half semester.

| also suggest that you add all experiments (there are over 30 experiments) | gave you in the database before doing
the tasks.

| strongly suggest that if anything about the system/tasks is unclear to you, please come to my office and | would

explain it to you face to face with system demonstration.
Regards,

Sue

2.5 GROUP PROCESSES

The major roles within the scope of the project are:
1. Manager and Tracker
Integration Tester

Usability Tester

2

3

4. Client Liaison
5. eXtreme Programming Expert
6. Mercurial Expert

7. Bitbucket Expert

8. Programmers

Keeping within the boundaries of the Agile framework we will follow the reverse pyramid
structure with the Programmers and Testers at the top and the Manager at the bottom
representing a style of management where the manager supports the team. This way the team
is able to choose tasks freely knowing that the manager will deal with any roadblocks.

Technical Design Document

The programming methodology being followed is Extreme Programming, which has a great
emphasis on testing. The group processes have also been set up to reflect the same. Before,
any programming begins; the group gets together and thinks about unit tests for each of the
user stories. This session of brain storming helps identify any cases that might be missed by
an individual. It also provides an estimate of how complex a user story is from start to finish
which helps during The Planning Game.

During the Planning Game, Issues are created for each user story on Bitbucket. Each team
member is free to choose the user story they wish to work on in that sprint. They then assign,
on a scale of 0 to 2, a level of complexity, priority and difficulty, to the user story. The unit
tests are first converted to Rspec and then the user stories are then developed through Test
Driven Development. Alongside development, the programmer also comes up with
acceptance tests, which he/she thinks satisfies the need of the client. Alongside, the Client
Liaison these acceptance tests are passed to the client for approval.

After passing all the unit tests, the Integration Tester checks the compatibility of the user
story developed with existing code. A method of Continuous Integration is followed where
the code before the development of the new user story and after development is checked.

This is then passed to the Usability Tester to check the view and single out any anomalies
that may arise from the use of the functionality. Both the “happy case” and extreme case is
checked for how the user may navigate through the system. Use cases diagrams are created
and need to be approved by the client if they differ from the acceptance test.

Finally, before resolving the issue on Bitbucket the acceptance test criteria is checked and if it
is met, only then the issue is marked as resolved.

2.5.1 The Good and The Bad

This section identifies the strengths and weaknesses of the group from the standpoint
of XP and the Big 5 terms. These characteristics have been developed based on the
observations from the first sprint.

Manager and Tracker — Being responsible for supporting the group, keeping tasks on time
and being agile are all part of the successes of the manger. Meeting agendas are made on time
and are uploaded to the Bitbucket wiki page for everyone to see beforehand.

Trusting other group members to complete the task on their own is where the tracker and
manager can improve.

Integration Tester - Responsible for ensuring various modules (user stories) work well
together after being developed. This comes after unit testing but before acceptance testing.
The Integration Tester is also responsible for developing the rspec framework that we will be
using to do TDD as well as to train fellow team mates for the same.

Areas for improvement include, mutual performance monitoring, so that he can adjust along
with the demand and supply of the work being completed. Sometimes the tester will have a
lot to test in one sprint and maybe in one he will have less. He also needs to set the testing
standard and set up continuous testing to counter this.

Technical Design Document

Usability Tester — Responsible for evaluating product by testing the User Interface. He is
also involved in the prototyping phase in case new view is being created. A survey after a
user story has finished and is ready to be marked resolved a survey should be done of the new
functionality.

The usability tester needs to be adaptable, have back up behaviour in case of quick changes
and needs to have continuous testing.

Client Liaison — is adaptive, on time with client communication and up to date with the
happenings of the group.

In case of a short notice the client liaison needs to be able to act quick. Hence needs to have
back up behaviour and avoid falling into the vicious cycle of closed loop communication.

Experts — Great with technical jargon and can simplify it for group members. He sets
procedures for the rest of the group to follow and make the most of the technologies and tools
we are allowed to use such as Bitbucket and mercurial. The experts need to be adaptable and
roles need to be assigned to different people (which is not the case right now). If the roles are
diversified this will create a system of checks and balances between the team as well as
between the tracker and manager.

