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1 Introduction

ccrepe is a package for analysis of sparse compositional data. Specifically, it determines the significance of association
between features in a composition, using any similarity measure (e.g. Pearson correlation, Spearman correlation, etc.) The
CCREPE methodology stands for Compositionality Corrected by Renormalization and Permutation, as detailed below.
The package also provides a novel similarity measure, the N-dimensional checkerboard score (NC-score), particularly
appropriate to compositions derived from microbial community sequencing data. This results in p-values and false
discovery rate q-values corrected for the effects of compositionality. The package contains two functions ccrepe and
nc.score and is maintained by the Huttenhower lab (ccrepe-users@googlegroups.com).
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2 ccrepe

ccrepe is the main package function. It calculates compositionality-corrected p-values and q-values for a user-selected
similarity measure, operating on either one or two input matrices. If given one matrix, all features (columns) in the matrix
are compared to each other using the selected similarity measure. If given two matrices, each feature in the first are
compared against all features in the second.

2.1 General functionality

Compositional data induces spurious correlations between features due to the nonindependence of values that must sum
to a fixed total. CCREPE abrogates this when determining the significance of a similarity measure for each feature pair
using two main steps, permutation/renormalization and bootstrapping. First, given two features to compare, CCREPE
generates a null distribution of the similarity expected just due to compositionality by iteratively permuting one feature,
renormalizing all samples in the composition to their previous sum, and computing the resulting similarity measures.
Second, CCREPE bootstraps over sample subsets in order to assess confidence in the ”true” similarity measure. Finally,
the two resulting distributions are compared using a pooled-variance Z-test to give a compositionality-corrected p-value.
False discovery rate q-values are additionally calculated using the Benjamin-Hochberg-Yekutieli procedure. For greater
detail, see Faust et al. [2012] and Schwager and Colleagues.

2.2 Arguments

x First dataframe or matrix containing relative abundances. Columns are features, rows are samples. Rows should
therefore sum to a constant. Row names are used for identification if present.

y Second dataframe or matrix (optional) containing relative abundances. Columns are features, rows are samples. Rows
should therefore sum to a constant. If both x and y are specified, they will be merged by row names. If no row
names are specified for either or both datasets, the default is to merge by row number.

sim.score Similarity measure, such as cor or nc.score. This can be either an existing R function or user-defined.
If the latter, certain properties should be satisfied as detailed below (also see examples). The default similarity
measure is Spearman correlation.
A user-defined similarity measure should mimic the interface of cor:

1. Take either two vector inputs one matrix or dataframe input.
2. In the case of two inputs, return a single number.
3. In the case of one input, return a matrix in which the (i,j)th entry is the similarity score for column i and

column j in the original matrix.
4. The resulting matrix (in the case of one input) must be symmetric.
5. The inputs must be named x and y.

sim.score.args An optional list of arguments for the measurement function. When given, they are passed to the
sim.score function directly. For example, in the case of cor, the following would be acceptable:

sim.score.args = list(method = "spearman", use = "complete.obs")

Note that this example corresponds to the default behavior.

min.subj Minimum number (count) of samples that must be nonzero in order to apply the similarity measure. This is
to ensure that there are sufficient samples to perform a bootstrap (default: 20).

iterations The number of iterations for both bootstrap and permutation calculations (default: 1000).

subset.cols.x Subset of columns from x to work on. The default (NULL) uses all columns. Note that all features are
used for normalization, but calculations are performed only with the requested subset.

subset.cols.y Subset of columns from y to work on. The default (NULL) uses all columns. Note that all features are
used for normalization, but calculations are performed only with the requested subset.
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errthresh1 Maximum allowable probability of getting all zeros in a given bootstrapped column for the first dataset x.
If a feature has a number of zeros that makes the probability of obtaining all zeros when sampling with replacement
greater than this value, that feature will be excluded from the subsequent analysis. This is to ensure that the
standard deviation of the bootstrap sample is non-zero. (default: 0.0001).

verbose If TRUE, print periodic progress of the algorithm through the dataset(s), as well as including more detailed
debugging output. (default: FALSE).

iterations.gap If verbose=TRUE, the number of iterations between issuing status messages (default: 100).

distributions Optional output file for detailed log (if given) of all intermediate permutation and renormalization
distributions.

compare.within.x A boolean value indicating whether to do comparisons given by taking all subsets of size 2 from sub-
set.cols.x or to do comparisons given by taking all possible combinations of subset.cols.x or subset.cols.y.
If TRUE but subset.cols.y=NA, returns all comparisons involving any features in subset.cols.x.

concurrent.output Optional output file to which each comparison will be written as it is calculated.

make.output.table A boolean value indicating whether to include table-formatted output.

