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Introduction and Overview

This document describes a spiking point-neuron network simulator running on an NVIDIA Tesla T10 card. Simple 
examples of spiking neuron simulations are presented, and the utility of graphics processing unit (GPU) spiking  
simulation in discussed. A simple model of an olfactory system, containing mitral cells and granule cells, and taking 
input in the form of Poisson spike generators as olfactory receptor neurons (ORNs), was constructed and tested 
using this framework. No periglomerular circuitry or short axon cells were modeled. Basic runtime demonstration 
and benchmarks are presented, as well a other notes on the model implementation and behavior. 

GPU framework

GPU accelerated code can utilize massively parallel processors with thousands of cores. Repetitive computations 
that  might  have  to  be  performed  repeatedly  over  a  large  data  set  can  be  performed  simultaneously,  greatly  
accelerating certain classes of problems. 

The GPU computation framework can be useful for :
• rapid parameter sweeps over thousands of copies of a simple model
• parameter surfing moderate complexity models, where the size of the model is slowing down the process of 

refining the parameters.
• Running scaled up large network versions of small to moderate complexity models that have been verified. 

( For the largest simulations, the framework isn't quite fast enough for rapid parameter surfing, and doesn't  
have enough memory to run many simulations in parallel, but it can run the network faster than a single 
CPU core. )

Due  to  the  considerable  additional  investment  in  the  time  of  developing  a  simulation  on  the  GPU,  the  GPU 
computational framework might not be useful for :

• Rapid prototyping of small models
• Parameter surfing very simple models
• Models where a firing rate model or other fast, non-spiking simulation will suffice
• Quick building of one-off models that will be run only a few times
• People who don't have time to invest in learning a new programming framework

The graphics processing unit used throughout this document is an NVIDIA Tesla-T10 card, which has 240 cores.  
Under some conditions, these cores can execute additional instructions while waiting for memory reads and writes.  
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Using this pipelining technique, up to 512 threads can run per core. No more than 122,880 threads can run in parallel 
on a single Tesla-T10 device. The total number of parallel units in a large simulation is typically much higher than  
this, so it is easy to saturate the parallelism of available on the T10 device. 

The SpikeStream and AtomicHedgehog projects  provide application programming interfaces  (APIs)  for  spiking 
neuron simulations from within the Python programming language. SpikeStream focuses on NVIDIA hardware,  
while AtomicHedghog is theoretically portable to other brands of graphics cards and even CPU clusters. Presently,  
an abstract  interface had been written for defining new neuron models,  making network connections, modeling 
synapse dynamics, and sending spikes. Several basic neuron models and synapses have been tested. There are future 
plans to implement spike timing dependent plasticity in AtomicHedgehog. SpikeStream is no longer under active 
development,  but  will  be  maintained.  The  simulations  and  demonstrations  in  this  document  focus  on  the 
SpikeStream API.

SpikeStream documentation : 

file: SpikeStream/doc/build/html/index.html
file: SpikeStream/doc/build/latex/SpikeStream.pdf
file: SpikeStream/doc/source
file: SpikeStream/readme.pdf
file: SpikeStream/examples/*

The documentation for the SpikeStream API can be found in SpikeStream/doc. A generated website can be found at 
doc/build/html/index.html.  This  website  is  also hosted at  http://spikestream.bitbucket.org/ as  of  June 14 20120. 
Additional  information  includes  this  document,  and  the  source  code  for  SpikeStream  itself.  AtomicHedgehog 
docmentation  can  be  found  at  http://ahh.bitbucket.org.  The  SpikeStream/examples  directory  contains  working 
SpikeStream demonstrations.

