
OpenACC Hands-on

Ruymán Reyes Castro ∗, J. Lucas Grillo †

March 12, 2013

1 Firsts steps

1.1 Accessing the Cluster

The practical sessions require a system with the appropriate compilers and GPU devices.
The High Performance Computing Group from the Universitat Jaume I (UJI) has kindly
provided us with access to their tintorrum cluster. We are going to use the cuda queue,
which contains 9 nodes with two Intel Xeon E5520 quad-core processors (total of 8 cores @
2.27 GHz) and a Tesla C2050 GPU. The nodes are connected via Infiniband QDR (Mellanox
MTS3600 switch)

Since the cluster is not directly connected to the internet, we need to use an SSH gateway
(Lorca) to access to the internal UJI network. The easiest way to access to tintorrum is to
create an ssh tunnel from your computer to the target computer (using Lorca).

1. Get the DSA key

Get the DSA key

$ wget -O gpgpu_dsa https://www.dropbox.com/s/7wha3fa5dcd7bjp/gpgpu_dsa

$ chmod 400 gpgpu_dsa

2. Launch the following command in your computer (not in Lorca):

ssh -i gpgpu_dsa -L 20022:tintorrum.act.uji.es:22 capap@lorca.act.uji.es

3. Now you can connect to localhost:20022 as it was tintorrum (leave the previous
connection open and use another terminal).

ssh -p 20022 -XC {username}@localhost

∗EPCC - University of Edinburgh (rreyesc@epcc.ed.ac.uk)
†GCAP - University of La Laguna

1

If everything went OK, we should now be logged into tintorrum (hostname: tintor-
rum.act.uji.es) To copy files in/out the cluster, we can use the -P option of scp.

Copy from the cluster

scp -P 20022 {usuario}@localhost:file .

Copy to the cluster

scp -P 20022 file usuario@localhost:.

1.2 Compiling the Hello World

This first exercise only pretends to familiarize the user with the labs environment. All the
source codes of the exercises will be written and built in the frontal node of tintorrum.
However, unless otherwise specified, the codes must be run using the queue system.

Several different compilers implement the OpenACC standard. In this hands-on session
we will use the following three implementations:

• CAPS OpenACC 3.3.2

• PGI version 13.2

First of all, copy the file ejercicios.tgz from the shared directory /nas/openacc/into
your home folder. This compressed tar file contains all the exercises and their solutions.
After uncompressing it on your home folder, you will have a directory named ejercicios

which contains several directories named ej01, ej02,
First of all, load all the environment variables that you may require by typing source load.sh.
In the directory ej01 you will find the first example. Open the file hello.c with your

favorite editor. It is a very simple OpenACC example, which assigns a value to each position
of an array, and checks that it did the same on both the CPU and the GPU. Notice that we
are using the _OPENACC macro to differentiate when we are building with OpenACC support
and when not.

Now close the source file and open the Makefile. In order to use the CAPS OpenACC
compiler to build the source. The CAPS compiler is acts as a wrapper in front of gcc. The
options in front of gcc are CAPS options. Type capsmc --help to see available options and
some usage examples. The -f option we are using rewrites the temporary codelets to avoid
having several different versions of the same kernel laying in the directory.

The PGI C compiler is run using the pgcc command. In this case, PGI is not a wrapper
but a full compiler, and it does not generate itermediate files (unless requested). Type
pgcc -help to see available options and some usage examples. To enable compilation with
OpenACC support, add -acc to the list of options. Multiple targets are supported (e.g
compiling OpenACC to run on the CPU). To ensure generation of GPU code add -ta=nvidia

to the command line.
The makefile provided takes care of all this options. Type make inside the directory to

build both the sequential and the various OpenACC versions.
You should not execute the exercises on the frontend node or you may experience random

failures when other users are doing the same as you. Use the queue system to submit jobs.

Page 2

The file script.sh in the directory is an example batch submission script that executes
the host and GPU versions of the code and stores the output on two text files. Submit
it using qsub script.sh. Check the files output pgi, output caps and output host
and verify that everything worked as expected.

2 Basic OpenACC

The directory ej02 contains the files used in this exercise. The file jacobi.c feature a
simplified implementation of a Jacobi iterative solver, which solves the Laplace equation in
2D (∇2f(x, y) = 0) 1. The main loop is shown below.

while (error > tol && iter < iter_max)

{

error = 0.0;

// Loop Nest A

for(int j = 1; j < n-1; j++) // A.a

for(int i = 1; i < m-1; i++) // A.b

{

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);

error = max(error, fabs(Anew[j][i] - A[j][i]));

}

// Loop Nest B

for(int j = 1; j < n-1; j++) // B.b

for(int i = 1; i < m-1; i++) // B.b

A[j][i] = Anew[j][i];

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

iter++;

}

The while loop features two loop nests, highlighted as A and B. Loop nest B is a trivial
update loop, which copies the values from Anew back to A, whilst Loop nest A updates the
values of each position of the Anew matrix in terms of the values of the neighbors in the
matrix A. It also computes the maximum absolute error between the two matrices. The
while loop will stop if the maximum number of iterations is achieved (iter max) or if the
error falls below the specified tolerance.