2.3 Output

ccrepe returns a list containing both the calculation results and the parameters used:
sim.score matrix of simliarity scores for all requested comparisons. The (i,j)th element corresponds to the similarity

score of column i (or the ith column of subset.cols.1) and column j (or the jth column of subset.cols.1)
in one dataset, or to the similarity score of column i (or the ith column of subset.cols.1) in dataset x and
column j (or the jth column of subset.cols.2) in dataset y in the case of two datasets.

p.values matrix of the corrected p-values for all requested comparisons. The (i,j)th element corresponds to the p-value
of the (i,j)th element of sim.score.

q.values matrix of the Benjamini-Hochberg-Yekutieli corrected p-values. The (i,j)th element corresponds to the
p-value of the (i,j)th element of sim.score.

z.stat matrix of the z-statistics used in generating the p-values for all requested comparisons. The (i,j)th element
corresponds to the z-statistic generating the (i,j)th element of p.values.

2.4 Usage

ccrepe(x = NA, y = NA, sim.score = cor, sim.score.args = list(), min.subj = 20,
iterations = 1000, subset.cols.x = NULL, subset.cols.y = NULL, errthresh1 = 1e-04,
verbose = FALSE, iterations.gap = 100, distributions = NA, compare.within.x = TRUE,
concurrent.output = NA, make.output.table = FALSE)

2.5 Example 1

An example of how to use ccrepe with one dataset.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized
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Figure 1: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values.

## [1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(c("Sample 1", "Sample 2", "Sample 3", "Sample 4",
"Sample 5", "Sample 6", "Sample 7", "Sample 8", "Sample 9", "Sample 10"), c("Feature 1",
"Feature 2", "Feature 3", "Feature 4"))

test.output <- ccrepe(x = test.input, iterations = 20, min.subj = 10)

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output

## $p.values
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.04094 0.8792 0.6567
## Feature 2 0.04094 NA 0.5617 0.2790
## Feature 3 0.87915 0.56170 NA 0.4992
## Feature 4 0.65673 0.27899 0.4992 NA
##
## $z.stat
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 2.0442 0.1520 0.4444
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## Feature 2 2.0442 NA -0.5803 -1.0826
## Feature 3 0.1520 -0.5803 NA -0.6758
## Feature 4 0.4444 -1.0826 -0.6758 NA
##
## $q.values
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.5819 2.083 1.867
## Feature 2 0.5819 NA 1.996 1.983
## Feature 3 2.0827 1.9960 NA 2.365
## Feature 4 1.8669 1.9828 2.365 NA
##
## $sim.score
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.2727 -0.3333 -0.3212
## Feature 2 0.2727 NA -0.4424 -0.4788
## Feature 3 -0.3333 -0.4424 NA -0.3939
## Feature 4 -0.3212 -0.4788 -0.3939 NA

2.6 Example 2

An example of how to use ccrepe with two datasets.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

data2 <- matrix(rlnorm(105, meanlog = 0, sdlog = 1), nrow = 15, ncol = 7)
aligned.rows <- c(seq(1, 4), seq(6, 9), 11, 12) # The datasets dont need

# to have subjects line up exactly

data2[aligned.rows, 1] <- 2 * data[, 3] + rnorm(10, 0, 1)
data2.rowsum <- apply(data2, 1, sum)
data2.norm <- data2/data2.rowsum
apply(data2.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

test.input.2 <- data2.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

dimnames(test.input.2) <- list(paste("Sample", c(seq(1, 4), 11, seq(5, 8), 12,
9, 10, 13, 14, 15)), paste("Feature", seq(1, 7)))

test.output.two.datasets <- ccrepe(x = test.input, y = test.input.2, iterations = 20,
min.subj = 10)
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par(mfrow = c(1, 2))
plot(data2[aligned.rows, 1], data[, 3], xlab = "dataset 2: Feature 1", ylab = "dataset 1: Feature 3",

main = "Non-normalized")
plot(data2.norm[aligned.rows, 1], data.norm[, 3], xlab = "dataset 2: Feature 1",

ylab = "dataset 1: Feature 3", main = "Normalized")
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Figure 2: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values.