Links to Useful Reference Documentation 

The following links provide necessary background for both the SpikeStream and AtomicHedgehog GPU simulation 
frameworks. Both frameworks are based on Python, which is an easy to learn interpreted language. Python has 
community supported scientific and numerical packages called “scipy” and “numpy”, as well as a plotting package  
“matplotlib”. Together, these packaged duplicate much of Matlab functionality. Scipy can also export matlab data 
files, if you prefer to preform analysis in Matlab. The OlfactoryBulb SpikeStream example contains a demonstration 
of  saving  simulation  state  for  analysis  in  Matlab.  The  GPU  acceleration  component  of  SpikeStream  and 
AtomicHedgeHog is written using PyCUDA and PyOpenCL, maintained by Andreas Klockner. Both CUDA and 
OpenCL are C-like languages that can be compiled to run on the GPU. 

  for an overview of the CUDA language and GPU computing, see
    http://www.nvidia.com/object/what_is_cuda_new.html
    http://developer.nvidia.com/object/gpu_programming_guide.html
    http://en.wikipedia.org/wiki/CUDA

  for an overview of the Python language see 
    http://docs.python.org/
    
  for an overview of numpy see 
    http://mathesaurus.sourceforge.net/matlab-numpy.html 
    http://docs.scipy.org/doc/ 

  for an overview of matplotlib see 
    http://matplotlib.sourceforge.net/ 
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  for an overview of PyCuda see 
    http://documen.tician.de/pycuda/ 

  for an overview of iPython 
    http://ipython.scipy.org/moin/Documentation 

  for an overview of Sage 
    http://www.sagemath.org/ 

Basic Example 0 : Testing a single neuron

file: SpikeStream/examples/single_neuron.py

Running  “ipython  single_neuron.py”  in  the  SpikeStream  examples  directory  should  produce  figure  1A.  This 
example runs a single Morris-Lecar neuron simulation. Examples 0,1,2 are not typical uses of spikestream : they are  
quite small and don't take full advantage of all the processors on the Tesla unit.

Basic Example 1:Running multiple copies of a single neuron

file: SpikeStream/examples/multi_neuron.py

Running “ipython multi_neuron.py” in the SpikeStream examples directory should produce figure 1B. This example 
is simply example 0 set up to do a parameter sweep over different current inputs to the neuron model.

Basic Example 2 :  Testing some more neuron models

file: SpikeStream/examples/demo_models .py

Running “ipython demo_models.py” in the SpikeStream examples directory produces figure 1C. This demo feeds a  
400Hz poisson spike train into several  neuron models,  including a leaky-integrate-and-fire  (LIF),  a LIF with a 
refractory period, and four parameter settings of the Izhikevich neuron model 
(www.izhikevich.org/publications/whichmod.htm).
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Figure 1 : plots from basic example scripts
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The Model Olfactory Bulb

file: SpikeStream/examples/olfactory_bulb_multi_odor.py
file: SpikeStream/examples/olfactory_bulb_single_odor.py

This model of an Olfactory bulb contains three populations of point neurons : Olfactory Receptor Neurons ( ORNs ),  
Mitral Cells ( MCs ), and Granule Cells ( GCs ). In practice, all model parameters, including the number of each cell  
type, and the number and distribution of connections between layers, are variable and have been changed in the 
process of looking for specific behaviors, or making trade-offs between accuracy and computation time.

Figure 2: Olfactory Bulb Model Schematic
Olfactory Receptor Neurons (ORN)
In this model, there are typically 10 ORNs per receptor type, with up to a few hundred receptor classes. All ORNs 
are inhomogeneous poisson  spike generators. Odor binding is simulated using the Hill equation, assuming non-
cooperative  binding,  to  compute  the  fraction  of  activated  receptors  given  the pKd  of  an  odorant  and  its 
concentration.  The  computed  fraction  bound  is  scaled  linearly  to  a  Poisson  rate,  with  typically  100%  bound 
corresponding to 200Hz firing.  Each receptor type is  represented by multiple ORNs, and each ORN projects to 
multiple Mitral cells in the corresponding glomerulus.

