
CCREPE: Compositionality Corrected by Permutation and

Renormalization

Emma Schwager, George Weingart, Craig Bielski, Curtis Huttenhower

May 2, 2014

Contents

1 Introduction 1

2 ccrepe 2
2.1 General functionality . 2
2.2 Arguments . 2
2.3 Output . 3
2.4 Usage . 3
2.5 Example 1 . 3
2.6 Example 2 . 5
2.7 Example 3 . 7
2.8 Example 4 . 9
2.9 Example 5 . 10

3 nc.score 11
3.1 General Functionality . 11
3.2 Arguments . 12
3.3 Output . 12
3.4 Usage . 12
3.5 Example 1 . 13
3.6 Example 2 . 14
3.7 Example 3 . 14

4 References 15

1 Introduction

ccrepe is a package for analysis of sparse compositional data. Specifically, it determines the significance of association
between features in a composition, using any similarity measure (e.g. Pearson correlation, Spearman correlation, etc.) The
CCREPE methodology stands for Compositionality Corrected by Renormalization and Permutation, as detailed below.
The package also provides a novel similarity measure, the N-dimensional checkerboard score (NC-score), particularly
appropriate to compositions derived from microbial community sequencing data. This results in p-values and false
discovery rate q-values corrected for the effects of compositionality. The package contains two functions ccrepe and
nc.score and is maintained by the Huttenhower lab (ccrepe-users@googlegroups.com).

1

http://bioconductor.org/packages/release/bioc/html/ccrepe.html
mailto:ccrepe-users@googlegroups.com

CCREPE: Compositionality Corrected by Permutation and Renormalization 2

2 ccrepe

ccrepe is the main package function. It calculates compositionality-corrected p-values and q-values for a user-selected
similarity measure, operating on either one or two input matrices. If given one matrix, all features (columns) in the matrix
are compared to each other using the selected similarity measure. If given two matrices, each feature in the first are
compared against all features in the second.

2.1 General functionality

Compositional data induces spurious correlations between features due to the nonindependence of values that must sum
to a fixed total. CCREPE abrogates this when determining the significance of a similarity measure for each feature pair
using two main steps, permutation/renormalization and bootstrapping. First, given two features to compare, CCREPE
generates a null distribution of the similarity expected just due to compositionality by iteratively permuting one feature,
renormalizing all samples in the composition to their previous sum, and computing the resulting similarity measures.
Second, CCREPE bootstraps over sample subsets in order to assess confidence in the ”true” similarity measure. Finally,
the two resulting distributions are compared using a pooled-variance Z-test to give a compositionality-corrected p-value.
False discovery rate q-values are additionally calculated using the Benjamin-Hochberg-Yekutieli procedure. For greater
detail, see Faust et al. [2012] and Schwager and Colleagues.

2.2 Arguments

x First dataframe or matrix containing relative abundances. Columns are features, rows are samples. Rows should
therefore sum to a constant. Row names are used for identification if present.

y Second dataframe or matrix (optional) containing relative abundances. Columns are features, rows are samples. Rows
should therefore sum to a constant. If both x and y are specified, they will be merged by row names. If no row
names are specified for either or both datasets, the default is to merge by row number.

sim.score Similarity measure, such as cor or nc.score. This can be either an existing R function or user-defined.
If the latter, certain properties should be satisfied as detailed below (also see examples). The default similarity
measure is Spearman correlation.
A user-defined similarity measure should mimic the interface of cor:

1. Take either two vector inputs one matrix or dataframe input.
2. In the case of two inputs, return a single number.
3. In the case of one input, return a matrix in which the (i,j)th entry is the similarity score for column i and

column j in the original matrix.
4. The resulting matrix (in the case of one input) must be symmetric.
5. The inputs must be named x and y.

sim.score.args An optional list of arguments for the measurement function. When given, they are passed to the
sim.score function directly. For example, in the case of cor, the following would be acceptable:

sim.score.args = list(method = "spearman", use = "complete.obs")

Note that this example corresponds to the default behavior.

min.subj Minimum number (count) of samples that must be nonzero in order to apply the similarity measure. This is
to ensure that there are sufficient samples to perform a bootstrap (default: 20).

iterations The number of iterations for both bootstrap and permutation calculations (default: 1000).

subset.cols.x Subset of columns from x to work on. The default (NULL) uses all columns. Note that all features are
used for normalization, but calculations are performed only with the requested subset.

subset.cols.y Subset of columns from y to work on. The default (NULL) uses all columns. Note that all features are
used for normalization, but calculations are performed only with the requested subset.