test.output.two.datasets

## $p.values
## Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
## Feature 1 0.38073 0.7068 0.2887 0.26502 0.10221 0.5740
## Feature 2 0.27567 0.3123 0.8869 0.78695 0.48098 0.5879
## Feature 3 0.08368 0.5591 0.4181 0.03748 0.01892 0.2084
## Feature 4 0.15102 0.1522 0.2775 0.70519 0.51157 0.4039
## Feature 7
## Feature 1 0.9250
## Feature 2 0.7443
## Feature 3 0.2050
## Feature 4 0.4060
##
## $z.stat
## Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
## Feature 1 -0.8765 -0.3761 1.0610 1.1146 1.6342 0.5622
## Feature 2 -1.0901 1.0104 -0.1423 0.2703 0.7047 0.5418
## Feature 3 1.7297 -0.5841 -0.8098 -2.0805 -2.3472 -1.2579
## Feature 4 -1.4359 1.4318 -1.0859 0.3783 -0.6564 0.8347



CCREPE: Compositionality Corrected by Permutation and Renormalization 7

## Feature 7
## Feature 1 -0.09415
## Feature 2 0.32613
## Feature 3 1.26745
## Feature 4 -0.83102
##
## $q.values
## Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
## Feature 1 2.977 3.224 2.633 3.223 2.797 2.992
## Feature 2 3.018 2.630 3.596 3.313 2.925 2.925
## Feature 3 3.053 3.060 2.692 2.051 2.071 2.852
## Feature 4 3.306 2.777 2.762 3.356 2.947 2.948
## Feature 7
## Feature 1 3.616
## Feature 2 3.259
## Feature 3 3.206
## Feature 4 2.777
##
## $sim.score
## Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
## Feature 1 -0.4061 -0.1515 0.53939 0.5515 0.6485 0.2000
## Feature 2 -0.2848 0.3091 0.06667 0.1879 0.2121 0.1152
## Feature 3 0.6727 -0.1394 -0.39394 -0.6364 -0.5879 -0.5879
## Feature 4 -0.3212 0.6485 -0.36970 -0.1030 -0.3939 0.3818
## Feature 7
## Feature 1 -0.22424
## Feature 2 0.10303
## Feature 3 0.56364
## Feature 4 -0.05455

2.7 Example 3

An example of how to use ccrepe with nc.score as the similarity score.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output.nc.score <- ccrepe(x = test.input, sim.score = nc.score, iterations = 20,
min.subj = 10)

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")
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Figure 3: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values. In this case, however, the
sim.score represents the NC-Score between two features rather than the Spearman correlation.

test.output.nc.score

## $p.values
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.001086 0.8115 0.074876
## Feature 2 0.001086 NA 0.1951 0.006541
## Feature 3 0.811457 0.195093 NA 0.213255
## Feature 4 0.074876 0.006541 0.2133 NA
##
## $z.stat
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 3.267 -0.2385 -1.781
## Feature 2 3.2673 NA -1.2957 -2.719
## Feature 3 -0.2385 -1.296 NA 1.245
## Feature 4 -1.7812 -2.719 1.2447 NA
##
## $q.values
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.01543 1.9223 0.35476
## Feature 2 0.01543 NA 0.6933 0.04649
## Feature 3 1.92232 0.69326 NA 0.60623
## Feature 4 0.35476 0.04649 0.6062 NA
##
## $sim.score
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.3810 -0.7489 -0.8139
## Feature 2 0.3810 NA -0.2857 -0.5887
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## Feature 3 -0.7489 -0.2857 NA 0.3810
## Feature 4 -0.8139 -0.5887 0.3810 NA

