
Appian New Data Features
Serafeim Papastefanos
spapas@gmail.com



Features of Appian Versions



CDTs & Query Rules
● Instead of basic data types we can 

use Complex Data Types (structs)
○ CustomerInfoCDT

■ firstName
■ lastName
■ taxNumber...

● Each CDT can contain basic data 
types and other CDTs

● Grouping of information
● Easier storage & retrieval

○ Saving objects without ORM 
would require either a custom 
smart node or a subprocess

○

● Query rules
○ Have to be defined
○ Can be used to retrieve 

lists of CDTs for usage 
in Processes

○ Can filter results 
(WHERE clauses in 
SQL)

○



● Through CDT Designer from Appian GUI
○ Actually the CDT designer does not support JPA annotations and cannot be used alone!

● By writing an XSD by hand
○ Use the CDT designer to add the fields to the CDT
○ Download the XSD without publishing it to Appian
○ Edit it to add required annotations
○ Import it to Appian

● By importing types from web services
○ When you use the WS from Appian it will import all its types
○ These CDTs will be hidden at first but those that would be used can be unhidden
○ Recommended only on special cases - shouldn’t be persisted

● By creating a java class in your custom plugin
○ It will contain both JAXB (for Appian) and JPA (for persistence) annotations

● A custom type will have:
○ A name
○ A namespace
○ I recommend unique type names by adding a prefix (PCP_Customer, KX_Customer)

Creating CDTs



Example CDT
<xsd:schema targetNamespace="http://appproxy.hcg.gr:8080/suite/types/"
  xmlns:types1="http://appproxy.hcg.gr:8080/suite/types/" <!-- Type namespece --> xmlns:xsd="
http://www.w3.org/2001/XMLSchema">
  <xsd:complexType name="Employee"> <!-- Type name-->
    <xsd:sequence>
      <xsd:element name="id" type="xsd:int"> <!-- ALWAYS add the primary key -->
        <xsd:annotation>               
          <xsd:appinfo source="appian.jpa">
            @Id @GeneratedValue   <!-- The type should not used in Appian without a PK -->
          </xsd:appinfo>
        </xsd:annotation>
      </xsd:element>
      <xsd:element name="firstName" nillable="true" type="xsd:string"/>
      <xsd:element name="lastName" nillable="true" type="xsd:string"/>
      <xsd:element name="department" nillable="true" type="xsd:string"/>
      <xsd:element name="startDate" nillable="true" type="xsd:date"/>
    </xsd:sequence>
  </xsd:complexType>
</xsd:schema>

http://appproxy.hcg.gr:8080/suite/types/


Importing types from other CDTs
User.xsd
<xsd:schema targetNamespace="http://hcg.gr/appian/types/"
  xmlns:types1="http://hcg.gr/appian/types/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <xsd:complexType name="User"> … </xsd:complexType></xsd:schema>
Group.xsd
<xsd:schema targetNamespace="http://hcg.gr/appian/types/"
  xmlns:types1="http://hcg.gr/appian/types/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <xsd:include schemaLocation="%7Bhttp%3A%2F%2Fhcg.gr%2Fappian%2Ftypes%2F%7DUser.xsd"/>
  <xsd:complexType name="Group">
    <xsd:sequence>
      ...
      <xsd:element maxOccurs="unbounded" minOccurs="0" name="members" type="types1:User"/>
    </xsd:sequence>
  </xsd:complexType>
</xsd:schema>
%7B = {, %3A%2F%2 =://, %7D = } 



Example types
● Check XSDs of Sales reference application
● Map existing table to CDT

○ @Table(name="us_states")

○ @Column(columnDefinition="CHAR(40) NOT NULL")

● One to One
<xsd:element name="customerData" type="PCP_CustomerData">

            <xsd:annotation>

                <xsd:appinfo source="appian.jpa">

                    @OneToOne(cascade=ALL, optional=false)

                    @JoinColumn(name="customer_id", nullable=false, unique=true)

                </xsd:appinfo>

            </xsd:annotation>

        </xsd:element>

●



● One to Many (order containing many order items)
<xsd:element maxOccurs="unbounded" minOccurs="0" name="items" type="refapp1:SALES_OrderItem">
        <xsd:annotation>
          <xsd:appinfo source="appian.jpa">