CCREPE: Compositionality Corrected by Permutation and Renormalization 3

errthresh1 Maximum allowable probability of getting all zeros in a given bootstrapped column for the first dataset x.
If a feature has a number of zeros that makes the probability of obtaining all zeros when sampling with replacement
greater than this value, that feature will be excluded from the subsequent analysis. This is to ensure that the
standard deviation of the bootstrap sample is non-zero. (default: 0.0001).

verbose If TRUE, print periodic progress of the algorithm through the dataset(s), as well as including more detailed
debugging output. (default: FALSE).

iterations.gap If verbose=TRUE, the number of iterations between issuing status messages (default: 100).

distributions Optional output file for detailed log (if given) of all intermediate permutation and renormalization
distributions.

compare.within.x A boolean value indicating whether to do comparisons given by taking all subsets of size 2 from sub-
set.cols.x or to do comparisons given by taking all possible combinations of subset.cols.x or subset.cols.y.
If TRUE but subset.cols.y=NA, returns all comparisons involving any features in subset.cols.x.

concurrent.output Optional output file to which each comparison will be written as it is calculated.

make.output.table A boolean value indicating whether to include table-formatted output.

2.3 Output

ccrepe returns a list containing both the calculation results and the parameters used:
sim.score matrix of simliarity scores for all requested comparisons. The (i,j)th element corresponds to the similarity

score of column i (or the ith column of subset.cols.1) and column j (or the jth column of subset.cols.1)
in one dataset, or to the similarity score of column i (or the ith column of subset.cols.1) in dataset x and
column j (or the jth column of subset.cols.2) in dataset y in the case of two datasets.

p.values matrix of the corrected p-values for all requested comparisons. The (i,j)th element corresponds to the p-value
of the (i,j)th element of sim.score.

q.values matrix of the Benjamini-Hochberg-Yekutieli corrected p-values. The (i,j)th element corresponds to the
p-value of the (i,j)th element of sim.score.

z.stat matrix of the z-statistics used in generating the p-values for all requested comparisons. The (i,j)th element
corresponds to the z-statistic generating the (i,j)th element of p.values.

2.4 Usage

ccrepe(x = NA, y = NA, sim.score = cor, sim.score.args = list(), min.subj = 20,
iterations = 1000, subset.cols.x = NULL, subset.cols.y = NULL, errthresh1 = 1e-04,
verbose = FALSE, iterations.gap = 100, distributions = NA, compare.within.x = TRUE,
concurrent.output = NA, make.output.table = FALSE)

2.5 Example 1

An example of how to use ccrepe with one dataset.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

CCREPE: Compositionality Corrected by Permutation and Renormalization 4

●

●

●

●

●

●

●●

●

●

0 5 10 15

1
3

5
7

Non−normalized

Feature 1

F
ea

tu
re

 2

●
●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6

0.
10

0.
20

0.
30

Normalized

Feature 1

F
ea

tu
re

 2

Figure 1: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values.

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(c("Sample 1", "Sample 2", "Sample 3", "Sample 4",
"Sample 5", "Sample 6", "Sample 7", "Sample 8", "Sample 9", "Sample 10"), c("Feature 1",
"Feature 2", "Feature 3", "Feature 4"))

test.output <- ccrepe(x = test.input, iterations = 20, min.subj = 10)

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output

$p.values
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.04094 0.8792 0.6567
Feature 2 0.04094 NA 0.5617 0.2790
Feature 3 0.87915 0.56170 NA 0.4992
Feature 4 0.65673 0.27899 0.4992 NA
##
$z.stat
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 2.0442 0.1520 0.4444

CCREPE: Compositionality Corrected by Permutation and Renormalization 5

Feature 2 2.0442 NA -0.5803 -1.0826
Feature 3 0.1520 -0.5803 NA -0.6758
Feature 4 0.4444 -1.0826 -0.6758 NA
##
$q.values
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.5819 2.083 1.867
Feature 2 0.5819 NA 1.996 1.983
Feature 3 2.0827 1.9960 NA 2.365
Feature 4 1.8669 1.9828 2.365 NA
##
$sim.score
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.2727 -0.3333 -0.3212
Feature 2 0.2727 NA -0.4424 -0.4788
Feature 3 -0.3333 -0.4424 NA -0.3939
Feature 4 -0.3212 -0.4788 -0.3939 NA