2.8 Example 4

An example of how to use ccrepe with a user-defined sim.score function.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

my.test.sim.score <- function(x, y = NA, constant = 0.5) {
if (is.vector(x) && is.vector(y))

return(constant)
if (is.matrix(x) && is.na(y))

return(matrix(rep(constant, ncol(x)^2), ncol = ncol(x)))
if (is.data.frame(x) && is.na(y))

return(matrix(rep(constant, ncol(x)^2), ncol = ncol(x))) else stop("ERROR")
}

test.output.sim.score <- ccrepe(x = test.input, sim.score = my.test.sim.score,
iterations = 20, min.subj = 10, sim.score.args = list(constant = 0.6))

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output.sim.score

## $p.values
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA NaN NaN NaN
## Feature 2 NaN NA NaN NaN
## Feature 3 NaN NaN NA NaN
## Feature 4 NaN NaN NaN NA
##
## $z.stat
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA NaN NaN NaN
## Feature 2 NaN NA NaN NaN
## Feature 3 NaN NaN NA NaN
## Feature 4 NaN NaN NaN NA
##
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Figure 4: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. Note that the values of sim.score are all 0.6 and none of the p-values are very
small because of the arbitrary definition of the similarity score.

## $q.values
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA NaN NaN NaN
## Feature 2 NaN NA NaN NaN
## Feature 3 NaN NaN NA NaN
## Feature 4 NaN NaN NaN NA
##
## $sim.score
## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.6 0.6 0.6
## Feature 2 0.6 NA 0.6 0.6
## Feature 3 0.6 0.6 NA 0.6
## Feature 4 0.6 0.6 0.6 NA

2.9 Example 5

An example of how to use ccrepe when specifying column subsets.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm



CCREPE: Compositionality Corrected by Permutation and Renormalization 11

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output.1.3 <- ccrepe(x = test.input, iterations = 20, min.subj = 10, subset.cols.x = c(1,
3))

test.output.1 <- ccrepe(x = test.input, iterations = 20, min.subj = 10, subset.cols.x = c(1),
compare.within.x = FALSE)

test.output.12.3 <- ccrepe(x = test.input, iterations = 20, min.subj = 10, subset.cols.x = c(1,
2), subset.cols.y = c(3), compare.within.x = FALSE)

test.output.1.3$sim.score

## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA NA -0.5758 NA
## Feature 2 NA NA NA NA
## Feature 3 -0.5758 NA NA NA
## Feature 4 NA NA NA NA

test.output.1$sim.score

## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA -0.2485 -0.5758 -0.6242
## Feature 2 -0.2485 NA NA NA
## Feature 3 -0.5758 NA NA NA
## Feature 4 -0.6242 NA NA NA

test.output.12.3$sim.score

## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA NA -0.5758 NA
## Feature 2 NA NA -0.1515 NA
## Feature 3 -0.5758 -0.1515 NA NA
## Feature 4 NA NA NA NA

3 nc.score

The nc.score similarity measure is an N-dimensional extension of the checkerboard score particularly suited to similarity
score calculations between compositions derived from ecological relative abundance measurements. In such cases, features
typically represent species abundances, and the NC-score discretizes these continuous values into one of N bins before
computing a normalized similarity of co-occurrence or co-exclusion. This can be used as a standalone function or with
ccrepe as above to obtain compositionality-corrected p-values.

3.1 General Functionality

The NC-score is an extension to Diamond’s checkerboard score (see Cody and Diamond [1975]) to ordinal data. The
generalization of the checkerboard score is through defining general co-variation and co-exclusion patterns in ordinal data.
With ordinal data, the checkerboard considers the 2× 2 submatrices which are of the form:[

a b
c d

]
In the cases that a < b and c < d (or a > b and c > d), the submatrix is considered a co-variation pattern; conversely,
if a > b and c < d (or a < b and c > d) then the submatrix is considered a co-exclusion pattern. The number of
co-exclusion patterns for n bins is adjusted based on the expected ratio of co-variaion to co-exclusion patterns in any
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given sample. The adjustment factor is given by:

1.5 ∗ n(n− 1)
n2 − n+ 1

,

with the complete derivation being left to Bielski [2013].
The function as implemented here first performs basic quality control filtering of input relative abundance data. It then
transforms relative abundances to ordinal values based on user-provided or default bin thresholds. It then computes a
raw NC-score:

Cij − 1.5 ∗ n(n− 1)
n2 − n+ 1

∗Dij

where Cij and Dij are the total number of co-variation and co-exclusion patterns, respectively, between species i and j
and where n is the number of bins.
The raw NC-score is then normalized to between -1 and 1 for n bins and s samples by dividing by the maximum possible
NC-score, which is based on the maximum number of co-variation patterns possible. The normalized NC-score is then
analogous to Pearsons ρ, where positive values indicate more co-variation than co-exclusion patterns and the magnitude
of the score indicates the strength of the association between the species. The derivation of this normalization factor can
be found in Bielski [2013]. The normalization factor is given by:(

s
2

)
−

[
s mod n ∗

( ⌊
s
n

⌋
+ 1

2

)
+

(
n− s mod n

)
∗

( ⌊
s
n

⌋
2

)]
.

3.2 Arguments

x First numerical vector, or single dataframe or matrix, containing relative abundances. If the latter, columns are features,
rows are samples. Rows should therefore sum to a constant.

y If provided, second numerical vector containing relative abundances. If given, x must be a vector as well.

bins Either the number of bins to use or a vector specifying bin edges. If a single number is given, this is used as
the number of bins with the discretize function of the package infotheo. If a vector is specified, the function
findInterval is used to discretize the data. The default behavior is to use the defaults for the discretize
function.

verbose Request verbose output.

min.abundance Minimum abundance threshold for quality control filtering. For a feature to be included, it must take
a value of at least min.abundance in at least min.samples percent of samples.

min.samples Minimum sample threshold for quality control filtering. For a feature to be included, it must take a value
of at least min.abundance in at least min.samples percent of samples.

3.3 Output

nc.score returns either a single number (if called with two vectors) or a matrix of all pairwise scores (if called with a
matrix) of normalized scores.

3.4 Usage

nc.score(x = NA, y = NA, bins = NA, verbose = FALSE, min.abundance = 1e-04, min.samples = 0.1)

http://cran.fhcrc.org/web/packages/infotheo/index.html
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3.5 Example 1

An example of using nc.score to get a single similarity score or a matrix.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1.2300 0.7188 1.5339 1.2907 1.0305 1.7123 2.2367 1.1729 0.9353 1.0363

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output.matrix <- nc.score(x = test.input)
test.output.num <- nc.score(x = test.input[, 1], y = test.input[, 2])

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")
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Figure 5: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value of the [1,2] element of test.output.matrix (which is identical to test.output.num)

test.output.matrix

## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.5887 -0.83550 -0.07792



CCREPE: Compositionality Corrected by Permutation and Renormalization 14

## Feature 2 0.58874 NA -0.33333 -0.38095
## Feature 3 -0.83550 -0.3333 NA -0.07792
## Feature 4 -0.07792 -0.3810 -0.07792 NA

test.output.num

## [1] 0.5887

3.6 Example 2

An example of using nc.score with an aribitrary bin number.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 1.5571 0.4790 1.5085 1.3988 1.7848 1.2138 2.2280 1.6783 0.9496 1.3327

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output <- nc.score(x = test.input, bins = 2)

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output

## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.6 0.2 0.2
## Feature 2 0.6 NA 0.2 -0.2
## Feature 3 0.2 0.2 NA -0.2
## Feature 4 0.2 -0.2 -0.2 NA

3.7 Example 3

An example of using nc.score with user-defined bin edges.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

## [1] 0.6506 1.7347 0.7661 1.4360 1.5307 0.7358 1.2605 1.5318 1.5810 1.3170
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Figure 6: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value in the [1,2] element of test.output. In this case, the smaller bin number yields a smaller NC-score because of
the coarser partitioning of the data.

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output <- nc.score(x = test.input, bins = c(0.001, 0.1, 0.25, 0.6))

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output

## Feature 1 Feature 2 Feature 3 Feature 4
## Feature 1 NA 0.648649 0.147609 -0.002079
## Feature 2 0.648649 NA -0.008316 -0.147609
## Feature 3 0.147609 -0.008316 NA -0.399168
## Feature 4 -0.002079 -0.147609 -0.399168 NA
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Figure 7: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value in the [1,2] element of test.output. The bin edges specified here represent almost absent ([ 0,0.001)), low
abundance ([0.001,0.1)), medium abundance ([0.1,0.25)), and high abundance ([0.6,1)).
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