Technical Design Document

3 APPENDIX

3.1 UNIT TESTS

3.1.1 Confirmation Dialogue Spec

File.expand_path("../spec_helper”, _ FILE_)

describe "confirm dialog”
before :a
@student sid 5 s “Frodo™, - 4 a "frodo@baggins.com")
@experiment - (: "physics 1",)_num => 3

it "has javascript confirm’

assign(:e iment, @experiment)
assign(:st t, @student)

render

rendered. should ("<input name="commift” type="submit” onclick="return confirm(\'Booking will be made\nAre you sure?\')" v Book Experiment™ />

3.1.2 Cancel Booking Spec

File.expand_path("../spec_helper”, _ FILE_)

describe Booking
before :all
@student - : f na “Frodo”, a "Baggins”, icp => 4, :c t "“frodo@baggins . con”)
@experiment ment. : xp_num => 15, :num_se , ‘weig

it "has cancel button disabled™

Booking.makeBooking(@student, @experiment.exp_num, Dat

assign(iment, @experiment)
assign(:student, @student)

render

rendered. should ("<input disabled="disabled” name="commit" type="submit” value="Delete Bookings

it "has cancel button enabled”
.makeBooking(@student, @experiment.exp_num,

@experiment)
assign(@student)

render

rendered. should (*<input name="commit" type="submit" value="Delete Bookings

Technical Design Document

3.1.3 Admin Add Student Spec

expand_path(" _helper”, _FILE)

describe Student

it "won't create without sid given"
@student = Stu
@student.save.should be false

it “should not create without a unique SID
@student = Student.create(:sid => 12 t g ", :last_na “Baggi t b ",
@student_dup = Student.create(:si. 2 - : “Baggi 4 : he ring is mine
@student_dup.save.should be_false

it “should not create without a unique email”
@student = Student.create(:si 1 89 irst “Frodo”, :last _na “Baggi ring is mine.”,

@student_dup - Student.create(:si : Frodo t_name “Baggins” A : The ring is mine."
@student_dup.save.should be_false

it “should not create with an SID under
@student - Stu create(: : s : Frodo”, :las e => "Baggins”, :cp 4, :comments The ring is mine.”, :email frodo@baggins . com™)
@student.save.should be_false

it "should create with valid parameters
@student = Student.create(:sid => 12 : 3 a : ame => "Baggins”, :cp 4, :comments => "The ring is mine.”, :email => "frodo@baggins.com")
@student. save.should be_true

it "should not create with in amount of
student - Student.create(12 > ast_name comments => "The ring is mine.”, il => "frodo@baggins.com")

@student. save.should be_false

3.1.4 Book an Experiment

require File.expand_path("../../test_helper", _ FILE_)
class ExperimentTest < ActiveSupport::TestCase
test "won't create without name given" deo
experiment = E riment.new
assert !experiment.save, "saved experiment without critical information”

end

test "won't create if exp_num is not a number" do
experiment = 1t.new(:name => "physics 1", :exp_num => "aaa"
assert !experiment.save, "created experiment with invalid experiment number"

end

test "should create with valid name and number™ do
experiment = 1t.new(:name => "physics 1", :exp_num =>
assert experiment.save, "failed to create a valid experiment”

, :num_sessions => 2, :weight => 2)

end
end

Technical Design Document

3.2

ACCEPTANCE TESTS

These acceptance tests have been approved by the client and has feedback attached.

User Task

Acceptance Test

Client Feedback (confirm
accuracy of tests)

As a student, I want to book
experiments, based on my credit
point requirements

Given I am a student,

When I have credit points of 2

Then 3 experiments will be available for
me to book.

When I have credit points of 4

Then 5 experiments will be available for
me to book.

When I have credit points of 6

Then 8 experiments will be available for
me to book.

When I have credit points of 8

Then 10 experiments will be available for
me to book.

When booking, I choose one from
the list of experiments. With 2
cps, I can only book 6 sessions;
for example, 2 sessions for one
experiment or 4 sessions for one

experiment as required.