2.6 Example 2

An example of how to use ccrepe with two datasets.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

data2 <- matrix(rlnorm(105, meanlog = 0, sdlog = 1), nrow = 15, ncol = 7)
aligned.rows <- c(seq(1, 4), seq(6, 9), 11, 12) # The datasets dont need

to have subjects line up exactly

data2[aligned.rows, 1] <- 2 * data[, 3] + rnorm(10, 0, 1)
data2.rowsum <- apply(data2, 1, sum)
data2.norm <- data2/data2.rowsum
apply(data2.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

test.input.2 <- data2.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

dimnames(test.input.2) <- list(paste("Sample", c(seq(1, 4), 11, seq(5, 8), 12,
9, 10, 13, 14, 15)), paste("Feature", seq(1, 7)))

test.output.two.datasets <- ccrepe(x = test.input, y = test.input.2, iterations = 20,
min.subj = 10)

CCREPE: Compositionality Corrected by Permutation and Renormalization 6

par(mfrow = c(1, 2))
plot(data2[aligned.rows, 1], data[, 3], xlab = "dataset 2: Feature 1", ylab = "dataset 1: Feature 3",

main = "Non-normalized")
plot(data2.norm[aligned.rows, 1], data.norm[, 3], xlab = "dataset 2: Feature 1",

ylab = "dataset 1: Feature 3", main = "Normalized")

●

●

●●

●

●

●

●●

●

0 2 4 6 8 10

1
2

3
4

5

Non−normalized

dataset 2: Feature 1

da
ta

se
t 1

: F
ea

tu
re

 3

●

●

●●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5
0.

2
0.

4
0.

6
0.

8

Normalized

dataset 2: Feature 1

da
ta

se
t 1

: F
ea

tu
re

 3

Figure 2: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values.

test.output.two.datasets

$p.values
Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
Feature 1 0.38073 0.7068 0.2887 0.26502 0.10221 0.5740
Feature 2 0.27567 0.3123 0.8869 0.78695 0.48098 0.5879
Feature 3 0.08368 0.5591 0.4181 0.03748 0.01892 0.2084
Feature 4 0.15102 0.1522 0.2775 0.70519 0.51157 0.4039
Feature 7
Feature 1 0.9250
Feature 2 0.7443
Feature 3 0.2050
Feature 4 0.4060
##
$z.stat
Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
Feature 1 -0.8765 -0.3761 1.0610 1.1146 1.6342 0.5622
Feature 2 -1.0901 1.0104 -0.1423 0.2703 0.7047 0.5418
Feature 3 1.7297 -0.5841 -0.8098 -2.0805 -2.3472 -1.2579
Feature 4 -1.4359 1.4318 -1.0859 0.3783 -0.6564 0.8347

CCREPE: Compositionality Corrected by Permutation and Renormalization 7

Feature 7
Feature 1 -0.09415
Feature 2 0.32613
Feature 3 1.26745
Feature 4 -0.83102
##
$q.values
Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
Feature 1 2.977 3.224 2.633 3.223 2.797 2.992
Feature 2 3.018 2.630 3.596 3.313 2.925 2.925
Feature 3 3.053 3.060 2.692 2.051 2.071 2.852
Feature 4 3.306 2.777 2.762 3.356 2.947 2.948
Feature 7
Feature 1 3.616
Feature 2 3.259
Feature 3 3.206
Feature 4 2.777
##
$sim.score
Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
Feature 1 -0.4061 -0.1515 0.53939 0.5515 0.6485 0.2000
Feature 2 -0.2848 0.3091 0.06667 0.1879 0.2121 0.1152
Feature 3 0.6727 -0.1394 -0.39394 -0.6364 -0.5879 -0.5879
Feature 4 -0.3212 0.6485 -0.36970 -0.1030 -0.3939 0.3818
Feature 7
Feature 1 -0.22424
Feature 2 0.10303
Feature 3 0.56364
Feature 4 -0.05455

2.7 Example 3

An example of how to use ccrepe with nc.score as the similarity score.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output.nc.score <- ccrepe(x = test.input, sim.score = nc.score, iterations = 20,
min.subj = 10)

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

CCREPE: Compositionality Corrected by Permutation and Renormalization 8

● ●

●

●●

●

●

●●

●

0 2 4 6 8

0
1

2
3

4
5

Non−normalized

Feature 1

F
ea

tu
re

 2 ●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

0.
05

0.
15

0.
25

Normalized

Feature 1

F
ea

tu
re

 2

Figure 3: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. In the output we see this by the positive sim.score value in the [1,2] element
of test.output$sim.score and the small q-value in the [1,2] element of test.output$q.values. In this case, however, the
sim.score represents the NC-Score between two features rather than the Spearman correlation.