@OneToMany(indexed = false)
@JoinColumn(name="orderid")

</xsd:appinfo>
       </xsd:annotation>
</xsd:element>

● Many to One (a customer can have many orders)
<xsd:element name="customer" nillable="true" type="refapp1:SALES_Customer">
    <xsd:annotation>
          <xsd:appinfo source="appian.jpa">

@ManyToOne(cascade = CascadeType.REFRESH)
@JoinColumn(name="customerid")

 </xsd:appinfo>
    </xsd:annotation>
</xsd:element>

● Many to Many (a customer can have many arrangement & an arrangmenet can have many 
beneficiaries/customers)

Example types 2



Creating CDT with java class
● Appian types exported as XSDs can be imported in eclipse!

○ When other types are imported you have to include the XSD defining 
those types in the same directory and change the schema location!

○ JPA annotations are not created when importing however there is no 
public API to use JPA from plugins
■ So selects / updates must be performed using Appian query ruls 

& smart nodes
● Completely new appian types can also be created

○ Not recommended
○ Should be defined in the plugin with the datatype

<datatype key="ProjectDataType" name="Example Project Data Type">

        <class>com.acme.example.Project</class>

        <class>com.acme.example.Status</class>

</datatype>



Example of java CDT definition
@XmlRootElement(namespace="urn:my-namespace", name="status") // JAXB ANNOTATIONS

@XmlType(namespace="urn:my-namespace", name="status", propOrder={"id", "name"})

@Table(name="status")

public class Status implements Serializable {

    private Long id;    private String name;

    public Status(Long id, String name) { 

        setId(id);        setName(name);

    }

    @Id    @XmlElement // JPA ANNOTATIONS

    public Long getId() {

        return id;

    }

    @Column(length=255, nullable=false, unique=true)    @XmlElement

    public String getName() {

        return name;

    }

}



CDT usage in plugins
// The SALESProduct class has been automaticall generated by importing it
@Function
@Type(name = "SALES_Product", namespace = "urn:com:appian:types:REFAPP") // Declare the return type
public SALESProduct[] TestQueryCDT( 

UserService us, // Inject the services that we are going to use
@Parameter @Type(name = "SALES_Product", namespace = "urn:com:appian:types:REFAPP") SALESProduct
  salesProduct1,
@Parameter @Type(name = "SALES_Product", namespace = "urn:com:appian:types:REFAPP") SALESProduct
  salesProduct2

) {
ArrayList<SALESProduct> sps = new ArrayList<SALESProduct>();
sps.add(salesProduct1);
sps.add(salesProduct2);
User user = us.getUser("serafeim");
salesProduct1.setColor(user.getFirstName());
salesProduct2.setDescription(user.getLastName());
return sps.toArray(new SALESProduct[0]); // We can return Arrays of CDTs

}
* We tried returning a Dictionary Appian Type from a custom function (JsonToDict) but we were unable to 
instantiate a Dictionary (new Dictionary()) was not working. If we had this we could create another function that 
get a Json from a URL and then call all our JSPs from inside Appian without any more code



Instantiating CDTs
● We can instantiate CDTs using the type! function.
● Very important & useful in SAIL
● Example
type!SALES_Product(
  name:"product",
  description:"a product",
  color:"red",
  size:4,
  isActive:true,
  productCategory: type!SALES_ProductCategory(
    name:"category",
    description:"a category"
  )
)



Data stores
● CDTs can be added to datastores to be persisted in RDBMs
● A datastore is a collection of related CDTs
● Create one datastore per Process

○ All datastores could use the same datasource
● Tables can be either created automatically or through exported DDLs
● CDTs in datastores are called Entities
● Datastores have security!