bound= concentration

concentration10−pKd

rate=bound⋅max_ORN_rate
p  fire= t⋅rate

Mitral Cell (MC) Layer
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Typically,  50  MC  per  glomerulus  are  used.  The  Izhikevich  mitral  cell  model  from  “Dynamical  Systems  In 
Neuroscience”, section 8.4.5, is used to model this population. Mitral cells receive excitatory input from ORNs, send 
excitatory output to granule cells, and receive inhibitory inputer from granule cells. Typically, when considering the 
output of the simulation, the spikes of all mitral cells in a given glomerulus were pooled and used to estimate the  
firing rate response of a mitral cell associated with a given olfactory receptor. 
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ORN to MC feed-forward connections
Connections between ORNs and MCs are excitatory. Each ORN class is associated with a glomerulus of ~50 mitral 
cells, and projects onto a random 20% of MCs the given glomerulus. We use an alpha synapse model with tau=5ms, 
reversal potential of -10mV, and ∆g=0.9μS (∆g refers to the instantaneous change in conductance upon receiving a 
spike).

Granule Cell (GC) Layer
Typically, the model used 5 GCs per MC. Granule cells were inhomogeneous Poisson spike generators, where the 
rate function was a scaling of a slow rising response to incoming spikes. Incoming spikes trigger slow rise and fall 
in the firing rate of a granule cell, with a peak at about 200ms.  Granule cells connect  symmetrically to a large 
number of mitral cells (n=50 to 200).
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MC to GC connections

In the model, mitral cells connect to granule cells with symmetric feed-forward excitation and feed back inhibition. 
Self-inhibition of granule cells is not modeled.  There are n≥5 GCs for each MCs in the  current model.  Each GC 
connects to n (n=50 in these simulations) randomly drawn MCs. A given MC will connect to many GCs. The MC to 
GC synapse is modeled as a very slow rising response to incoming spikes as part of the GC model. This response 
function is explained in the next section, and effectively integrates to :

g t =t /3 e3 1−t /

This process reaches a peak of activation at t=200ms. The GC to MC is modeled as a fast inhibitory alpha synapse 
with tau=1ms, reversal potential of -70mV, and ∆g=0.3s.
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On-line Implementation of a Generalized Alpha-Function Synapse:

A generalized form of the simple alpha-function synapse t / g t =e1−t /  might look like

g t =t /n en1−t / , n∈ℕ (1)

On-line GPU simulations cannot evaluate synapse response functions by convolution: an on-line representation is 
required. The exponential synapse can be implemented on-line by the differential equation  ġ=−g . A similar 
on-line equation exists for  the alpha synapse.  The family of  synapses  above can also be implemented on-line,  
essentially by chaining together exponential synapses. State variable n exponentially decays toward the value of  
state variable n-1 with time constant  .  Up to a scaling of time and amplitude, the solution for the n th state 
variable is the nth equation from the above family.

 ġ0=−g 0

 ġk=g k−1−g k

This solves to:

gn t = t
 

n
e−t /

n!
(2)

These have a peak at time n . To rescale the time-constant so that the synapse peak arrives at time  , use
 '=/n as a modified time-constant. In this case, the on-line differential form of this synapse family becomes:
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The magnitude of the peak is also decreased for larger values of n. The amplitude of the peak is:
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If you want to normalize the peak amplitude, divide the output of the final conductance state variable by the above 
constant:
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To verify that this actually works, equation (2) with  '=/n substituted, and scaled as in (3) does simplify to 
equation (1) :
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Incidentally, I suspect that as n tends to infinity, this function approaches a log-normal distribution, but I can't prove 
it. This implies the following identity : 
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Simulating Odor Stimuli

Dissociation constants for a range of odor-receptor pairs were unavailable. Consequentially, simulated binding data  
were used. It had not been verified that simulated odor or odor mixture binding affinities are realistic. Unit-less  
pKds were drawn from a normal, zero mean, unit variance distribution as in figure 3A. These simulated stimuli were 
presented in (unit-less) concentrations ranging from 10−4 to 104 . To compute the fraction of a simulated odor 
bound to a given receptor type, the Hill equation was used, assuming non-cooperative binding. This generated a 
bimodal distribution of fractions-bound as in figure 3B. This fraction bound was scaled by 200Hz, and taken as the 
rate value for an inhomogeneous Poisson process as a stand-in for ORNs.