test.output.nc.score

$p.values
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.001086 0.8115 0.074876
Feature 2 0.001086 NA 0.1951 0.006541
Feature 3 0.811457 0.195093 NA 0.213255
Feature 4 0.074876 0.006541 0.2133 NA
##
$z.stat
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 3.267 -0.2385 -1.781
Feature 2 3.2673 NA -1.2957 -2.719
Feature 3 -0.2385 -1.296 NA 1.245
Feature 4 -1.7812 -2.719 1.2447 NA
##
$q.values
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.01543 1.9223 0.35476
Feature 2 0.01543 NA 0.6933 0.04649
Feature 3 1.92232 0.69326 NA 0.60623
Feature 4 0.35476 0.04649 0.6062 NA
##
$sim.score
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.3810 -0.7489 -0.8139
Feature 2 0.3810 NA -0.2857 -0.5887

CCREPE: Compositionality Corrected by Permutation and Renormalization 9

Feature 3 -0.7489 -0.2857 NA 0.3810
Feature 4 -0.8139 -0.5887 0.3810 NA

2.8 Example 4

An example of how to use ccrepe with a user-defined sim.score function.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

my.test.sim.score <- function(x, y = NA, constant = 0.5) {
if (is.vector(x) && is.vector(y))

return(constant)
if (is.matrix(x) && is.na(y))

return(matrix(rep(constant, ncol(x)^2), ncol = ncol(x)))
if (is.data.frame(x) && is.na(y))

return(matrix(rep(constant, ncol(x)^2), ncol = ncol(x))) else stop("ERROR")
}

test.output.sim.score <- ccrepe(x = test.input, sim.score = my.test.sim.score,
iterations = 20, min.subj = 10, sim.score.args = list(constant = 0.6))

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output.sim.score

$p.values
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA NaN NaN NaN
Feature 2 NaN NA NaN NaN
Feature 3 NaN NaN NA NaN
Feature 4 NaN NaN NaN NA
##
$z.stat
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA NaN NaN NaN
Feature 2 NaN NA NaN NaN
Feature 3 NaN NaN NA NaN
Feature 4 NaN NaN NaN NA
##

CCREPE: Compositionality Corrected by Permutation and Renormalization 10

●

●

●

●

●

●

●

●

●
●

0 2 4 6 8

0.
5

1.
5

2.
5

3.
5

Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

● ●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6

0.
10

0.
15

0.
20

0.
25

Normalized

Feature 1

F
ea

tu
re

 2

Figure 4: Non-normalized and normalized associations between feature 1 and feature 2. In this case we would expect
feature 1 and feature 2 to be associated. Note that the values of sim.score are all 0.6 and none of the p-values are very
small because of the arbitrary definition of the similarity score.

$q.values
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA NaN NaN NaN
Feature 2 NaN NA NaN NaN
Feature 3 NaN NaN NA NaN
Feature 4 NaN NaN NaN NA
##
$sim.score
Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.6 0.6 0.6
Feature 2 0.6 NA 0.6 0.6
Feature 3 0.6 0.6 NA 0.6
Feature 4 0.6 0.6 0.6 NA

2.9 Example 5

An example of how to use ccrepe when specifying column subsets.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1 1 1 1 1 1 1 1 1 1

test.input <- data.norm

CCREPE: Compositionality Corrected by Permutation and Renormalization 11

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output.1.3 <- ccrepe(x = test.input, iterations = 20, min.subj = 10, subset.cols.x = c(1,
3))

test.output.1 <- ccrepe(x = test.input, iterations = 20, min.subj = 10, subset.cols.x = c(1),
compare.within.x = FALSE)

test.output.12.3 <- ccrepe(x = test.input, iterations = 20, min.subj = 10, subset.cols.x = c(1,
2), subset.cols.y = c(3), compare.within.x = FALSE)

test.output.1.3$sim.score

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA NA -0.5758 NA
Feature 2 NA NA NA NA
Feature 3 -0.5758 NA NA NA
Feature 4 NA NA NA NA

test.output.1$sim.score

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA -0.2485 -0.5758 -0.6242
Feature 2 -0.2485 NA NA NA
Feature 3 -0.5758 NA NA NA
Feature 4 -0.6242 NA NA NA

test.output.12.3$sim.score

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA NA -0.5758 NA
Feature 2 NA NA -0.1515 NA
Feature 3 -0.5758 -0.1515 NA NA
Feature 4 NA NA NA NA

3 nc.score

The nc.score similarity measure is an N-dimensional extension of the checkerboard score particularly suited to similarity
score calculations between compositions derived from ecological relative abundance measurements. In such cases, features
typically represent species abundances, and the NC-score discretizes these continuous values into one of N bins before
computing a normalized similarity of co-occurrence or co-exclusion. This can be used as a standalone function or with
ccrepe as above to obtain compositionality-corrected p-values.