As a student, I can only make one
experiment session per day

Given I am a student,

When I book an experiment on any
particular day that the lab is open
Then the day becomes occupied and I
cannot book another session for an
experiment on that day

ok

As a student, I want to be shown
when days are fully booked

Given I am a student,

When I proceed to make a booking
Then the fully booked days appears
occupied (white cell) so I cannot select
them.

ok

As a student, I want to be shown
a confirmation when making a
booking

Given I am a student,

When I have selected the day(s) to make a
booking for an experiment

Then a confirmation box pops up with the
options OK and Cancel.

When OK is selected the booking will be
processed.

Otherwise booking will be cancelled.

after OK selected, the program
should check the table and make
final sure the day is not booked by
other students

As a student, I want to be able to

Given I am a student,

cancel a booking a certain When I select a booking made and proceed ok
number(X) days before the to cancel that booking and I am X days
booked date before the experiment's booked date
Then I can cancel the booking.
Otherwise it will not let me to select an
option to cancel the booking.
As an admin, I want to be able to | Given I am an admin, This may be a small bug.

add students with their personal
details

When I select to create a student, there will
be fields to input their first name, last
name, SID (username), email, number of
credit points, phone number, comments,

Although there is an error
message, a new student has
actually been added. admin

doesn’t need confirmation

Technical Design Document

and a password and once I select to create because he can edit/change the
a student student’s details when needed.
Then there will be a confirmation to notify Could you fix the bug in import
that the student’s details have been student list as well?
accepted.

3.3 CLIENT’S PRIORITY LIST FOR REQUIREMENTS

The list below mentions Admin functions, Tutor functions and Student functions and is the

basis for our User Stories.

3.3.1 Admin functions

Requirement Priority Additional Description

Setup dates for available Ist Different experiments may have different

experiments in current calendars (different days). In current system, all

semester. experiments use the same calendar
View -- list of experiments and a calendar.
Select experiments and days to set up calendar
for specific experiments

Fix the bug in adding new Ist

student

Fix the bug in import student Ist

list

Admin is able to make/delete | 2nd The same booking rules (see students section

any bookings at any time and below) apply. The emails sent out will have a

send emails to affected backup in the system and be viewed as required.

students for notification of the It displays what experiments have been booked
changes. and done so far for each student.

View the booking summary 3rd Bookings Summary also provides information
about total free sessions, total required sessions,
and total booked sessions

Fix the bug in downloading 3rd

student’s report

In Experiments, venue should | 4th

be included in the table and

displayed in the relevant

pages, such as booking

summary of student’s login.

3.3.2 Tutors

Requirement Priority Additional Description

Fix the bug in Download 3rd Similar to admin

student’s report

View bookings summary 4th Similar to admin

3.3.3 Students

Requirement Priority Additional Description

Make online bookings for the | 1st

experiments, based on their

required CPs.

Each student can only do Ist In booking calendar for each experiment, the

single experiment session at a
time

days should be white, which are already booked
by others for the same experiment and which are

Technical Design Document

already booked by this student for other
experiments

Student booking should be Ist Students are not allowed to over-book sessions
made evenly across the (eg. With 4cps, students cannot book over 10
semester. sessions).

There should be a Ist
confirmation window to make
sure they want to book on
these days before further
action.

Students should be allowed to | 1st
cancel the booking they made,
but only eg. more than X
(2/3/4?) days before the
booked dates.

Admin is able to define Ist
parameters X. or not allowed
to cancel the booking
(cancellation must be done via
admin).

There is a bug in Ist
make booking of current
system.

In ‘Bookings Summary’, 4th CPs, total number of experiments required,
display course requirements number of sessions already booked, and number
for the student of sessions to be booked

In ‘My Marks’, display 4th number of logbooks, report, poster, talk and
paperwork to be examined assignment

Technical Design Document

3.4

EXPERIMENT DATA

This data was given to us by the client to do initial testing with. This can be useful for
integration testing to see what the system’s response should be in reaction to a user input.