1. Compile the sequential version of the code (make host). Execute it on the host and
familiarize yourself with the output.

1 This example is based on the NVIDIA/PGI tutorials. http://tinyurl.com/d4sxul7

Page 3

http://tinyurl.com/d4sxul7

Figure 1: Each cell uses its neighbor values to compute the new value.

2.1 Offloading code to the accelerator

The easiest way to execute a piece of code on the accelerator is to use the kernels loop

directive. In this example, both A and B loops can be offloaded to the GPU.

1. Apply the kernels loop directive to both loops and ensure the result is correct. What
happened with the execution time?

2.2 Profiling

Since there is no point in using a programming language for accelerators that runs your code
slower, we will use the NVIDIA command line profiler (nvprof2) to analyze the output
in an attempt to identify the bottleneck. The code generated by OpenACC compilers for
CUDA platforms is still CUDA code so traditional tools can be used with it. In this case,
for simplicity, we will use only the CAPS OpenACC compiler.

Modify your script file so the execution line looks like the following: nvprof ./jacobi.acc.cuda.exe

&> output cuda profiler

1. Get the profiling information from your code. Identify the major bottleneck of the
implementation.

The output of your profiling output should look similar to the following:

======== NVPROF is profiling jacobi.acc.cuda.exe...

======== Command: jacobi.acc.cuda.exe

Jacobi relaxation Calculation: 4096 x 4096 mesh

0, 0.250000

100, 0.002363

200, 0.001204

300, 0.000804

400, 0.000603

500, 0.000483

2http://docs.nvidia.com/cuda/profiler-users-guide/index.html

Page 4

http://docs.nvidia.com/cuda/profiler-users-guide/index.html

600, 0.000403

700, 0.000345

800, 0.000302

900, 0.000269

total: 456.639148 s

======== Profiling result:

Time(%) Time Calls Avg Min Max Name

43.66 192.51s 6000 32.08ms 1.86us 57.71ms [CUDA memcpy DtoH]

39.13 172.52s 5000 34.50ms 1.44us 53.66ms [CUDA memcpy HtoD]

16.00 70.55s 1000 70.55ms 67.56ms 73.07ms __hmpp_acc_XXXX

1.21 5.32s 1000 5.32ms 5.28ms 5.37ms __hmpp_acc_XXXX

Notice that more than 70% of the time is invested in memory transfers, and only a 17%
in real computation.

2.2.1 Profiling with the PGI compiler

The PGI compiler is able to provide GPU usage statistics by itself. To enable them, add the
line export PGI_ACC_TIME=1 to your batch script, just before executing the GPU version.

1. How much information is being copied to the device?

2. How much information is being copied from the device?

2.3 Creating a data region

Both A and B loops are enclosed within a while loop. Since each kernels directive creates
its own implicit data region, every time we encounter any kernel directive we transfer all the
required variables inside, and then copy everything outside at the end. In order to reduce
the amounts of memory transfers, we need to create an explicit data region.

1. Search for the correct place in the code to put the data region and define which variables
will be required. Then compile/run again to check for correctness and performance.

2. Profile the application again and compare the timing figures.

2.4 What is going on under the hood?

In some situations it may be of interest to have more details on what the runtime or the
compiler is doing.

2.4.1 PGI compiler

It is possible to view the CUDA code generated by the compiler. Change the PGCC_FLAGS

in the makefile so it looks like the following and recompile.

Page 5

Option Loop A.a Loop A.b Time CAPS (s) Time PGI (s)
1 gang(64) worker(64)
2 gang(128) worker(128)
3 gang(256) worker(256)
4 gang(128) worker(128)
5 gang(256)
6

PGCC_FLAGS=-acc -ta=nvidia,keepgpu -Minfo

If you list the content of the directory after building the sources, you will see the in-
termediate files It is also possible also to see runtime information regarding whenever the
accelerator is used. This is accomplished using the ACC_NOTIFY or PGI_ACC_NOTIFY vari-
ables.