3.1 General Functionality

The NC-score is an extension to Diamond’s checkerboard score (see Cody and Diamond [1975]) to ordinal data. The
generalization of the checkerboard score is through defining general co-variation and co-exclusion patterns in ordinal data.
With ordinal data, the checkerboard considers the 2× 2 submatrices which are of the form:[

a b
c d

]
In the cases that a < b and c < d (or a > b and c > d), the submatrix is considered a co-variation pattern; conversely,
if a > b and c < d (or a < b and c > d) then the submatrix is considered a co-exclusion pattern. The number of
co-exclusion patterns for n bins is adjusted based on the expected ratio of co-variaion to co-exclusion patterns in any

CCREPE: Compositionality Corrected by Permutation and Renormalization 12

given sample. The adjustment factor is given by:

1.5 ∗ n(n− 1)
n2 − n+ 1

,

with the complete derivation being left to Bielski [2013].
The function as implemented here first performs basic quality control filtering of input relative abundance data. It then
transforms relative abundances to ordinal values based on user-provided or default bin thresholds. It then computes a
raw NC-score:

Cij − 1.5 ∗ n(n− 1)
n2 − n+ 1

∗Dij

where Cij and Dij are the total number of co-variation and co-exclusion patterns, respectively, between species i and j
and where n is the number of bins.
The raw NC-score is then normalized to between -1 and 1 for n bins and s samples by dividing by the maximum possible
NC-score, which is based on the maximum number of co-variation patterns possible. The normalized NC-score is then
analogous to Pearsons ρ, where positive values indicate more co-variation than co-exclusion patterns and the magnitude
of the score indicates the strength of the association between the species. The derivation of this normalization factor can
be found in Bielski [2013]. The normalization factor is given by:(

s
2

)
−

[
s mod n ∗

(⌊
s
n

⌋
+ 1

2

)
+

(
n− s mod n

)
∗

(⌊
s
n

⌋
2

)]
.

3.2 Arguments

x First numerical vector, or single dataframe or matrix, containing relative abundances. If the latter, columns are features,
rows are samples. Rows should therefore sum to a constant.

y If provided, second numerical vector containing relative abundances. If given, x must be a vector as well.

bins Either the number of bins to use or a vector specifying bin edges. If a single number is given, this is used as
the number of bins with the discretize function of the package infotheo. If a vector is specified, the function
findInterval is used to discretize the data. The default behavior is to use the defaults for the discretize
function.

verbose Request verbose output.

min.abundance Minimum abundance threshold for quality control filtering. For a feature to be included, it must take
a value of at least min.abundance in at least min.samples percent of samples.

min.samples Minimum sample threshold for quality control filtering. For a feature to be included, it must take a value
of at least min.abundance in at least min.samples percent of samples.

3.3 Output

nc.score returns either a single number (if called with two vectors) or a matrix of all pairwise scores (if called with a
matrix) of normalized scores.

3.4 Usage

nc.score(x = NA, y = NA, bins = NA, verbose = FALSE, min.abundance = 1e-04, min.samples = 0.1)

http://cran.fhcrc.org/web/packages/infotheo/index.html

CCREPE: Compositionality Corrected by Permutation and Renormalization 13

3.5 Example 1

An example of using nc.score to get a single similarity score or a matrix.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1.2300 0.7188 1.5339 1.2907 1.0305 1.7123 2.2367 1.1729 0.9353 1.0363

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output.matrix <- nc.score(x = test.input)
test.output.num <- nc.score(x = test.input[, 1], y = test.input[, 2])