Figure 3 : Odor Stimuli Distributions
Demonstration of Simple Model Output

Demonstration setups of the olfactory bulb model are present in the SpikeStream examples directory. This model is  
set up to run, in parallel, several odors at a range of concentrations, in an olfactory bulb model with adjustable 
physical  parameters.  Figure  4  shows  plots  of  various  network  statistics  for  two  seconds  of  simulated  odor  
presentation. Figure 5 shows how the mean network activity varies as the concentration of a simulated odor stimulus 
varies.
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Figure 4, Single Odor Simulation Data : Two-second single odor stimulation of a network with 50 glomeruli. A : 
Spike  raster  of  mitral  cell  population,  colored  by  glomerulus.  B  :  Average  membrane  potential  in  mitral  cell  
population. C : Average current in the mitral cell layer. D : Average excitatory and inhibitory input conductances to  
mitral cells. E : histogram of mitral cell firing rates.
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Figure 5 : Multiple Concentrations At Once  : Half-second presentation of a single odor stimulus, simulated at a 
range of  25  concentrations  from 10−4 to 104 .  As  concentration  increases,  so  does  the  magnitude  of  the 
population response and the duration of ringing oscillations at the time-scale of granule cell inhibition. A : Average 
current for mitral cell population across all 25 odor concentrations. B : Average voltage across mitral cell population 
for all 25 odor concentrations. C : histogram of mitral cell firing rates across all odor presentations.
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Typical Simulation Runtime Summary

Figure 6 shows how the simulation time scales as more neurons are added to the simulation. Note that the number of  
units in these simulations is significantly larger than the number of parallel threads possible on the GPU. Therefore,  
the run-time complexity scales similarly to a non-parallel simulation, accelerated by a factor proportional to the 
number of individual threads possible on the T10 device. This runtime complexity scales quadratically as more units  
are added. This is likely a combination of the effect that, as the network becomes larger, the number of connections  
in the network grows as the square of the number of units. Memory bandwidth restrictions may also contribute. 

 s
frame

=0.0526x2
−0.0473x1.1378, x  in millions of units , r2

=0.9987

Figure 6 : Runtime Complexity of OB Model

Reading out data while the GPU simulation is running puts significant demands on memory bandwidth and can slow 
down a simulation. Using a model testing 100 odors for 10 receptor classes, recording all network spikes slowed the 
simulation speed from 630 frames per second to 308 frames per second. Turning on additional probes to record  
conductances, currents, and voltages in mitral cells, as well as binning spikes coming from glomeruli, slows the  
simulation speed to 30 frames per second.

The  run-time of a simulation is a function of model structure, memory usage, spiking activity during simulation,  
and how the workload is distributed over the graphics card. GPU optimization and runtime are difficult to predict in 
general.  SpikeStream  makes  only  a  minor  attempt  to  optimize   execution  time,  and  does  not  use  advanced 
optimizations of GPU memory access patterns. The use of atomic operations to send spikes causes serialization of  
threads if a single neuron receives more than one spike on a given time-step. We assume that such spike collisions  
are rare for  realistic  networks,  but  a dramatic slow-down occurs  if  the number of incoming spikes  per  neuron  
becomes large.
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Transforming odor binding information into a concentration invariant form

It is possible to mathematically transform a vector representing the activation of olfactory receptors by an odor into 
a representation that is invariant of concentration. This same representation, if left un-normalized, will make the  
correlation between odor representation invariant of concentration, while preserving concentration information in 
the absolute magnitude of the vector.