1. Open the intermediate file and try to identify the kernel code.

2. Add the variable to the script file and identify when the kernels are executed.

2.4.2 CAPS OpenACC compiler

The CAPS OpenACC compiler keeps the intermediate files by default. Each generated kernel
is stored on a separated file, together with the code required to execute it.

To view detailed execution information (e.g, when a kernel is loaded or memory is being
transferred), you can use the HMPPRT_LOG_LEVEL environment variable.

HMPPRT_LOG_LEVEL=info ./program_name

1. Add the variable to the script file and identify when the kernels are executed.

2. Open the intermediate file and try to identify the kernel code.

2.5 Playing around with gangs and workers

Now that the bottleneck is no longer the memory transfers, we can fine tune the performance
of the kernels by exploring different values of gangs and worker clauses.

1. Try to find the optimal values of gang/workers for Loop A. The following table includes
a set of suggestions, but feel free to try different combinations.

2. Is it the best combination of gang and workers the same for both compilers?

Be careful! Some options might cause the compiler to crash or the final exe-
cutable may produce incorrect results

Page 6

3 Slightly less basic OpenACC

1 int main (...) {

2 ...

3 // Initial energy calculation

4 compute(position , velocity , mass , force , &pe , &ke);

5 ...

6 // (S) Simulation

7 for (i = 0; i < NSTEPS; i++) {

8 compute(position , velocity , mass , force , &pe , &ke);

9 // Compute error

10

11 printf (..., pe , ke);

12 update (position , velocity , mass , force , &pe , &ke);

13 }

14 ...

15 }

16 void compute (...) {

17 // (C) Compute forces

18 for (...) {

19 compute pe, ke

20 }

21 }

22 void update (...) {

23 // (U) Update velocity/position

24 for (...)

25 ... update pos , vel , mass

26 }

Listing 1: Sketch of MD simulation

Given positions, masses and velocities of np particles, the pseudo code shown in Listing
1 computes the energy of the system and the forces on each particle.

The code found in ej03 is a C implementation of a simple Molecular Dynamics (MD)
simulation. It employs an iterative numerical procedure to obtain an approximate solution
whose accuracy is determined by the time step of the simulation. Particles are represented
by three three-dimensional double precision matrices: Position, Velocity and Force (parame-
ters). Rows of each matrix represent a particle, whereas columns represent a dimension. For
example, the coordinate {3, 1} contains the parameter value for the particle number three
in dimension one.

After an initial forces computation, on each simulation step, the algorithm performs two
basic operations: compute (C) and update (U). C operation consists of several nested loops
computing the forces for each position. An external loop iterates over all particles computing
its forces in the current simulation step. This requires computing the distance among all
other particles, hence accessing the position matrix, and computes the total potential and
kinetic energy of the system, which requires access to the velocity matrix. In terms of the
data access pattern, the code is highly un-coalesced, requiring several non-contiguous loads
to compute each particle. In addition, it features several costly double precision operations
(sqrt, sin and cos) which traditionally perform badly on GPU devices. The U operation

Page 7

is simply a for loop that runs over the particles, updating their positions, velocities and
accelerations. C is more compute–intensive than U.

3.1 Multiple offload regions

Both C and U routines are suitable to be executed on the GPU. Since the C routine is more
compute intensive, it should be our first optimization target.

Sometimes, when porting applications to OpenACC, the compiler needs some help refac-
toring the code before being able to generate the CUDA kernel. In this case, the main loop
of the C routine contains a call to a function. This calls are typically inlined by the compiler.
However, in this case the parameters to this functions are pointers. Pointer addressing is not
supported on the majority of implementations. Although this may be solved in the future,
or for some simple cases, it is a general good idea to avoid pointer addressing inside offloaded
code. This simplifies the work of the compiler, generating a better dependency analysis. It is
important to take into account that, although most GPU accelerators nowadays support the
majority of the IEEE floating-point standard, they do not support all the rounding modes.
This implies that some operations (particularly square root) may not deliver full precision
results.

For this first set of questions, we will use 8192 particles and 10 simulation steps.

Fill the table below with the time of each of the following combinations (and any other you
come up). Notice that there is a column for the Host as well. Some code modifications may
affect (or benefit) serial performance!

1. Try to offload the main computational part of the C routine. A kernels loop directive
on the outermost loop could be a good idea. Check the compiler output for hints on
potential problems.

2. Manually inline the dist routine into the main computational loop of the C routine.
Verify the results.

3. What happen to the magnitude of the error (third column) when running the program?

4. How many different kernels were generated by the PGI compiler? And by the CAPS
OpenACC?

5. Try to manually unroll the loops within the C loop. Suggestion: Decompose rij into
three variables (rij x,rij y,rij z). Check correctness and measure performance.