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

●●
●●● ●

●

●●

●

0 5 10 20 30

0
5

10
15

Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●●

●

●

●

●
●

0.0 0.4 0.8 1.2

0.
1

0.
3

0.
5

Normalized

Feature 1

F
ea

tu
re

 2

Figure 5: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value of the [1,2] element of test.output.matrix (which is identical to test.output.num)

test.output.matrix

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.5887 -0.83550 -0.07792

CCREPE: Compositionality Corrected by Permutation and Renormalization 14

Feature 2 0.58874 NA -0.33333 -0.38095
Feature 3 -0.83550 -0.3333 NA -0.07792
Feature 4 -0.07792 -0.3810 -0.07792 NA

test.output.num

[1] 0.5887

3.6 Example 2

An example of using nc.score with an aribitrary bin number.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 1.5571 0.4790 1.5085 1.3988 1.7848 1.2138 2.2280 1.6783 0.9496 1.3327

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output <- nc.score(x = test.input, bins = 2)

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.6 0.2 0.2
Feature 2 0.6 NA 0.2 -0.2
Feature 3 0.2 0.2 NA -0.2
Feature 4 0.2 -0.2 -0.2 NA

3.7 Example 3

An example of using nc.score with user-defined bin edges.

data <- matrix(rlnorm(40, meanlog = 0, sdlog = 1), nrow = 10, ncol = 4)
data.rowsum <- apply(data, 1, sum)
data[, 1] = 2 * data[, 2] + rnorm(10, 0, 1)
data.norm <- data/data.rowsum
apply(data.norm, 1, sum) # The rows sum to 1, so the data are normalized

[1] 0.6506 1.7347 0.7661 1.4360 1.5307 0.7358 1.2605 1.5318 1.5810 1.3170

CCREPE: Compositionality Corrected by Permutation and Renormalization 15

●
●●

●

●

●

●

●
●

●

0 5 10 15 20

2
6

10
Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●

●

●

●

●

●

●

0.2 0.6 1.0

0.
1

0.
3

0.
5

Normalized

Feature 1

F
ea

tu
re

 2
Figure 6: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value in the [1,2] element of test.output. In this case, the smaller bin number yields a smaller NC-score because of
the coarser partitioning of the data.

test.input <- data.norm

dimnames(test.input) <- list(paste("Sample", seq(1, 10)), paste("Feature", seq(1,
4)))

test.output <- nc.score(x = test.input, bins = c(0.001, 0.1, 0.25, 0.6))

par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Non-normalized")
plot(data.norm[, 1], data.norm[, 2], xlab = "Feature 1", ylab = "Feature 2", main = "Normalized")

test.output

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 NA 0.648649 0.147609 -0.002079
Feature 2 0.648649 NA -0.008316 -0.147609
Feature 3 0.147609 -0.008316 NA -0.399168
Feature 4 -0.002079 -0.147609 -0.399168 NA

4 References

References

Craig Bielski. Extending the Checkerboard Score to Ordinal Data: A Methodology for Detecting Species-Level Co-
Variation and Co-Exclusion Patterns in the Human Microbiome. Master’s thesis, Harvard School of Public Health,
Boston, USA, 2013.

CCREPE: Compositionality Corrected by Permutation and Renormalization 16

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
1

2
3

4
Non−normalized

Feature 1

F
ea

tu
re

 2

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

Normalized

Feature 1

F
ea

tu
re

 2
Figure 7: Non-normalized and normalized associations between feature 1 and feature 2 of the second example. Again, we
expect to observe a positive association between feature 1 and feature 2. In terms of generalized checkerboard scores, we
would expect to see more co-variation patterns than co-exclusion patterns. This is shown by the positive and relatively
high value in the [1,2] element of test.output. The bin edges specified here represent almost absent ([0,0.001)), low
abundance ([0.001,0.1)), medium abundance ([0.1,0.25)), and high abundance ([0.6,1)).

Martin Leonard Cody and Jared Mason Diamond. Ecology and evolution of communities. Harvard University Press, 1975.

Karoline Faust, J Fah Sathirapongsasuti, Jacques Izard, Nicola Segata, Dirk Gevers, Jeroen Raes, and Curtis Huttenhower.
Microbial co-occurrence relationships in the human microbiome. PLoS computational biology, 8(7):e1002606, 2012.

Emma Schwager and Colleagues. Detecting statistically significant associtations between sparse and high dimensional
compositioanl data. In Progress.

	1 Introduction
	2 ccrepe
	2.1 General functionality
	2.2 Arguments
	2.3 Output
	2.4 Usage
	2.5 Example 1
	2.6 Example 2
	2.7 Example 3
	2.8 Example 4
	2.9 Example 5

	3 nc.score
	3.1 General Functionality
	3.2 Arguments
	3.3 Output
	3.4 Usage
	3.5 Example 1
	3.6 Example 2
	3.7 Example 3

	4 References