Editing Types
● You can only add new fields to already published CDTs

○ Not needed fields would be always a part of a CDT
● When adding new fields the existing version would be “deleted” - renamed 

to CDT^2
● Old process instances would be updated to use the old/deleted version of 

the type (PersonData^2)
● Do an Impact analysis before changing CDTs:

○ https://forum.appian.com/suite/wiki/71/Data_Type_Impact_Analysis
● Be very careful with that

○ Bad behavior when passing CDTs by reference to sub process
■ Pass CDTs by value for long running sub processes

○ Bad behavior when updating CDT that is used in Smart Nodes
■ A new version of the plugin has to be created!

https://forum.appian.com/suite/wiki/71/Data_Type_Impact_Analysis
https://forum.appian.com/suite/wiki/71/Data_Type_Impact_Analysis


Usage within processes
● Write to Data Store Entity

○ Select the Entity
○ Add a new Node input with the correct type and CDT variable
○ Add a new node output (again with the correct type) to retrieve the 

persisted value
● Delete from Data Store

○ Create Process Variable with a Data Store Entity Type containg the type of 
the entity you want to delete

○ Keeps auditing information !
={

  {entity:pv!ENTITY_COMMIT, identifiers:pv!commitIdsToDelete},

  {entity:pv!ENTITY_SPRINT, identifiers:pv!sprintIdsToDelete}

}

● Add multiple entities to Data store (same as delete - data instead of identifiers)



Form usage - paging grid
● Should be used instead of grids

○ and dropdowns with many values
● Define the data set using the todatasubset function

○ Or a Query rule
○ Or by creating a custom function
○ https://forum.appian.com/suite/wiki/71/Paging_Grid_Component

● Define the CDT that will be used
○ Add columns for the fields of this CDT

● Users can do a (multiple) selection
○ The return value would be the primary key of the entity
○ Or the index of the array that was passed to todatasubset if no entities 

were used
● Supports filtering / sorting / paging

https://forum.appian.com/suite/wiki/71/Paging_Grid_Component
https://forum.appian.com/suite/wiki/71/Paging_Grid_Component


Advanced Querying
=queryrecord(
  recordType: cons!SP_CITY_RECORD,
  query: rule!APN_querySelection(
    fields: {"id", "name", "region.name", "region.district.name" },
    filter: rule!APN_logicalExpressionOR({
      rule!APN_queryFilter(
        field: "name",
        operator: "includes",
        value: ri!name
      ),
      rule!APN_queryFilter(
        field: "region.name", operator: "includes", value: ri!name
      ),
      rule!APN_queryFilter(
        field: "region.district.name", operator: "includes", value: ri!name
      )
    }),
    pagingInfo: ri!pagingInfo
  )
)

Use this for pagingGrid input ! 



Recommendations 1
● Each process should have only one CDT containing everything that needs 

to be persisted to the database (let’s call it pdt)
○ TempeApplicationData

■ id (== IncidentID)
■ Protocol Number
■ TaskData (one2many)
■ TempeCustomerData (one2one)
■ TempeBuildingData (one2one)
■ TempoOtherData (one2one)

● TempeOwner (one2many)
○ One to one relations could go to the main CDT to be more normalized
○ Write this to datastore after every user task
○ Use a query rule to retrieve the data of the process

● This prepares us for easier migration to records (Appian 7.3)



Recommendations 2
● CDTs still cannot be edited :(

○ Add an out of flow script task that “refreshes” the pdt from the 
database using a query rule

○ Whenever you want to do a dynamic intervention change the database 
values and run that flow

○ No need to edit the process model
● Try to avoid customizations (JSPs / javascript)

○ One exception could be the process info JSP page
● Everything should be done with Smart Nodes or custom functions
● Do not use Appian Grids - instead use paging grid for everything



Recommendations 3
● Start form should be avoided or contain only fields for search

○ Add a chained task *immediately* after the start node - no protocols 
would be generated and nothing will be persisted

○ If this task has not been submitted after 1 hour add an exception to 
end the process

● Customer Search should be performed through a paging grid and search 
fields (taxnumber, crs) contained in this form
○ User will fill the crs value and click on submit
○ The Custom Search will be performed through a Smart Node or 

custom function (better because it won’t save data in the process)
○ The result will be shown in the paging grid - the user would select the 

customer and click submit
● Another form could follow to select the customer’s arrangements
● All the above would replace the old, javascript heavy start forms



Recommendations 4
● New CDT versions *will* bite us.

○ Before doing anything in production do sanity checks in UAT
○ Pass CDTs by value in subprocesses with tasks
○ Plugins that take CDTs as a parameter must be updated (import types 

again) to work with new CDT version!