id [exp_num name num_sessions | special comments created_at updated_at extended_name available
1 Photonic Amplifier 4 0 2010-06-22 11:11:17 [2012-08-02 00:08:19 1
22 Data acquisition with computers 2 0|From 2011 Semester 1, this experment combines wha...| 2010-06-22 11:11:17|2011-02-28 10:04:19 1
3|3 Fourier Analvziz 2 0 2010-06-22 11:11:17 {2010-07-20 07:54:33 0
413 Noize 2 0 2010-06-22 11:11:17 | 2012-04-18 23:00:33 | Noize: Setup 1 (0f2) 1
33 Noize 2 0 2010-06-22 11:11:17 [2010-08-01 23:37:35 [Noize: Setup 2 (0f 2) 1
6]6 Transmission Lines 2 0|MUIL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [AVTLL 1
7 Wave Propagation 2 0| ULL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [AVTLL 1
8|8 Microwaves 2 0|MVTLL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [ATLL 1
9110 RF Breakdown 2 0 2010-06-22 11:11:17|2010-08-01 23:37:33 | RF Breakdown: Seup 1 (of 2) 1
10]10 RF Breakdown 2 0 2010-06-22 11:11:17 [2010-08-01 23:38:15 |RF Breakdown: Setup 2 (of 2) 1
11412 Langmuir Probes 2 0|MNUZL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [ATLL 1
1213 X-ray Diffraction 2 0 2010-06-22 11:11:172010-07-15 07:32:20 1
13114 Nuclear Magnetic Resonance B 0 2010-06-22 11:11:17 {2011-02-28 10:035:00 1
14|13 Electron Spin Rezonance 2 0|MNUIL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [ANTLL 1
15|16 Optical Pumping 4 0 2010-06-22 11:11:17 [2011-02-28 10:03:18 1
16)17 Herayz 2 0|MTZL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [ATLL 1
17[18 Mozsbauer Effact 2 0|MNUZL 2010-06-22 11:11:17 (2010-06-22 11:11:17 |ATLL 1
1819 Cozmic Radiation 2 0| MIL 2010-06-22 11:11:172010-06-22 11:11:17 [ATLL 1
19120 Beta Decay 2 0| IL 2010-06-22 11:11:172010-06-22 11:11:17 [AVTLL 1
20)21 Alpha Particles 2 0| ULL 2010-06-22 11:11:17(2010-06-22 11:11:17 [ANTLL 1
21|22 Gamma Radiation 2 0|MUIL 2010-06-22 11:11:17(2010-06-22 11:11:17 [AVTLL 1
2|23 Nuclear Lifetime: 2 0| UZL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [ATLL 1
23|24 Michelzon Interferometer 2 0 2010-06-22 11:11:17 [2010-08-01 23:38:30 | Michelzon Interferometer: Setup 1 (of 2) 1
24124 Michelzon Interferometer 2 0 2010-06-22 11:11:17 [2010-08-01 23:38:34 | Michelzon Interferometer: Setup 2 (of 2) 1
25|25 Holography 2 0 2010-06-22 11:11:172010-07-20 07:55:42 0
26]126 Reflaction 2 0| IL 2010-06-22 11:11:172010-06-22 11:11:17 [ATLL 1
27|27 Fourier Optics 2 0|MUIL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [AVTLL 1
28)28 Interference Spactroscopy 2 0| UIL 2010-06-22 11:11:17 (2010-06-22 11:11:17 [AVTLL 1
20120 Galactic Dynamic: 2 0 2010-06-22 11:11:17 {2012-02-28 01:08:00 0
30)30 Thin-film Deposzition 2 0 2010-06-22 11:11:17 2012-07-24 02:17:20 1
35|31 Scanning Electron Microzcope 4 1|SEM 1z not booked through this svstem. Itiz avail.. [2010-07-20 07:37:30|2012-03-26 04:32:33 1
36)32 Electronics 0 1| Added by Pater Dobrohotoff 25-Nov-2010 for the Ele... | 2010-11-25 01:47:40|2010-11-25 06:18:28 1
37|33 Atom Probe 2 1[New (2012 51) extemally provided experiment, not ... | 2012-03-06 05:03:07)|2012-03-26 04:34:11 1
38|34 Notze - Double - 1| This is @ double length version of the Noize exper... [2012-04-06 07:15:04|2012-04-06 07:15:04 | Notz2 (double lenzth) 1
30033 Quantized Conductance 2 0 2012-07-24 02:17:152012-07-24 02:17:13 0