6. If you look closely, within the C loop there are three different nested loops. Try splitting
those loops into different kernel regions. This may allow you to use nested loop clauses
and generate finer-grainer kernels. As usual, ensure correctness and see the performance.
Suggestion: Sometimes compilers may have problems with reductions, particularly if
the same reduction appears on different branches of a conditional sentence. Try to put
reduction operations on a statement outside the branch.

7. Explore various gang/workers/vector combinations. Check the results - some combina-
tions may produce incorrect results on some compilers.

Page 8

Option Time Host (s) Time CAPS (s) Time PGI (s)
1
2
3
4
5
6

3.2 Orphaned directives

Although the majority of the time in this example is spent on the computation part, we are
going to explore other features of the OpenACC language that are useful for larger source
codes. If you take a look to the general structure of the source, the compute and update
parts are in different routines. However, both routines use the same data. If we only offload
the computation of the C routine, we need to copy in and out the data from the CPU to
the GPU and back in each simulation step. This is not desirable, particularly if we have to
transfer large matrices to the device. OpenACC directives may be orphaned, increasing the
expressiveness of the language.

1. Create a data region that includes the main simulation loop

2. Replace the copy clauses with pcopy clauses

3. Ensure correctness and measure performance

4. Use the profiler to check the amount of memory transfers have been reduced. Note:
Depending on the compiler used and its version, the effect could be different. As always,
check results.

5. Modify the source code so the program writes to the screen the force vector in each
simulation step. Do it by adding a print statement on the main simulation loop. Sug-
gestion: An update clause may be needed. Remember that you can use the indexing
features to specify a contiguous section of an array.

4 Interacting with native CUDA applications

One of the most interesting features of OpenACC is its ability to interact with existing
accelerator code, such as libraries or handwritten codes. The files in the ej04 directory
represent easy examples on this usage. The file mxm deviceptr uses acc malloc to allocate
memory on the accelerator, and then uses it on the accelerator regions across the code. Note
that acc malloc is completely transparent to the platform we are working on, so this code
will work on any kind of accelerator.

The file cublas is a modified example of the Sgemm routine from the CUBLAS library.

Page 9

1. This exercise would be too simple if nothing else would be required. A ghost in the shell
deleted some clauses from the above mentioned files, so they do not compile now. Fix
them to ensure they build and the output is correct.

5 Various advanced topics

In the directory ej05 there are two files: gemm.c - a very simple implementation of the
general (square) matrix multiplication, and driver.c - a program that performs three matrix
multiplications and check the results. You can specify the problem size as a parameter when
running the program.

The driver program also contains a fill routine that puts data into the matrix, and a
identity routine that creates identity matrices.

The program checks for correctness at the end, and returns Ok with the time required
to compute the main part if is successful.

1. Add the required directives so that fill, identity and gemm routines are offloaded to
the accelerator. Check that everything works OK.

2. Create a data directive in the main program enclosing the calls to the above men-
tioned routines. Note: Check that the copy clauses of the orphaned directives are
present or ??? to avoid producing incorrect results.

In this exercise we are going to use the OpenACC if clause to illustrate how easily we
can overlap computation between the host and the accelerator. The computation of the two
first matrix multiplication operations is independent, and it can be done in parallel.

1. Using the if clause on the gemm routine, modify the source so that the first multipli-
cation runs on the CPU and the second one on the GPU. Note: You may need to add
update clauses to keep the memory consistency.

2. Use the async and wait clauses to asynchronously offload the computation of the second
multiplication to the accelerator. You will need to ensure that all the data for this
operation is on the accelerator, and that the results of both multiplications are ready
for the third operation to be executed.

If combining the Host CPU with the GPU is still slower than using only the GPU, do
not loose hope. It is possible to combine OpenMP with OpenACC in the same source file,
although the behaviour of putting together OpenMP and OpenACC directives is compiler
dependant. For example: PGI uses OpenMP with OpenACC to implement multiple device
support (one device per thread).

1. Create an OpenMP parallel region within the gemm. Use the if clause of OpenMP to
enable it when the OpenACC region is disabled. Note: Do not panic if it does not
compile or hangs when running. This feature is not fully supported.

Page 10

	Firsts steps
	Accessing the Cluster
	Compiling the Hello World

	Basic OpenACC
	Offloading code to the accelerator
	Profiling
	Profiling with the PGI compiler

	Creating a data region
	What is going on under the hood?
	PGI compiler
	CAPS OpenACC compiler

	Playing around with gangs and workers

	Slightly less basic OpenACC
	Multiple offload regions
	Orphaned directives

	Interacting with native CUDA applications
	Various advanced topics