Start with the hill  equation, and assume non-cooperative binding of a single odorant or odor mixture “x”. This 
equation can be used to compute the fraction of odorant bound (“b”), which ranges from 0 to 1. 

fraction bound=b=
[ x ]

[ x ]K D

Consider the problems of recognizing odors at very different concentrations [x]. For a single receptor and a single 
odorant, it is possible to exactly solve for the odorant concentration given the fraction bound. In reality a given  
receptor binds multiple odorants, and we do not know which odorant is currently binding. Therefore, K D is not a 

known value. We can, however, compute [ x ]/K D , even when the odor identity is unknown:

b=
[ x ]

[ x ]K D

b[ x ]K D =[ x ] ⇒ b[ x ]b K D=[ x ] ⇒ 1−b[ x ]=b K D ⇒ [ x ]=
b K D

1−b

[ x ]
K D

=
b

1−b

Consider a model olfactory system with n distinct olfactory receptor subtypes, and many possible odors. Each odor 
is characterized by a unique vector of binding affinities for each receptor subtype 

pKd i= pKd i
0, pKd i

1,. .. pKd i
n . 

Let the binding of odorant i at concentration x be represented as as a length n vector

Bi , x=( bi , x
0 , bi , x

1 , ... , bi , x
n )

of fraction-bound values for all receptor subtypes. Solving for [ x ]/K D for each element leads to an alternative 
representation of odor binding :

Ai , x=( [x]

K Di
0 , [x]

K Di
1 , ... , [x]

K Di
n )

This can be written in terms of an odor-specific vector of the reciprocals of the dissociation constants for each 
receptor subtype, multiplied by the odor concentration as a scalar :

Ai , x=[x] ( 1

K Di
0 , 1

K Di
1 ,... , 1

K Di
n )

Let

S i=10 pKd i=( 1

K Di
0 , 1

K Di
1 , ... , 1

K Di
n ) s.t. Ai , x=[ x ]S i , log10S i = pKd i

Many different forms of normalization will create a concentration invariant representation. Dividing the transformed 
vector by any global statistic dependent on concentration [x] will give you a concentration invariant representation. 
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For instance, normalization to magnitude 1 will send you into a concentration invariant space :

Ai , x

| Ai , x |
=

[ x ] S i

|[ x ]S i |
=

[ x ]S i

[ x ]| S i |
=

S i

|S i |

Alternatively, the z-score for any concentration will always equal the z-score of S i :

Ai , x−Ai ,x

Ai , x

=
[ x ]S i−[ x ]Si

[ x ] S i , x

=
S i−Si

 Si , x

This result can be generalized to all functions that take information on fraction bound and transform it into a product 
of a function of the concentration and a function of a concentration invariant parameter. 

f bi=g [ x ]hK D ,i 

This includes the general case with cooperative binding exponents.

b=
[ x ]n

[ x ]nK D

⇒
[ x ]n

K D

=
b

1−b

Real odor concentration values span several orders of magnitude, as do real K D values. Therefore, it is generally 
not possible to work the the aforementioned transformed representations in real neurons with strictly positive firing 
rates  limited  realistically  to  a  couple  orders  of  magnitude  representation  (assuming  a  firing  rate  code).  Even 
normalized  representations  will  have  a  wide  range  of  values  owing to  the  variation  in  dissociation  constants.  
Logarithmic representations might avoid some of these complications :

log Ai , x=log [ x ]S i =log [ x ]log  S i=log [ x ] pKd i

Taking the z-scores of the log-transformed vector still gives you a concentration invariant response, and the result is 
an  odor  identity  vector  in  terms  of  pKd.  Subtracting out  the  mean is  also  sufficient.  This  suggests  that  some  
transformations of ORN binding information can transform odor information into a space where it is trivial to both 
classify, and determine the concentration, of a given odor percept. 

log Ai , x−log Ai , x

log A i , x 

=
log [ x ] pKd i−log[ x ] pKd i

log [x ] pKd i

=
log [ x ] pKd i−log [ x ]− pKd i

 pKd i

=
pKd i− pKd i

 pKd i

pKd i− pKd i=log Ai , x−log Ai , x
= log Bi , x−log 1−Bi , x−log Bi , x −log 1−Bi , x
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